Chevroletavtoliga - Автомобильный портал

Наплавка роликов металлургических машин. Способ восстановления роликов. Наплавка открытой дугой

Полезная модель относится к области металлургия и может быть использована в МНЛЗ. Техническая задача - увеличение срока службы ролика путем повышения его стойкости. Для этого по краям бочки 1 ролика выполнены последовательно расположенные в направлении от приводной 2 и опорной 3 цапф к центру бочки 1 торцевые 4 и промежуточные 5 участки. При этом каждый торцевой участок 4 имеет длину Lт.у=0,071-0,072 Lб, где Lт.у - длина торцевого участка бочки, мм; Lб, - длина бочки, мм; и выполнен из металла с KCU=65-70 Дж/см 2 , где KCU - коэффициент ударной вязкости металла.

Каждый промежуточный участок 5 ролика имеет длину Lп.у=0,035-0,036 Lб, где Lп.у - длина промежуточного участка бочки, мм; и выполнен из металла, коэффициент ударной вязкости, которого составляет 0,6-0,7 KCU металла торцевого участка 4. При этом торцевые участки 4 ролика выполнены, преимущественно, из хромистой жаростойкой стали, а промежуточные участки 5 - из хромомолибденовой стали.

Полезная модель относится к металлургии и может быть использована в конструкции машины непрерывного литья заготовок (МНЛЗ).

Известен ролик машины непрерывного литья заготовок, содержащий бочку, приводную и неприводную цапфы (см. Л.С.Белевский, В.И.Кадошников, Е.Л.Белевская и др. Бандажированные прокатные валки и ролики МНЛЗ. - Магнитогорск: ГОУ ВПО «МГТУ», 2009, с.44-47).

Недостатком известного ролика является низкая стойкость из-за частой поломки его в местах сопряжения бочки с цапфами, где возникают зоны высокой концентрации напряжений изгиба в металле от нагрузок, воспринимаемых роликом в процессе работы МНЛЗ. Это значительно снижает срок службы роликов.

Наиболее близким аналогом к заявляемому объекту является ролик машины непрерывного литья заготовок, содержащий бочку цилиндрической формы с приводной и опорной цапфами. При этом бочка выполнена из коррозионностойкой стали, наплавленной на сердцевину (см. Д.П.Евтеев, И.Н.Колыбалов. Непрерывное литье стали. - М.: Металлургия, 1984, с.115-116).

Недостатком данного ролика является его низкая стойкость в результате того, что в местах сопряжения бочки с цапфами в процессе работы возникают концентраторы напряжения на изгиб, а так как металл ролика по всей длине имеет одинаковый коэффициент ударной вязкости, то в указанных местах происходит разрушение металла из-за недостаточной его пластичности. Это приводит к снижению срока службы ролика.

Задача, решаемая полезной моделью, заключается в увеличении срока службы ролика.

Технический результат, достигаемый полезной моделью при использовании, заключается в повышении стойкости ролика.

Поставленная задача решается тем, что в известном ролике машины непрерывного литья заготовок, содержащем бочку цилиндрической формы с приводной и опорной цапфами, согласно изменению, по краям бочки выполнены последовательно расположенные в направлении от цапф к центру бочки торцевой и промежуточный участки, причем каждый торцевой участок имеет длину, равную 0,071-0,072 длины бочки, и выполнен из металла с коэффициентом ударной вязкости, равным 65-70 Дж/см 2 , а каждый промежуточный участок имеет длину, равную 0,035-0,036 длины бочки, и выполнен из металла, коэффициент ударной вязкости которого составляет 0,6-0,7 коэффициента ударной вязкости металла торцевого участка.

При этом в качестве металла торцевого участка использована хромистая жаростойкая сталь.

А в качестве металла промежуточного участка использована хромомолибденовая сталь.

Сущность полезной модели поясняется чертежом, где схематично изображен общий вид ролика МНЛЗ.

Ролик МНЛЗ содержит бочку 1 цилиндрической формы с приводной 2 и опорной 3 цапфами. По краям бочки 1 выполнены торцевой 4 и промежуточный 5 участки, которые последовательно расположены в направлении от приводной цапфы 2 и опорной цапфы 3 к центру бочки 1. При этом каждый торцевой участок 4 имеет длину (Lп.у), равную 0,071-0,072 длины (Lб) бочки 1, и выполнен из металла с коэффициентом ударной вязкости (KCU), равным 65-70 Дж/см 2 , в качестве которого использована, преимущественно, хромистая жаростойкая сталь, например марки 20X13. Каждый промежуточный участок 5 бочки 1 имеет длину (Lп.у), равную 0,035-0,036 длины (Lб) бочки 1, и выполнен из металла, коэффициент ударной вязкости которого равен 0,6-0,7 коэффициента ударной вязкости металла, из которого выполнен сопряженный с ним торцевой участок 4. При этом в качестве металла промежуточного участка 5 ролика использована хромомолибденовая сталь, например, марки 35 ХМФЛ В заявляемом ролике его центральная часть, расположенная между промежуточными участками 5, выполнена из металла с KCU=40-45 Дж/см 2 , например, из стали марки 25X1M1Ф.

Заявляемое конструктивное выполнение ролика позволяет создать зоны плавного изменения механических свойств металла, а именно, ударной вязкости, на участках ролика, особо подверженных разрушению металла от воздействия динамических нагрузок в процессе его работы. Причем изменение указанных свойств металла ролика обеспечивается как на поверхности, так и во всем его объеме путем постепенного уменьшения ударной вязкости металла в направлении от краев ролика к его центральной части. В результате этого, выполненные с обеих сторон ролика торцевые 4 и промежуточные 5 участки из металла с различным коэффициентом ударной вязкости обеспечивают плавное гашение возникающих при работе ролика напряжений на изгиб в направлении от краев ролика к его центру, предотвращая тем самым возникновение концентраторов напряжения на изгиб в местах сопряжения бочки 1 ролика с цапфами 2 и 3, что способствует защите металла от разрушения в указанных зонах ролика. Это приводит к повышению стойкости ролика, а, следовательно, к значительному увеличению срока его службы.

Нецелесообразно выполнять торцевые участки 4 ролика, имеющие длину (Lт.у) меньше, чем 0,071 Lб, где Lб - длина бочки 1, мм; из металла с KCU ниже 65 Дж/см 2 , а сопряженные с ними промежуточные участки 5, длина (Lп.у) которых меньше 0,035 Lб, из металла с KCU меньше, чем 0,6 KCU металла торцевого участка 4, так как в этом случае будет наблюдаться интенсивное разрушение металла ролика в местах сопряжения его бочки 1 с цапфами 2 и 3 под воздействием высоких ударных нагрузок (напряжений изгиба) в процессе работы ролика, что снизит срок его службы.

Нецелесообразно также выполнять торцевые участки 4 ролика, имеющие длину (Lт.у) больше 0,072 Lб, из металла с KCU, превышающим 70 Дж/см 2 , а сопряженные с ними промежуточные участки 5, длина которых больше 0,036 Lб, из металла, коэффициент ударной вязкости (KCU) которого превышает 0,7 KCU металла торцевого участка 4 бочки 1 ролика, в результате того, что чрезмерное повышение прочности торцевых 4 и промежуточных 5 участков не будет обеспечивать плавного гашения возникающих при работе ролика напряжений на изгиб в направлении от краев ролика 1 к его центру, что приведет к возникновению концентраторов напряжений изгиба в местах сопряжения их с бочкой 1 ролика и поломке его, т.е. снизится срок службы ролика.

Изготовление заявляемого ролика осуществляют методом электрошлакового переплава со специальным флюсом (шлаком), обеспечивающим высокое качество монолитного соединения металла торцевых участков 4 бочки 1 соответственно с опорной 3 и приводной 2 цапфами, а также монолитность соединения металла промежуточных участков 5 как с металлом центральной части ролика, так и с металлом торцевых участков 4 бочки 1 ролика.

Работает заявляемый ролик следующим образом.

Предварительно установленные в роликовую секцию МНЛЗ на две или три опоры ролики в парах (нижний-верхний) вращаются и перемещают зажатую между ними непрерывнолитую заготовку. При этом ролики воспринимают мощные изгибающие усилия от воздействия движущейся по ним заготовки. А так как по краям заявляемого ролика выполнены участки из металла с различными коэффициентами ударной вязкости, то возникающие концентраторы напряжений начинают плавно гаситься в направлении от металла торцевых участков 4 к промежуточным участкам 5 и далее к центральной части бочки 1 ролика. В результате этого предотвращается в указанных зонах ролика разрушение металла, а, следовательно, повышается стойкость ролика.

Таким образом, заявляемая конструкция ролика позволяет увеличить срок службы на 10-15% за счет повышения стойкости ролика. Так, например, стойкость ролика, взятого за прототип, составляет не более 2000 плавок, в то время как стойкость заявляемого ролика, опытные образцы которого были исследованы в условиях работы МНЛЗ 1 в кислородно-конвертерном цехе ОАО «ММК», составила 2200-2300 плавок.

1. Ролик машины непрерывного литья заготовок, содержащий металлическую бочку цилиндрической формы с приводной и опорной цапфами, отличающийся тем, что по краям бочки выполнены последовательно расположенные в направлении от цапф к металлической центральной части бочки торцевой и промежуточный участки, причем каждый торцевой участок имеет длину, равную 0,071-0,072 длины бочки, и выполнен из металла с коэффициентом ударной вязкости, равным 65-70 Дж/см 2 , а каждый промежуточный участок имеет длину, равную 0,035-0,036 длины бочки, и выполнен из металла, коэффициент ударной вязкости которого составляет 0,6-0,7 коэффициента ударной вязкости металла торцевого участка.

2. Ролик по п.1, отличающийся тем, что в качестве металла торцевого участка использована хромистая жаростойкая сталь.

3. Ролик по п.1, отличающийся тем, что в качестве металла промежуточного участка использована хромомолибденовая сталь.

Изобретение относится к области ремонта сваркой и может быть использовано при ремонте роликов машин непрерывного литья заготовок, роликов рольгангов горячей прокатки и других деталей металлургического оборудования.
Ролики зоны вторичного охлаждения эксплуатируются в сложных условиях - в условиях циклического термомеханического воздействия со стороны слитка, окислительного воздействия охлаждающей жидкости, абразивного действия окалины слитка и др. В результате ролики быстро выходят из строя вследствие износа и образования трещин термической усталости.
Известен способ восстановления роликов преимущественно машин непрерывного литья заготовок, включающий наплавку роликов износостойким сплавом (Лещинский Л.К. Повышение ресурса работы наплавленных роликовых направляющих машин непрерывного литья заготовок // Сварочное производство. 1991. N 1. с. 9-11). Недостатком известного способа является низкая стойкость наплавленных роликов вследствие выкрашивания наплавленного слоя.
Наиболее близким к заявляемому является способ восстановления роликов, при котором в качестве наплавочных материалов используют проволоки типа Св-08, Св-08А, Нп-30ХГСА диаметром 3-4 мм, наплавляют на токе 300-400 А под флюсом АН-348А (Гребенник В.М., Гордиенко А.В., Цапко В.К. Повышение надежности металлургического оборудования. М.: Металлургия, 1988. с. 478-479). Недостатком известного технического решения является низкая стойкость роликов из-за выкрашивания наплавленного слоя. Выкрашивание наблюдается из-за снижения механических свойств металла ролика в зоне сплавления. Техническая задача изобретения - обеспечение качественной наплавки поверхности бочки ролика, исключающей выкрашивание наплавленного слоя ролика в процессе его эксплуатации.
Поставленная задача достигается тем, что после подогрева бочки ролика до температуры выше 150 o C производят наплавку износостойкого слоя на режимах, обеспечивающих отношение силы сварочного тока (А) к скорости наплавки (м/ч) не более 17,5 и при отношении силы сварочного тока (А) к температуре подогрева (o C) не более 3,0. После полной наплавки ролика его подвергают термической обработке: нагревают со скоростью не более 80 o C/ч до температуры 470-500 o C, выдерживают в течение 7-8 ч и охлаждают со скоростью не более 80 o C/ч до температуры 120 o C, далее на воздухе.
Подогрев осуществляют не менее 150 o C для предотвращения образования закалочных структур и трещин в процессе наплавки. Дальнейшее повышение температуры предварительного подогрева зависит от уровня легированности материала ролика и особенно от содержания углерода. В процессе наплавки необходимо выбирать режимы наплавки таким образом, чтобы отношение силы сварочного тока (А) к скорости сварки (м/ч) было не больше чем 17,5. Исследованиями установлено, что при большем значении коэффициента наблюдается резкое увеличение погонной энергии, что приводит к перегреву наплавляемого металла бочки ролика, в результате наблюдается рост зерна в околошовной зоне, снижаются механические характеристики металла. В результате, в процессе эксплуатации, например, роликов машин непрерывного литья заготовок, которые подвергаются высокой нагрузке со стороны слитка происходит выкрашивание наплавленного слоя, причем трещины зарождаются в разупрочненной околошовной зоне со стороны основного металла (бочки ролика).
В процессе наплавки износостойкого слоя необходимо поддерживать отношение силы сварочного тока (А) к температуре подогрева (o C) не более 3,0. При большем значении коэффициента наблюдается также перегрев основного металла (бочки ролика), что приводит к выкрашиванию наплавленного металла.
Для уменьшения уровня остаточных сварочных напряжений, которые также способствуют выкрашиванию наплавленного металла, сразу после наплавки ролик подвергают термической обработке: нагревают со скоростью не более 80 o C/ч - для уменьшения перепада температуры, а следовательно, и напряжений, между поверхностью и сердцевиной ролика. После нагрева выдержку производят при температуре 470-500 o C в течение 7-8 ч, что обеспечивает максимальное снижение остаточных напряжений без заметного разупрочнения наплавленного слоя. После выдержки для предотвращения деформации ролика и образования трещин производят замедленное охлаждение со скоростью не более 80 o C/ч до температуры 120 o C, далее на воздухе.
Пример выполнения способа. Наплавке подвергают бочку ролика машины непрерывного литья заготовок с первоначальным диаметром 300 мм. Материал ролика - сталь 25Х1М1Ф. После износа бочки ролика до 285 мм его устанавливают на наплавочную установку, бочку нагревают газовыми горелками со скоростью 70 o C до температуры 190 o C. Наплавку производят проволокой Св-12Х13 под флюсом АН-20С. Режим наплавки: ток 400 А, напряжение на дуге 32 В, скорость наплавки 30 м/ч. Отношение силы сварочного тока к скорости наплавки составляет 13,3, а отношение силы сварочного тока к температуре подогрева составляет 2,0. Температуру контролируют оптическим пирометром "Кельвин". После полной наплавки бочки ролика его помещают в печь, нагревают со скоростью 70 o C до температуры 480 o C, выдерживают в течение 7 ч и охлаждают со скоростью 70 o C/ч до температуры 120 o C, затем охлаждение производят на воздухе.
Преимущество заявленного способа восстановления роликов состоит в том, что при применении этого способа отсутствует выкрашивание наплавленного слоя в процессе эксплуатации ролика.

Наплавка

Наплавка предусматривает нанесение расплавленного металла на оплавленную металлическую поверхность с последующей его кристаллизацией для создания слоя с заданными свойствами и геометрическими параметрами. Наплавку применяют для восстановления изношенных деталей, а также при изготовлении новых деталей с целью получения поверхностных слоев, обладающих повышенными твердостью, износостойкостью, жаропрочностью, кислотостойкостью или другими свойствами. Она позволяет значительно увеличить срок службы деталей и намного сократить расход, дефицитных материалов при их изготовлении. При большинстве методов наплавки, так же как и при сварке, образуется подвижная сварочная ванна. В головной части ванны основной металл расплавляется и перемешивается с электродным металлом, а в хвостовой части происходят кристаллизация расплава и образование металла шва. Наплавлять можно слои металла как одинаковые по составу, структуре и свойствам с металлом детали, так и значительно отличающиеся от них. Наплавляемый металл выбирают с учетом эксплуатационных требований и свариваемости. Наплавка может производиться на плоские, цилиндрические, конические, сферические и другие формы поверхности в один или несколько слоев. При наплавке поверхностных слоев с заданными свойствами, как правило, химический состав наплавленного металла существенно отличается от химического состава основного металла.

Применяют следующие виды наплавки:

· Ручная дуговая наплавка выполняется покрытым плавящимся или неплавящимся электродом. Плавящиеся наплавочные электроды применяются в соответствии с назначением каждого типа и марки. Неплавящиеся электроды применяют при наплавке на поверхность детали порошковых смесей. Применяются электроды из литых твёрдых сплавов и в виде трубки, заполненной легирующей порошкообразной смесью. Ручная наплавка малопроизводительна и трудоёмка, поэтому применяется при наплавке деталей сложной конфигурации.

· Автоматическая и полуавтоматическая наплавка под флюсом производится проволокой сплошного сечения, ленточным электродом или порошковой проволокой. Легирование наплавляемого слоя осуществляют через электродную проволоку, легированный флюс (при проволоке из низкоуглеродистой стали) или совместным легированием через проволокуи флюс. Иногда в зону дуги вводят легирующие вещества в виде пасты или порошка. Наплавку в защитных газах применяют при наплавке деталей в различных пространственных положениях и деталей сложной конфигурации.

· Наплавку в защитных газах применяют при наплавке деталей в различных пространственных положениях и деталей сложной конфигурации. Возможность наблюдать, за процессом формирования валика позволяет корректировать его, что очень необходимо при наплавке сложных поверхностей. Наплавку производят чаще всего в аргоне или углекислом газе плавящимся или неплавящимся электродом. Наибольшее распространение получила наплавка в углекислом газе постоянным током обратной полярности.

· Плазменная наплавка производится плазменной (сжатой) дугой прямого или косвенного действия. Присадочным материалом служит наплавочная проволока и порошкообразные смеси. Существуют различные схемы наплавки, которые получают широкое применение благодаря высокой производительности (7… 30 кг/ч), возможности наплавки тонких слоев при малой глубине проплавления основного металла. При этом получают гладкую поверхность и высокое качество наплавленного слоя.

· Вибродуговая наплавка выполняется специальной автоматической головкой, обеспечивающей вибрацию и подачу электродной проволоки в зону дуги. При вибрации электрода происходит чередование короткого замыкания сварочной цепи и разрыва цепи (паузы). В зону наплавки подается охлаждающая жидкость. Она защищает наплавленный металл от воздействия воздуха и, охлаждая деталь, способствует уменьшению зоны термического влияния, снижает сварочные деформации и повышает твёрдость наплавляемого слоя. В качестве охлаждающей жидкости применяют водные растворы солей, содержащих ионизирующие вещества (например, кальцинированной соды), облегчающие периодическое возбуждение дуги после разрыва цепи (паузы). Способ нашел большое применение для наплавки на изношенные поверхности деталей слоя небольшой толщины (до 1 мм).

· Наплавка самозащитной порошковой проволокой или лентой открытой дугой не требует защиты наплавляемого металла и по технике выполнения в основном не отличается от наплавки в защитном газе. Преимуществом этого вида является возможность наплавки деталей на открытом воздухе при ветрах и сквозняках. Сварщик, наблюдая за процессом, может обеспечить хорошее формирование наплавляемых валиков. Наплавка самозащитной проволокой менее сложна, как по оборудованию, так и по технологии, хорошо поддается механизации процесса.

· Электрошлаковая наплавка характеризуется высокой производительностью. Способ позволяет получать наплавленный слой любого заданного химического состава на плоских поверхностях и на поверхностях вращения (наружных и внутренних). Наплавка выполняется за один проход независимо от толщины наплавляемого слоя.

· Газовая наплавка имеет ограниченное применение, так как при наплавке возникают большие остаточные напряжения и деформации в наплавляемых деталях. Для наплавки применяют литые твёрдые сплавы.

Материалы роликов МНЛЗ

Ролик изготавливается из центробежнолитой заготовки из сталей 25Х1М1Ф, 40ХГНМ, Х12МФЛ.

Этот способ используются, как правило, при изготовлении нового ролика МНЛЗ, поскольку особенности центробежного литья позволяют использовать изготовленную бочку без наварки поверхностного слоя. В дальнейшем, уже при ремонте, бочки подвергаются наварке поверхностного слоя с повышенной твердостью

2.4.1 Рассмотрим ролик, изготовленный из стали 25Х1М1Ф:

Свойства стали:

1) Химический состав:

Таблица 1

2) Температура критических точек:

Ac1 = 770 - 805 , Ac3(Acm) = 840 - 880

3) Физические свойства материала:

Таблица 2


T - Температура, при которой получены данные свойства, [Град]

E- Модуль упругости первого рода, [МПа]

a - Коэффициент температурного (линейного) расширения (диапазон 20o - T) ,

l- Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)]

r- Плотность материала, [кг/м3]

C - Удельная теплоемкость материала (диапазон 20o - T), [Дж/(кг·град)]

R - Удельное электросопротивление, [Ом·м]

Изобретение относится к составам материалов, используемым для упрочняющей наплавки роликов машин непрерывного литья заготовок открытой или закрытой дугой. Материал содержит, мас.%: углерод 0,01-0,07, марганец до 2,0, кремний до 1,0, хром 11-16, никель 3,0-5,0, молибден 1,0-2,5, ванадий 0,1-1,0, вольфрам 0,1-1,0, азот 0,05-0,2, кобальт до 2,0, ниобий 0,1-1,0, сера и фосфор 0,03 max, железо - остальное. Улучшаются эксплуатационные показатели в работе роликов машин непрерывного литья заготовок. 3 табл.

Предлагаемое изобретение относится к непрерывной разливке стали, а точнее к составам материалов, используемых для упрочняющей наплавки роликов МНЛЗ.

Технология непрерывной разливки стали обладает комплексом преимуществ, обуславливающих ее перспективность и рост объемов применения. Производительность и эффективность применения машин непрерывного литья заготовок (МНЛЗ) связаны с числом ремонтов, обусловленных стойкостью роликов. Разработка и применение высокоэффективных наплавочных материалов и восстановительной наплавки роликов МНЛЗ является актуальной задачей.

За рубежом достигнута фактическая стойкость роликов 3000000 т, а в отечественной металлургии 500000 т. Такое различие определяется более высоким качеством наплавочного материала и технологией наплавки. В отечественной металлургии для восстановительной наплавки роликов МНЛЗ традиционно применяются сплошные и порошковые проволоки 2Х13, 20Х17, обеспечивающие хромистый наплавленный металл с ферритно-мартенситной структурой.

Отличие структурного и фазового состава наплавленного металла определяет работоспособность роликов МНЛЗ, которые эксплуатируются в условиях длительных циклических и термомеханических нагрузок. Ролики поддерживающих и разгибающих узлов работают в тяжелом температурном режиме. Температура поверхности роликов достигает 670-750°С. Ролики воспринимают усилия от ферростатического раздутия и усилия от разгиба слитка. На прямолинейных участках ролики подвергаются абразивному износу. Разрушение рабочей поверхности роликов проявляется в виде износа поверхностного слоя и образования трещин разгара. В связи с изложенным наиболее перспективно нанесение на рабочую поверхность роликов упрочняющих слоев комплексно легированного хромистого металла.

Известна композиция наплавочного материала, содержащая в %:

С 0,1-0,3; Si <1; Mn <3; Мо <1,5; Ni <3; остальное - железо (патент Великобритании GB 2253804 В).

Наиболее близким к заявляемому является наплавочный материал по патенту RU 2279339 С2. Однако повышенное содержание углерода в данном наплавочном материале приводит к выделению карбидов хрома по границам зерен, обедняя границы зерен хромом, что, в свою очередь, увеличивает межкристаллитную коррозию и склонность к трещинообразованию. Снижение содержания углерода уменьшает образование карбидов, но при этом снижается твердость сплава, что снижает стойкость к износу.

Задачей изобретения является создание наплавочного материала для деталей типа роликов МНЛЗ, обладающего повышенной стойкостью к высокотемпературной коррозии, сопротивлением термической усталости, ударной нагрузке, стойкостью к абразивному износу и возможностью осуществления наплавки как открытой, так и закрытой дугой.

Достигается наплавкой материала при следующем соотношении компонентов, %:

Введение дополнительно в состав наплавочного материала ниобия в пределах 0,1-1,0% придает материалу прочность при высоких температурах.

Приведенный наплавочный материал имеет мартенситную микроструктуру с содержанием дельта-феррита меньше 10% с небольшим остатком аустенита.

Пример использования наплавочного материала по настоящему изобретению.

Были изготовлены два образца, которые наплавлялись под открытой и закрытой дугой под агломерированным нейтральным флюсом - обозначены как образец 1 и образец 2. Наплавка проведена при 400 амперах, 28 вольтах, при скорости хода 16 дюйм/мин, поступление тепла соответствовало 45 кДж/дюйм. Образцы и тесты соответствовали стандартным процедурам Американского национального института стандартов (ANSI), Американского общества сварки (AWS), Американского общества тестирования материалов (ASTM). Результаты тестирования на растяжение, на предел текучести, удлинение сравнивались с результатами типового наплавочного материала по патенту RU 2279339 С2 при разных температурах (см. таблицу 1).

Образцы 1 и 2 показывают лучший результат при испытании на удлинение при температурах 426°С и 648°С. Повышенная пластичность означает уменьшение развития трещин, что увеличивает срок службы детали.

Таблица 1
Температура, °С Результаты тестирования на растяжение
Материал Прочность на разрыв Предел текучести Удлинение, %
25 Пат. RU 2279339 C2 167 132 12
Образец 1 166 134 15
Образец 2 164 142 13,5
426 Пат. RU 2279339 C2 112,7 130,7 7,0
Образец 1 132,9 102,2 11,5
Образец 2 139 112,4 11,5
648 Пат. RU 2279339 C2
Образец 1
Образец 2
69,9 54,0 24,0
52,0 36,4 29,5
41,0 26,9 36,5

В таблице 2 сравниваются результаты тестов на твердость и появление трещин от нагрева типового материала по патенту RU 2279339 С2 и образцов 1 и 2 (воздействие теплом и водой - 1000 циклов в специальном приспособлении).

Как видно из таблицы, даже при низком содержании углерода в наплавочном материале сохраняется прежний уровень твердости и выявлена более высокая сопротивляемость к появлению трещин от нагрева.

В таблице 3 приведены результаты испытаний на износ по стандарту Американского общества тестирования материалов (ASTM) G-65 (метод тестирования ускоренного износа).

Как видно из таблицы 3, при равных условиях эксплуатации заявляемый наплавочный материал более устойчив к износу по сравнению с типовыми применяемыми материалами.

Материал для наплавки роликов машин непрерывного литья заготовок открытой или закрытой дугой, содержащий углерод, марганец, кремний, хром, никель, молибден, ванадий, вольфрам, азот, кобальт, серу, фосфор и железо, отличающийся тем, что он дополнительно содержит ниобий при следующем соотношении компонентов, мас.%:

Похожие патенты:

Изобретение относится к сварочным материалам, предназначенным для электродуговой наплавки слоя стали, преимущественно при восстановлении изношенных поверхностей, деталей железнодорожного подвижного состава.

Изобретение относится к области производства сварочных материалов для сварки высоколегированных жаропрочных и жаростойких сплавов на железохромоникелевой основе и может быть использовано при создании ответственных конструкций в металлургии, энергомашиностроении, химической и нефтеперерабатывающей отраслях промышленности, например, для изготовления реакционных змеевиков высокотемпературных установок пиролиза, подвергающихся значительным статическим нагрузкам, работающих при температурах 900-1100°С, в условиях науглероживания, коррозии и износа труб.

Изобретение относится к сплавам на основе никеля, предназначенным для применения в авиационной, энергетической отраслях промышленности в качестве присадочного материала в сварных конструкциях в виде «лапши» или в виде сварочной проволоки.

Изобретение относится к производству сварочных материалов и может быть использовано для ручной и автоматической сварки теплоустойчивых сталей перлитного класса при изготовлении изделий в нефтехимическом и атомном энергетическом машиностроении.

Изобретение относится к металлургии и к сварочному производству, и может быть использовано для изготовления сплавов на кобальтовой основе и присадочных металлов из этих сплавов для сварки, наплавки и ремонта сваркой ответственных деталей из высоколегированных жаропрочных никелевых и кобальтовых сплавов деталей горячего тракта авиационных газотурбинных двигателей, работающих при высоких температурах (более 900°С).

Изобретение относится к области машиностроения, а именно к припоям на основе никеля, которые могут найти применение при изготовлении паяных деталей горячего тракта турбин ГТД из жаропрочных никелевых сплавовИзвестен припой на основе никеля, имеющий следующий химический состав, мас.%: Хром8,5-10,0 Железо3,5-5,0 Бор0,2-0,4 Кремний6,0-7,2 Молибден10,0-12,0 Вольфрам8,0-10,0 Никельостальное (Справочник по пайке.

Похожие публикации