Chevroletavtoliga - Автомобильный портал

Определение коэффициента вязкости жидкости методом Стокса. Определение коэффициента вязкости жидкостей методом стокса Метод стокса для определения вязкости жидкости

Описание метода Стокса.

Наименование параметра Значение
Тема статьи: Описание метода Стокса.
Рубрика (тематическая категория) Физика

Введем обозначения˸

- плотность материала шарика
- плотность жидкости
m - масса шарика
V - объём шарика
r - радиус шарика
v - скорость движения шарика в жидкости
g - ускорение силы тяжести
h - высота жидкости в цилиндре
R - радиус цилиндра

На движущийся в жидкости шарик действует сила внутреннего трения, тормозящая ᴇᴦο движение. При условии, что стенки сосуда находятся далеко от шарика, эта сила по закону Стокса определяется формулой (3). Если шарик свободно падает в вязкой жидкости, то на него будут действовать также сила тяжести и выталкивающая сила Архимеда .

На основании 2-го закона динамики Ньютона имеем˸

Решением полученного уравнения является закон изменения скорости шарика с течением времени при ᴇᴦο падении в жидкости˸

Поскольку с течением времени величина очень быстро убывает, то скорость шарика изначально возрастает (рис.2). Но через малый промежуток времени становится величинои̌ постоянной, равной˸ (6), где .

Скорость шарика можно определить, зная расстояние между метками на сосуде и время t , за которое шарик проходит это расстояние˸ .

Подставив эти равенства в (6), выразим из него коэффициент вязкости˸

(7) - эта формула справедлива для шарика, падающего в безгранично простирающейся жидкости. В данном случае необходимо ввести поправочный множитель , учитывающий влияние стенок и дна цилиндра на падение шарика.

Получаем окончательно рабочую расчетную формулу для экспериментального определения коэффициента вязкости жидкости методом Стокса˸

Вопросы к допуску.

1. Какие силы действуют на падающий в жидкости шарик? Каковы характер и динамика ᴇᴦο движения?

2. Записать формулу закона Стокса и пояснить входящие в нее обозначения?

3. Каковы условия применимости закона Стокса? Как они учтены в работе?

4. Записать расчетную формулу для вязкости жидкости? Пояснить каким образом находятся значения входящих в нее величин в данной работе.

5. Чем обусловлено положение верхней метки на цилиндрическом сосуде по отношению к краю жидкости в нем?

6. Пояснить характер зависимости скорости шарика [формула (5)] по рис.2.

7. От чего зависит получаемое значение вязкости? Каковы источники возможных погрешностей результата?

Задание 1. Вычисление расстояния релаксации.

1) Выбрать шарик наибольшего радиуса и измерить ᴇᴦο диаметр, массу, вычислить объём и среднюю плотность.

2) Измерить линейкой расстояние d от поверхности масла в цилиндрическом сосуде до верхней отметки.

3) По справочной таблице найти значение плотности и коэффициента вязкости касторового масла, записать в тетрадь.

5) На базе формулы (5) найти минимальное время , соответствующее значению скорости, найденному в предыдущем пункте.

6) Интегрированием формулы (5) в пределах от t=0 до t=t р вычислить путь S , проходимый шариком при ᴇᴦο неравномерном движении в жидкости.

Описание метода Стокса. - понятие и виды. Классификация и особенности категории "Описание метода Стокса." 2015, 2017-2018.

Лабораторнаяработа № 204

ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

Цель работы: изучить метод Стокса, определить коэффициент динамической вязкости глицерина.

Приборы и принадлежности:

стеклянный цилиндрический сосуд с глицерином,

измерительный микроскоп,

измерительная линейка,

секундомер,

шарики.

1. ВЯЗКОСТЬ ЖИДКОСТИ. ЗАКОН СТОКСА

В жидкостях и газах при перемещении одних слоев относительно других возникают силы внутреннего трения, или вязкости, которые определяются законом Ньютона:

(1)

где h - коэффициент внутреннего трения, или коэффициент динамической вязкости, или просто вязкость; модуль градиента скорости, равный изменению скорости слоев жидкости на единицу длины в направлении нормали (в нашем случае вдоль оси y ) к поверхности S соприкасающихся слоев (рис. 1).


Рис. 1.

Согласно уравнению (1) коэффициент вязкости h в СИ измеряется в Па × с или в кг/ (м × с ).

Механизм внутреннего трения в жидкостях и газах неодинаков, т.к. в них различен характер теплового движения молекул. Подробное изложение вязкости жидкости рассмотрено в работе № 203, вязкости газов – в работе № 205.

Вязкость жидкости обусловлена молекулярным взаимодействием, ограничивающим движение молекул. Каждая молекула жидкости находится в потенциальной яме, создаваемой соседними молекулами. Поэтому молекулы жидкости совершают колебательные движения около положения равновесия, то есть внутри потенциальной ямы. Глубина потенциальной ямы незначительно превышает среднюю кинетическую энергию, поэтому, получив дополнительную энергию при столкновении с другими молекулами, она может перескочить в новое положение равновесия. Энергия, которую должна получить молекула, чтобы из одного положения перейти в другое, называется энергией активации W , а время нахождения молекулы в положении равновесия – временем «оседлой жизни» t . Перескок молекул между соседними положениями равновесия является случайным процессом. Вероятность того, что такой перескок произойдет за время одного периода t 0 , в соответствии с законом Больцмана, составляет

(2)

Величина, обратная вероятности перехода молекулы определяет среднее число колебаний, которое должна совершить молекула, чтобы покинуть положение равновесия. Среднее время «оседлой жизни» молекулы . Тогда

(3)

где k – постоянная Больцмана; средний период колебаний молекулы около положения равновесия.

Коэффициент динамической вязкости зависит от : чем реже молекулы меняют положение равновесия, тем больше вязкость. Используя модель скачков молекул, советский физик Я.И.Френкель показал, что вязкость изменяется по экспоненциальному закону:

(4)

где А – константа, определяемая свойствами жидкости.

Формула (4) является приближенной, но она достаточно хорошо описывает вязкость жидкости, например, воды в интервале температур от 5 до 100 ° С, глицерина – от 0 до 200 ° С.

Из формулы (4) видно, что с уменьшением температуры вязкость жидкости возрастает. В ряде случаев она становится настолько большой, что жидкость затвердевает без образования кристаллической решетки. В этом заключается механизм образования аморфных тел.

При малых скоростях движения тела в жидкости слой жидкости, непосредственно прилегающий к телу, прилипает к нему и движется со скоростью тела. По мере удаления от поверхности тела скорость слоев жидкости будет уменьшаться, но они будут двигаться параллельно. Такое слоистое движение жидкости называется ламинарным. При больших скоростях движения жидкости ламинарное движение жидкости становится неустойчивым и сменяется турбулентным , при котором частицы жидкости движутся по сложным траекториям со скоростями, изменяющимися беспорядочным образом. В результате происходит перемешивание жидкости и образуются вихри.

Характер движения жидкости определяется безразмерной величиной Re , называемой числом Рейнольдса. Это число зависит от формы тела и свойств жидкости. При движении шарика радиусом R со скоростью U в жидкости плотностью r ж

(5)

При малых Re (<10), когда шарик радиусом 1 - 2 мм движется со скоростью 5 - 10 см/ c в вязкой жидкости, например в глицерине, движение жидкости будет ламинарным. В этом случае на тело будет действовать сила сопротивления, пропорциональная скорости

(6)

где r – коэффициент сопротивления. Для тела сферической формы

Сила сопротивления шарика радиусом R примет вид:

(7)

Формула (7) называется законом Стокса.

2. ОПИСАНИЕ РАБОЧЕЙ УСТАНОВКИ И МЕТОДА

ИЗМЕРЕНИЙ

Одним из существующих методов определения коэффициента динамической вязкости является метод Стокса. Суть метода заключается в следующем. Если в сосуд с жидкостью бросить шарик плотностью большей, чем плотность жидкости (r > r ж ), то он будет падать (рис. 2). На движущийся в жидкости шарик действует сила внутреннего трения (сила сопротивления) , тормозящая его движение и направленная вверх. Если считать, что стенки сосуда находятся на значительном расстоянии от движущегося шарика, то величину силы внутреннего трения можно определить по закону Стокса (6).


Рис. 2.

Кроме того, на падающий шарик действует сила тяжести, направленная вниз и выталкивающая сила , направленная вверх. Запишем уравнение движения шарика в проекциях на направление движения:

(8)

Решение уравнения (8) описывает характер движения шарика на всех участках падения. В начале движения скорость шарика U мала и силой F c можно пренебречь, т.е. на начальном этапе шарик движется с ускорением

По мере увеличения скорости возрастает сила сопротивления и ускорение уменьшается. При большом времени движения сила сопротивления уравновешивается равнодействующей сил и , и шарик будет двигаться равномерно с установившейся скоростью. Уравнение движения (8) в этом случае примет вид

(9)

Сила тяжести равна

(10)

где r - плотность вещества шарика.

Выталкивающая сила определяется по закону Архимеда:

(11)

Подставив (10), (11) и (7) в уравнение (9), получим

Отсюда находим

(12)

Установка представляет собой широкий стеклянный цилиндрический сосуд 1 , наполненный исследуемой жидкостью (рис. 3). На сосуд надеты два резиновых кольца 2 , расположенных друг от друга на расстоянии l . Если время движения шарика 3 между кольцами t , то скорость шарика при равномерном движении

и формула (12) для определения коэффициента динамической вязкости запишется:

(13)

При этом верхнее кольцо должно располагаться ниже уровня жидкости в сосуде, т.к. только на некоторой глубине силы, действующие на шарик, уравновешивают друг друга, шарик движется равномерно и формула (13) становится справедливой.

В сосуд через отверстие 4 опускают поочередно пять небольших шариков 3 , плотность которых r больше плотности исследуемой жидкости r ж .

В опыте измеряют диаметры шариков, расстояние между кольцами и время движения каждого шарика на этом участке.

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ И ОБРАБОТКА

РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

1. Измерить диаметр шарика D с помощью микроскопа.

  1. С помощью линейки измерить расстояние l между кольцами.

3. Через отверстие 4 в крышке сосуда опустить шарик.

4. В момент прохождения шариком верхнего кольца включить секундомер и измерить время t прохождения шариком расстояния l между кольцами.

5. Опыт повторить с пятью шариками. Шарики имеют одинаковый диаметр и двигаются в жидкости примерно с одинаковой скоростью. Поэтому время прохождения шариками одного и того же расстояния l можно усреднить и, выразив радиус шариков через их диаметр , формула (13) примет вид:

(14)

где среднее арифметическое значение времени.

6. По формуле (14) определить значение . Плотность исследуемой жидкости (глицерина) r ж = 1,26 × 10 3 кг/м 3 , плотность материала шарика (свинца) r = 11,34 × 10 3 кг/м 3 .

7. Методом расчета погрешностей косвенных измерений находят относительную Е и абсолютную D h погрешность результата:

, ,

где - абсолютные погрешности табличных величин r , r ж и g ; - абсолютные погрешности прямых однократных измеренийдиаметра шарика D и расстояния l ; абсолютная погрешность прямых многократных измерений времени.

8. Данные результатов измерений и вычислений занесите в таблицу.

Таблица результатов

п/п

D

l

t

r

r ж

g

Е

м

м

c

c

кг/м 3

кг/м 3

м/ c 2

Па × с

Па × с

%

Сравните полученный результат с табличным значением коэффициента динамической вязкости глицерина при соответствующей температуре. Температуру воздуха (а соответственно и глицерина) посмотрите на термометре, находящемся в лаборатории.

Коэффициенты динамической вязкости глицерина

при различных температурах

t , ° C

h , Па × с

1,74

1,62

1,48

1,35

1,23

1,124

1,024

0,934

0,85

0,78

4. ВОПРОСЫ ДЛЯ ДОПУСКА К РАБОТЕ

  1. Сформулируйте цель работы.

2. Запишите формулу Ньютона для силы внутреннего трения и поясните величины, входящие в эту формулу.

3. Опишите рабочую установку и порядок выполнения работы.

4. Какие силы действуют на шарик, падающий в жидкости?

5. Запишите рабочую формулу и поясните ее.

5. ВОПРОСЫ ДЛЯ ЗАЩИТЫ РАБОТЫ

1. Объясните молекулярно-кинетический механизм внутреннего трения (вязкости) жидкости.

2. Дайте понятие энергии активации.

3. Как зависит вязкость жидкости от температуры?

4. При каких условиях движение жидкости будет ламинарным?

5. Запишите уравнение движения шарика в глицерине и выведите рабочую формулу.

6. Можно ли верхнее кольцо располагать на уровне поверхности жидкости в сосуде?

7. Получите формулу для расчета относительной погрешности Е.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Физика»

для студентов, обучающихся по направлению 230400.62 «Информационные системы и технологии» очной формы обучения

Тюмень, 2012

Величко Т.И. Определение коэффициента вязкости жидкости методом Стокса: методические указания к лабораторной работе по дисциплине «Физика» для студентов направления 230400.62 «Информационные системы и технологии» очной формы обучения/ Т.И. Величко.-Тюмень: РИО ФГБОУ ВПО «ТюмГАСУ», 2012. – 11 c.

Методические указания разработаны на основании рабочих программ ФГБОУ ВПО ТюмГАСУ дисциплины «Физика» для студентов направления 230400.62 «Информационные системы и технологии» очной формы обучения.

Указания включают описание экспериментальной установки и метода измерений, порядок выполнения измерений и расчетов в лабораторной работе по теме «Механика жидкостей и газов».

Рецензент: Михеева О.Б.

Тираж 50 экз.

© ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет »

© Величко Т.И.

Редакционно-издательский отдел ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. Краткая теория к работе. . . . . . . . . . . . . . . . . . . . . . . 5

2. Лабораторная работа №12. Определение коэффициента вязкости

жидкости методом Стокса. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Описание установки. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Порядок выполнения работы. . . . . . . . . . . . . . 9

3. Контрольные вопросы. . . . . . . . . . . . . . . . . . . . . . . . . 10

Библиографический список. . . . . . . . . . . . . . . . . . . . . . 11

Введение

Методические указания разработаны на основании рабочих программ ФГБОУ ВПО ТюмГАСУ дисциплины «Физика» для студентов направления 230400.62 «Информационные системы и технологии» очной формы обучения. Указания включают описание экспериментальной установки и метода измерений, порядок выполнения измерений и расчетов в лабораторной работе по теме «Механика жидкостей и газов».

Настоящие методические указания нацелены на приобретение студентами следующих компетенций:

- общекультурных:

ОК-1 – владение культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения;

ОК- 11 – владение основными методами, способами и средствами получения, хранения, переработки информации, использование компьютера как средства работы с информацией;

- профессиональных:

ПК-1 – использование основных законов естественнонаучных дисциплин в профессиональной деятельности, применение методов математического анализа и моделирования, теоретического и экспериментального исследования;

ПК-2 –выявление естественнонаучной сущности проблем, возникающих в ходе профессиональной деятельности, привлечение для их решения соответствующего физико-математического аппарата;

ПК-5 – владение основными методами, способами и средствами получения, хранения, переработки информации, навыками работы с компьютером как средством управления информацией;

ПК-18 – способность к проведению экспериментов по заданной методике и анализу результатов с привлечением соответствующего математического аппарата.

Цель работы – по результатам экспериментальных измерений рассчитать коэффициент вязкости раствора глицерина.

Оборудованием служат сосуд с раствором глицерина, стальные шарики, микрометр, секундомер, линейка.

1. КРАТКАЯ ТЕОРИЯ К РАБОТЕ

1.1 Вязкость . Вязкость или внутреннее трение - свойство жидкостей (или газов) оказывать сопротивление перемещению одного слоя жидкости относительно другого. Силы внутреннего трения направлены по касательной к поверхности слоев; на слой, движущийся быстрее, со стороны слоя, движущегося медленнее, действует тормозящая сила. Эти силы возникают за счет передачи импульса от одного слоя жидкости (газа) другому.

Вязкость жидкостей объясняется действием сил притяжения между молекулами и проявляется в торможении движущихся в жидкости тел, в появлении сопротивления при помешивании жидкости и т.д.

Если вязкая жидкость движется по горизонтальной трубе с небольшой скоростью так, что ее течение является ламинарным (слоистым), то молекулы слоя, соприкасающегося со стенками трубы, прилипают к стенкам и остаются неподвижными. Другие слои движутся с возрастающими скоростями, и наибольшую скорость имеет слой, движущийся вдоль оси трубы. Картина распределения скоростей слоев вязкой жидкости имеет при этом вид параболы (рисунок 1).

Рисунок 1- Распределение скоростей слоев вязкой жидкости в

Рассмотрим течение некоторой жидкости по горизонтальной поверхности (рисунок 2) . Если скорость в этом течении меняется от слоя к слою, то на границе между слоями действует сила внутреннего трения , величина которой определяется по закону, впервые найденному Ньютоном,

. (1)

где -коэффициент вязкости жидкости, - площадь поверхности слоя, на которую действует сила, - модуль градиента скорости (величина, показывающая, как быстро изменяется скорость движения жидкости в направлении , перпендикулярном к поверхности слоев.)

Рисунок 2 - Течение вязкой жидкости по горизонтальной поверхности.

Величина коэффициента вязкости зависит от природы жидкости или газа и их температуры. Для жидкостей с увеличением температуры уменьшается, для газов, наоборот, возрастает. Как следует из уравнения (1), единицы измерения коэффициента вязкости - Паскаль∙секунда (Па×с).

1.2 Определение вязкости методом Стокса. Метод Стокса определения коэффициента вязкости основан на измерении скорости равномерно движущихся в жидкости небольших тел сферической формы.

При небольшой скорости движения тела в вязкой жидкости на него действует сила сопротивления движению, пропорциональная скорости тела,

Коэффицент сопротивления зависит от формы и размеров тела и от вязкости жидкости. Дж. Стоксом было эмпирически установлено, что для тела сферической формы радиусом , . Сила сопротивления, равная

называется силой Стокса.

Рисунок 2 - Силы, действующие на

падающий шарик.

При падении шарика в жидкости (рисунок 2), на него действуют три силы:

1) сила тяжести ,

(2)

Масса шарика, - его объем, -плотность материала шарика, -радиус шарика.

2) сила Архимеда ,

, (3)

-масса вытесненной шариком жидкости, - плотность жидкости.

3) сила сопротивления движению (сила Стокса) ,

, (4)

Скорость движения шарика.

При равномерном, т.е. с постоянной скоростью, движении шарика

, (5)

.

Если измерить расстояние , пройденное шариком за время , то скорость шарика . Тогда окончательно,

, (6)

или, если использовать диаметр шарика,

. (7)

2. ЛАБОРАТОРНАЯ РАБОТА № 12 (механика)

ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

2.1 Описание установки

Установка состоит из цилиндрического сосуда с раствором глицерина. Сосуд с помощью кронштейнов закреплен на стене. При падении шарика в жидкости его скорость вначале возрастает, но через малый промежуток времени становится величиной постоянной. Чтобы рассчитать скорость падения шарика в растворе глицерина, на стенке сосуда указаны две метки, верхняя отмечает положение, начиная с которого движение шарика можно считать равномерным. В момент похождения шариком верхней метки включают секундомер, отсчитывающий время движения. В момент прохождения шариком второй метки секундомер отключают.


Введем обозначения:

На движущийся в жидкости шарик действует сила внутреннего трения, тормозящая его движение. При условии, что стенки сосуда находятся далеко от шарика, эта сила по закону Стокса определяется формулой (3). Если шарик свободно падает в вязкой жидкости, то на него будут действовать также сила тяжести и выталкивающая сила Архимеда .

На основании 2-го закона динамики Ньютона имеем:

(4).

Решением полученного уравнения является закон изменения скорости шарика с течением времени при его падении в жидкости:

(5).

Поскольку с течением времени величина очень быстро убывает, то скорость шарика вначале возрастает (рис.2). Но через малый промежуток времени становится величиной постоянной, равной:
(6), где .

Скорость шарика можно определить, зная расстояние между метками на сосуде и время t , за которое шарик проходит это расстояние: .

Подставив эти равенства в (6), выразим из него коэффициент вязкости:

(7) - эта формула справедлива для шарика, падающего в безгранично простирающейся жидкости. В данном случае необходимо ввести поправочный множитель , учитывающий влияние стенок и дна цилиндра на падение шарика.

Получаем окончательно рабочую расчетную формулу для экспериментального определения коэффициента вязкости жидкости методом Стокса:

(8)

Вопросы к допуску.

1. Какие силы действуют на падающий в жидкости шарик? Каковы характер и динамика его движения?

2. Записать формулу закона Стокса и пояснить входящие в нее обозначения?

3. Каковы условия применимости закона Стокса? Как они учтены в работе?

4. Записать расчетную формулу для вязкости жидкости? Пояснить каким образом находятся значения входящих в нее величин в данной работе.

5. Чем обусловлено положение верхней метки на цилиндрическом сосуде по отношению к краю жидкости в нем?

6. Пояснить характер зависимости скорости шарика [формула (5)] по рис.2.

7. От чего зависит получаемое значение вязкости? Каковы источники возможных погрешностей результата?

Задание 1. Вычисление расстояния релаксации.

1) Выбрать шарик наибольшего радиуса и измерить его диаметр, массу, вычислить объем и среднюю плотность.

2) Измерить линейкой расстояние d от поверхности масла в цилиндрическом сосуде до верхней отметки.

3) По справочной таблице найти значение плотности и коэффициента вязкости касторового масла, записать в тетрадь.

5) На основе формулы (5) найти минимальное время , соответствующее значению скорости, найденному в предыдущем пункте.

6) Интегрированием формулы (5) в пределах от t=0 до t=t р вычислить путь S , проходимый шариком при его неравномерном движении в жидкости.

7) Сравнить полученное значение S с расстоянием d от поверхности жидкости в сосуде до верхней метки. Сделать соответствующий вывод о применимости расчетной формулы.

Задание 2. Экспериментальное определение вязкости касторового масла .

1) Взять 3 металлических шарика (стальные или свинцовые) и микрометром произвести несколько измерений их диаметров. Вычислить средние значения радиусов данных шариков. Занести эти и последующие результаты в таблицу.

2) Свободно отпустить шарик в исследуемую жидкость и засечь время прохождения им расстояния между метками. Проделать это для каждого из взятых шариков, i =1, 2, 3.

3) Измерить расстояние между метками и записать какова абсолютная погрешность этого значения .

4) Определить температуру исследуемой жидкости (температуру воздуха в помещении).

5) Для каждого опыта вычислить по расчетной формуле полученное значение вязкости. Найти его среднее значение и сравнить с табличным.

6) Сделать вывод о правильности проведенного эксперимента и пояснить возможные причины расхождения теоретического и экспериментального значений коэффициента вязкости касторового масла.

7) Оценить погрешность результат проделанного измерения как косвенного многократного измерения. Записать ответ в форме , (степень доверия Р=...).

Задание 3. Исследование зависимости скорости падения шарика в вязкой жидкости .

1) Подставьте полученные в ходе выполнения эксперимента числовые значения соответствующих величин в формулу (5) и запишите ее вид после проведения соответствующих вычислений (возьмите данные, соответствующие падению одного из шариков).

2) Постройте на миллиметровой бумаге график зависимости скорости падения шарика от времени падения с указанием выбранных масштабов. Точный график можно построить в системе Mathcad на компьютере.

3) Сравните значение скорости равномерного движения шарика, полученное из графика с тем, что было посчитано в ходе опыта.

4) По графику определить время , через которое скорость шарика перестанет меняться. Посчитать площадь фигуры под графиком на участке от начала движения до . Сравнить эту величину с расстоянием d от поверхности жидкости в сосуде по верхней метки.

5) Сделайте необходимый вывод.

Вопросы к отчету :

1. Поясните сущность явления вязкого трения. Какова природа сил внутреннего трения жидкости?

2. Сформулируйте закон Ньютона и поясните входящие в него величины.

3. Что такое коэффициент вязкости?

4. Запишите формулу Стокса и укажите условия ее применимости. Докажите справедливость формулы (3) методом размерностей.

5. Какое движение жидкости называют ламинарным? Запишите условие ламинарности.

6. Выведите формулу зависимости скорости падения шарика от времени из динамического уравнения его движения в вязкой жидкости.

7. Сформулируйте утверждения, отражающие основные результаты данного эксперимента.

8. Перечислить основные источники погрешностей измерений, проводимых в данной работе. Как они были вами учтены при оценке точности результата?

Лабораторная работа № 1.4.

Определение модуля Юнга металлической проволоки.

Цель работы: познакомиться с числовыми характеристиками и законами упругой продольной деформации твердых тел; исследовать упругие свойства металла, в частности на практике изучить деформацию растяжения на примере металлической проволоки; познакомиться с методом экспериментального нахождения модуля Юнга.

Приборы и принадлежности: нихромовая или стальная проволока, закрепленная с одного конца, грузы и подвесная опора для них, два микроскопа с окулярными шкалами, микрометр, масштабная линейка.

Существует много способов определения вязкости жидкости, наиболее распространённые: метод Пуазейля - этот метод основан на ламинарном течении жидкости в тонком капилляре, метод Стокса - этот метод определения вязкости основан на измерении скорости падения в жидкости медленно движущихся небольших тел сферической формы.

В нашей работе, мы будем использовать одним из удобных и наиболее распространенных методов определения вязкости жидкости - методом Стокса, основанным на использовании закономерностей движения сферических тел в вязкой среде. Если твердое тело опустить в смачивающую жидкость, то на его поверхности образуется тонкий прилипший слой жидкости, который удерживается силами молекулярного притяжения. Когда тело движется относительно жидкости с некоторой скоростью v, с той же скоростью перемещается вместе с ним и прилипший слой. Это явление позволяет производить измерение коэффициента внутреннего трения жидкости по методу Стокса.

На шарик, свободно падающий в жидкости, действуют сила тяжести Р, выталкивающая сила Q и сила вязкого сопротивления F:

Р=m ш g = 4/3πr 3 ρ ш g,

Q = m ж g = 4/3πr 3 ρ ж g, (11)

где m ш и m ж - массы шарика и жидкости, ρ ш и ρ ж - их плотности; r - - радиус; υ -скорость падения шарика; g - ускорение свободного падения; η - коэффициент вязкости.

Движение шарика, падающего в вязкой жидкости, лишь в первое время будет ускоренным. С возрастанием скорости возрастает и сила вязкого сопротивления, и с некоторого момента движение можно считать равномерным, т.е. справедливо равенство

P = Q +F; F = P-Q

6πηrυ = 4/3πr 3 g (ρ ш - ρ ж),

откуда
(12)

Для средней части сосуда, ограниченной рисками А и В, где движение равномерное, скорость равна

υ = h/t, (13)

где h - расстояние, t - время падения шарика между рисками А и В. Поставляя значение скорости в уравнение (2), получим

(14)

Это уравнение справедливо лишь тогда, когда шарик падает в безграничной среде. Если шарик падает вдоль оси трубки радиуса R, то приходится учитывать влияние боковых стенок. Поправки в формуле Стокса для такого случая теоретически обосновал Ладенбург.

Формула для определения коэффициента вязкости с учетом поправок принимает следующий вид:


(15)

4.6 Описание установки используемой в работе

Вискозиметр для определения вязкости по методу Стокса представляет собой стеклянный цилиндрический сосуд, наполненный исследуемой жидкостью. Установка вискозиметра по вертикали производится по отвесу. Экспериментальная установка и методика измерения. Установка (рисунок 8) состоит из стеклянного цилиндра, наполненного исследуемой жидкостью. Цилиндр укреплен на подставке. На поверхности цилиндра сделаны одна над другой две горизонтальные метки на расстоянии h см друг от друга. Верхняя метка должна быть несколько ниже уровня жидкости в сосуде, чтобы до ее достижения шарик приобретал скорость установившегося движения. Для измерения коэффициента внутреннего трения употребляются маленькие шарики из свинца, стали, сплава Вуда.

Для измерения диаметра шарика используется микрометр. Диаметр измеряется в 3-5 направлениях. Измерив диаметр, шарик с помощью пинцета опускают в цилиндр, как можно ближе к центру (руками шарик не брать, так как жир с пальцев ухудшает смачивание шарика). Глаз наблюдателя должен быть при этом уже установлен против верхней метки так, чтобы ее передняя и задняя части сливались в одну прямую. В момент, когда шарик достигнет этой метки, пускают в ход секундомер. Затем глаз перемещают к нижней метке и в момент прохождения мимо нее шарика останавливают секундомер. Так как плотность и коэффициент вязкости меняются с изменением температуры, необходимо записать показания термометра в помещении.

Рисунок 8 Схема установки используемой в работе

Похожие публикации