Chevroletavtoliga - Автомобильный портал

Программирование микроконтроллеров для начинающих. Программирование микроконтроллеров с нуля Программирование atmel контроллеров для начинающих



Запаивая еще одну микросхему на очередную плату или перерезая дорожку на плате в десятый раз для внесения очередных (но не последних) изменений в новое устройство, вы начинаете подумывать: «А не бросить мне это нудное занятие?!» Ваше новое устройство получается не таким, как вам бы хотелось, но и изменять схему и переделывать всё на плате вам уже надоело.
Перелистывая журналы по электронике, вы всё чаще встречаете слова: процессор, микроконтроллер, прошивка, программирование. Но эти слова для вас не имеют конкретного значения. Вы где-то слышали, а может даже и держали в руках то, о чем вы даже думаете с благоговейным трепетом… микроконтроллеры! То, что уменьшает размеры устройств, наделяя их недостижимыми для вас возможностями…Нет, вам, как электронщику, понятны общие идеи работы этих устройств, но об их практическом применении в своих изделиях не может быть и речи! Вы уже несколько раз пытались освоить микроконтроллеры, даже приобрели пару книг из серии «… для чайников» и скачали из интернета несколько популярных самоучителей. Проходило какое-то время, и всё останавливалось на самом интересном месте: схемы, показанные в книгах, вам были понятны, но вот методы создания программы для вас так и остались загадкой. Набрать несколько символов на английском (или каком-то там) языке в указанной книгой программе для вас не проблема. Но не ясна СУТЬ и МЕТОДЫ использования этих загадочных символов, последовательность которых в книге называли программой. Вы винили себя в тупости и откладывали идею освоения микроконтроллеров в дальний ящик. Да и зачем? Вы и так прекрасно справляетесь: у вас есть много-много микросхем, на которых вы разрабатываете свои устройства… Устройства на больших платах, которые вы долго-долго отлаживаете и переделываете…
Но знакомитесь с парнишкой из соседнего дома: он пишет программы, загружает их в микроконтроллер и то, что вам приходится отлаживать месяцами, он делает за несколько дней. Вы в панике, начинаете искать заброшенные книжки, и вспоминать всё ранее прочитанное… Он может, а вы – нет. Вы поближе знакомитесь с этим парнишкой, и под видом стороннего разговора начинаете расспрашивать его о микроконтроллерах и их возможностях. И он спокойно говорит о том, что контроллеры для него хобби. Вы просите его рассказать вам об их устройстве. Его ответы просты и незатейливы.

Микроконтроллеры. Что такое микроконтроллер?
Микроконтроллер - это маленький специализированный компьютер, по-русски микро-ЭВМ. Причем, эта микро-ЭВМ выполнена в одной микросхеме, на одном кристалле. Отсюда и полное название: «однокристальная микро-ЭВМ». Как и компьютер, микроконтроллер - это электронное устройство, работой которого управляет программа - последовательность команд, заранее загруженная в память. Эти команды выполняет процессор: этакий «мега-мозг», имеющий в своем составе АЛУ - арифметически-логическое устройство. Т.е, процессор «умеет» выполнять математические действия и производить логические операции над данными.

Разрядность процессора. Методы представления информации.
И процессор, и память - цифровые устройства, которые «понимают» сигналы только двух уровней: есть напряжение/ток, и нет напряжения/тока на линии. Эти два состояния принято записывать так: логическая единица - «1», и логический ноль - «0». Команды и данные - это набор единичек и нулей. Одна линия (называют разрядом) при двух её состояниях может передать только два значения. Но при увеличении количества разрядов увеличивается и количество значений: два разряда - уже четыре, а восемь разрядов - уже 256 значений. Разряд принято называть битом: один разряд это один бит. А набор из восьми разрядов - байтом: восемь бит это один байт. Но один байт имеет только 256 значений. Для передачи большего количества информации используется несколько, последовательно расположенных в памяти, байт. Два байта передают уже 65536 значений. Три байта - 16777216 значений! И так далее. Самыми распространенными являются процессоры, которые за одно действие могут обработать восемь разрядов, поэтому такие процессоры и называют восьмиразрядными.

Система команд процессора.
При разработке процессора в него закладывают возможность выполнения определенных команд. Команды, которые данный процессор в состоянии выполнять, называют набором команд. Что это за команды? Самые распространенные арифметические и логические команды, а также команды работы с портами - линиями связи процессора с внешним миром. Процессор, считав значение из ячейки памяти или состояние порта в собственную память - регистр, может произвести над ним математические или логические действия. Математически действия нам понятны: сложение, вычитание и другие. Под логическими действиями понимаются такие действия: сравнение - больше, меньше, равно; работа над разрядами ячейки памяти или регистра: обнуление или его установка, а также операции сдвига разрядов влево или вправо.

Память и её типы.
Данные могут быть считаны из памяти. Память - место, где какое-то время могут храниться программа и/или данные. Они могут храниться кратковременно - до отключения питания, или долговременно - независимо от наличия напряжения питания. Память первого типа используется для хранения промежуточных данных, используемых при выполнении различных операций. Поэтому её так и называют - «оперативная память». Память второго типа чаще используется для хранения программы. Типов долговременной памяти несколько: однократно программируемая память, память с электрическим стиранием и память, стираемая ультрафиолетовым или рентгеновским излучением. Физическое устройство и принцип работы памяти может быть разным, но суть одна: хранить данные. Для описания хранилища данных используют понятие «ячейка». Следовательно, чем больше ячеек, тем больше данных может быть сохранено. У каждой из ячеек имеется индивидуальный адрес. Процессор обращается к значению ячейки памяти именно по её адресу.

Порты. Режимы работы портов.
Данные так же могут быть получены из внешних устройств через линии связи - выводы микроконтроллера. Эти линии связи называют портами, а по-научному: устройства ввода и вывода данных. Выводы порта могут быть входами, с использованием которых процессор получает информацию извне от разных датчиков, или быть выходами, подавая сигналы на которые можно управлять внешними устройствами. В современных микроконтроллерах выводы практически всех портов двунаправленные, т.е., могут быть и входами, и выходами. Универсальные порты необходимо настраивать - установить режим работы на ввод или вывод. Для этого имеется специальная ячейка в памяти - регистр управления режимами работы порта. Например, для того, чтобы сделать входом необходимый вывод (разряд) порта, в разряд регистра управления записывают 1 или 0, в зависимости от модели микроконтроллера.

Периферийные устройства.
Но микроконтроллер содержит в своем составе не только процессор и память. Основную роль играют так называемые периферийные устройства: таймеры, счетчики, аналоговые компараторы, цифро-аналоговые и аналогово-цифровые преобразователи, устройства последовательного обмена информацией (часто их называют последовательным портом). Часто микроконтроллер имеет и некоторое количество ячеек энергонезависимой памяти (чаще всего Flash), в которой могут быть сохранены различные данные.

Семейства микроконтроллеров.
Наличие всех перечисленных устройств в составе микроконтроллера необязательно. Чаще всего производитель выпускает несколько моделей изделий, имеющих в своем составе различные периферийные устройства. Микроконтроллеры с одним типом процессора (и набором исполняемых машинных кодов), но различными периферийными устройствами, относят к одному семейству. Так и говорят: микроконтроллеры семейства ATtiny.

Многофункциональность выводов микроконтроллера.
Может возникнуть вопрос: как все эти устройства «общаются» с внешним миром, если у большинства микросхем в корпусе DIP не более 40 выводов? Для решения проблемы нехватки выводов используют метод объединения функций нескольких устройств с использованием одного вывода. Например, выводы одного из портов (8 разрядов – 8 выводов) также используется и для работы аналогово-цифрового преобразователя, а выводы другого порта - как входы аналоговых компараторов, последовательного порта или для подключения других встроенных узлов. Для управления режимами работы выводов используется специальный регистр управления режимами работы порта (о нем рассказывалось ранее, при объяснении принципов работы портов). В большинстве микроконтроллеров выводы имеют несколько функций. Если обратиться к технической документации на контроллер, то при описании функции вывода будет сделано замечание об основной и об альтернативной функции данного вывода. Например: PD0/RX - нулевой разряд порта D одновременно является и входом последовательного порта, PB1/Ain0 - первый разряд порта В одновременно является входом аналогового компаратора.

Алгоритмы. Программы.
Команды для процессора даются в определенном порядке, в соответствии с ранее разработанным алгоритмом. Алгоритм - это последовательность выполнения процессором. Причем команды должна быть понятна процессору, и при этом иметь однозначное толкование, без какой-либо самостоятельности при её выполнении. Алгоритм можно записывать словесно. Например: начало программы; сделать нулевой разряд порта входом; сделать седьмой разряд порта выходом; считать значение нулевого разряда порта; если он равен логической единице, то выполнить следующие действия: загрузить в седьмой разряд порта логическую единицу; вернуться к началу программы. Так мы описали алгоритм работы схемы, состоящей из выключателя, лампочки (или другой нагрузки) и источника питания. Результат выполнения будет таков: при нажатии кнопки на вход порта поступает напряжение, процессор выполняет программу - подает на выход порта напряжение. И пока контакты буду замкнуты, на выходе порта будет напряжение.
Но такое написание весьма сложно воспринимать. Поэтому были разработаны методы графического описания алгоритма. Вот пример графической записи вышеописанного алгоритма.
Рис. Алгоритм-1. Графический метод описания алгоритма

Команды ветвления: условный и безусловный переходы.
К особым командам процессора относятся команды условного и безусловного перехода. Для того чтобы понять это, необходимо объяснить такое понятие как «указатель адреса выполняемой команды». У процессора имеется специальный регистр, в котором хранится адрес выполняемой в текущий момент команды. При подаче питания этот регистр обнуляется - в него записывается ноль. Далее процессор начинает выполнять команды, хранящиеся в памяти, начиная с нулевого адреса - ведь в регистре указателя адреса выполняемой команды указан ноль. Выполнив команду, этот указатель инкриминируется, т.е., его значение увеличивается. Процессор считывает следующую команду из памяти по адресу, указанную в указателе. Т.е, команды выполняются последовательно. Нарушить последовательность выполнения программы можно, используя команды условного и безусловного переходов. Для этого в одной из ячеек памяти хранится команда, указывающая процессору изменить значение регистра указателя адреса выполняемой команды. Команда безусловного перехода указывает процессору изменить порядок последовательно выполнения программы и начать выполнять команды, хранящиеся в памяти, начиная с ранее указанного адреса.
Команда условного перехода сложнее: при ее выполнении проверяется выполнения какого-либо условия. Например, необходимо сравнить значение двух ячеек памяти. Если значение первой ячейки больше, то продолжить выполнение программы по адресу А, иначе (т.е., значение первой ячейки меньше) - перейти по адресу С.

Прерывания и их типы. Приоритеты прерываний.
Имеется еще один способ «заставить» процессор прекратить последовательное исполнение программы и перейти к выполнению программы по определенному адресу - вызвать «прерывание». Понятие прерывание появилось вместе с первыми процессорами. Всё дело в том, что процессор управляет менее скоростными, чем он, устройствами. Например, процессор должен обрабатывать данные до появления определенного сигнала. Приведем простой пример: процессор выполняет программу подсчета количества импульсов, поступивших на один из его портов. При нажатии кнопки процессор должен прервать выполнение этой программы и выполнить другую программу: включить какое-либо устройство (т.е., подать на один из разрядов порта логическую единицу - «1»). Как решить эту задачу? Можно в самой программе постоянно опрашивать необходимый разряд порта, к которому подключена кнопка. Но при этом часть ресурсов (скорости) процессора будет практически впустую тратиться на опрос порта. Второй способ - это использование прерываний. У процессора (следовательно, и у микроконтроллера) имеется специальный вывод. Обычно его обозначают как «Int» (англ. «Interrupt» - прерывание). При подаче сигнала на вывод «Int» происходят следующие действия:
- остановка выполнения основной программы,
- в оперативной памяти сохраняется значение регистра указателя адреса выполняемой команды (место прерывания выполнения программы),
- после чего в этот же регистр загружается новый адрес (зависит от желания производителя процессора),
- в ячейке памяти с указанным адресом расположена команда безусловного перехода: «перейти по адресу хх»,
- в памяти, начиная с ячейки с адресом хх, расположена еще одна программа, назовем ее служебной программой.

В нашем случае служебная программа должна выдать в порт логическую единицу, тем самым включив необходимое устройство. А вот тут начинается самое интересное: последней командой служебной программы является команда «выход из прерывания». Получив эту команду, процессор считывает из памяти ранее сохраненное значение регистра указателя адреса выполняемой команды и загружает его в этот регистр. Следовательно, процессор продолжает выполнение основной программы с прерванного места.
Но прерывание может быть вызвано не только внешними сигналами, но и внутренними устройствами самого микроконтроллера: таймерами, счетчиками, последовательными портами и даже энергонезависимой памятью. Опять-таки, делается это в основном для того, чтобы уменьшить количество выполняемых команд по анализу состояния этих периферийных устройств. Приведем пример: процесс записи данных в энергонезависимую память весьма длителен, за это время процессор может выполнить весьма большое количество команд. Поэтому процессор выполняет основную программу, в ней выдает команду на стирание энергонезависимой памяти, после чего продолжает выполнение основной программы. Как только очистка энергонезависимой памяти завершена схемы управления формируют сигнал прерывания от этой памяти. Процессор прерывает выполнение основной программы и начинается процесс записи данных в память. Данный способ выполнения какого-либо действия вне основной программы называют фоновым режимом. Так же часто говорят: «эта часть программы выполняется в фоновом режиме».
При работе с прерываниями необходимо быть осторожным: возможна ситуация, при которой выполнение программы и работа всего устройства может быть нарушена. Дело в том, что микроконтроллер имеет несколько прерываний. Для управления режимами работы прерываний имеется регистр управления прерываниями. Вы при настройке режимов работы прерываний вы разрешили работу нескольких прерываний - это нормальная ситуация. Но, получив внешний или внутренний сигнал прерывания основной программы и перейдя к выполнению программы обработки прерывания, вы не отключили прерывания. Процессор выполняет служебную программу и в этот момент он получает еще один сигнал прерывания. Процессор прерывает выполнение служебной программы и переходит к выполнению программы обработки нового прерывания. Несложно догадаться, к чему это может привести.
Для решения этой проблемы был разработан метод присвоения каждому из прерываний степени важности, или «приоритета прерывания». В зависимости от модели микроконтроллера приоритет прерываний может быть задан жестко (а программист лишь разрешает или запрещает обработку того или оного прерывания), или быть реализован программистов программно (т.е., приоритет прерывания зависит от предпочтений программиста и алгоритма реализации конкретной задачи).

Управляем процессором. Языки программирования. Трансляторы.
Машинные коды. Ассемблер.
Команды для процессора - последовательности единиц и нулей. Часто команды процессора называют машинными кодами, подчеркивая, что данные команды изначально рассчитаны на конкретного исполнителя - машину, но не человека. Запоминать команды из цифр (машинные коды) весьма сложно. Поэтому для упрощения работы был придуман способ замены цифровых последовательностей на более понятные человеку символьные сокращения. Например, для команды «загрузить данные» придумали понятное сокращение «ld» (англ. «load» - загрузить), для команды «сравнить» - «cp» (англ. «compare» - сравнение) и так далее. Данный метод символьной записи команд процессора называют «ассемблер». Если при работе с машинными кодами программист непосредственно вводит команды управления процессором в память устройства, то при работе с ассемблером между программой и процессором имеется своеобразный посредник, который преобразует символьные обозначения в машинные коды. Программу, являющуюся посредником, называют транслятором, т.е., переводчиком. Но тут есть маленький нюанс: ассемблером называют не только метод символьного обозначения цифровых команд (машинных кодов), но и программу-транслятор, которая помогает программисту перевести символьные обозначения команд непосредственно в машинные команды. Поэтому часто используется следующий прием: когда говорят о языке - пишут Ассемблер, когда о программе - просто ассемблер.
У Ассемблера есть огромное достоинство: программы, написанные на Ассемблере, очень быстро выполняются процессором. Дело в том, что Ассемблер - это практически машинная команда. Но у ассемблера есть и минусы: основной минус – сложность написания программ, второй - даже относительно несложные программы имеют большой обьем исходного текста, что затрудняет анализ программы.

Модульность программ. Часто повторяющиеся задачи.
Каждый программист за время своей работы накапливал определенное количество программ. Но многие программы содержат одинаковые действия. Например, во многих программах производится опрос клавиатуры и анализ нажатой кнопки. Значит, эту часть кода программы можно переносить из одной программы в другую. Из таких кусочков (модулей) постепенно сформировались библиотеки программ. Программисты стали «лепить» программу из модулей: т.е., вставляли необходимый модуль в необходимое место программы. Такой подход ускорял процесс написания программы и увеличивал надежность работы программы в целом за счет использования уже отлаженных модулей. Но с первых дней возникла проблема совместного использования модулей: ведь каждый программист писал модули по собственному «стандарту» - как ему было удобнее в тот или иной момент. Поэтому постепенно выработался стандарт (точнее, несколько стартов) написания этих модулей. В них была описана структура модулей для их более удобного «склеивания» в одну программу.

Языки программирования и их функциональное разделение.
Постепенно эти разрозненные стандарты использования модулей сформировали то, что позднее будет названо «языками программирования». Как и человеческие языки, язык программирования имеет несколько подуровней, которые определяют как написание отдельных слов (модулей) и методы их записи, так и правила их использования. Со временем языки программирования преобразовывались и видоизменялись. Постепенно все языки программирования разделились на несколько групп, в зависимости от «профессиональной ориентации»:
- прикладные языки программирования (FORTRAN для математиков, FoxPro для финансовых работников);
- универсальные (Pascal и Basic);
- системные (Ассемблер и Си).

Системные слова языки стали называть низкоуровневыми, т.е., программист работает на нижнем, наиболее приближенном к процессору, уровне. А языки, при работе с которыми программист не сталкивается с непосредственным управлением работой процессора, стали называть Языками Высокого Уровня (часто обозначают как ЯВУ). Не путайте это сокращение с названием языка «Ява» - «Java».

Трансляция программы. Методы трансляции программы.
Как и при использовании Ассемблера, программу, написанную на любом языке высокого уровня, необходимо преобразовать в понятные процессору команды. Вначале это делалось в ручную: в таблице находили команду на ассемблере и записывали ее в машинном коде. Для ускорения процесса преобразования (трансляции) программы были написаны специальные программы - трансляторы. Существует два метода трансляции программы: интерпретация и компиляция. Следовательно, и транслятор называют либо интерпретатор, либо компилятор. При использовании интерпретатора исходный текст программы анализируется и последовательно, команда за командой, выполняется интерпретатором. В интерпретаторе содержатся модули всех используемых действий. Такое покомандное преобразование очень медленное. Но данный метод имеет большой плюс: программу можно остановить, изменить ее код и продолжить её выполнение. Это удобно при отладке программы. Так же в данном случае мы имеем исходный текст программы и можем его многократно редактировать.
При использовании компилятора текст программы анализируется, и создается файл с машинными командами, так называемый исполняемый файл. Это обеспечивает очень высокую скорость выполнения откомпилированной программы - ведь преобразование текста программы в машинные коды происходит только один раз при её компиляции. Но изменить программу «на лету» не получится: необходимо изменить текст программы и заново её откомпилировать. Если исходный текст отсутствуют по какой-либо причине, то перекомпилировать программу невозможно, а изменить исполняемый файл крайне сложно.

Процесс создания программы. Среды разработки программ.
С появлением трансляторов процесс создания программы стал выглядеть так:
- разрабатывается алгоритм работы будущей программы,
- алгоритм кодируется (т.е., описывается в виде команд языка программирования),
- полученный код записывается в каком-либо текстовом редакторе,
- файл с текстом программы передается в транслятор,
- транслятор преобразовывает символьные команды в понятные процессору команды и сохраняет их в файл,
- этот файл загружают в память.
Как видим, программисту приходилось работать в нескольких программах. Чаще всего все эти программы писались разными производителями, поэтому совместимость этих программ между собой не гарантировалась. Их совместимость приходилось выяснять методом проб и ошибок.

Интегрированная среда разработки программ.
В последнее время появился новый подход: «Интегрированная Среда Разработки» (англ. «IDE»). Под интеграцией понимается выполнение в одной программе всего процесса создания программы: написав текст программы, программист щелчком мыши запускает трансляцию текста программы в машинные коды, после чего полученный исполняемый файл автоматически загружается в память процессорного устройства. Т.е., все делается в одной программе. Такой подход ускоряет работу программиста.

Первые сложности.
Все предыдущие главы были вводным курсом, готовящим вас к восприятию новой информации. На пути у нас имеется несколько проблем.
1. Большой объем разносторонней информации : электроника, устройство микроконтроллеров, алгоритмы, синтаксис языков программирования, описания работы с программным инструментарием. И как писать? Один читатель - хороший электронщик, но ни разу не писал программы, другой - программист, но электроника – на уровне радио кружка, третий - что-то среднее...

2. Выбор МК : если все микроконтроллеры хороши, то на основе какого изделия и какого производителя строить процесс дальнейшего обучения и практического применения микроконтроллеров?
Для того чтобы выбрать микроконтроллер для ОБУЧЕНИЯ нам необходимо выполнить следующие условия:
А) выбранный для обучения микроконтроллер должен быть доступным и недорогим.
Б) он должен быть современным изделием, но не самым новым.

Теперь подробнее о каждом пункте.
С пунктом А всё понятно: какой смысл изучать изделие, которое трудно приобрести или его цена заоблачная для новичка.
Пункт Б требует пояснения. Дело в том, что новые изделия всегда имеют какие-либо недоработки. Они обнаруживаются только через какие-то время, пока кто-то случайно не наткнётся на данную проблему в ходе работы с данным изделием. Но новинки не сразу попадают в новые конструкции: требуется время на написание программ для новых моделей. Тут присутствует человеческий фактор: у разработчиков уже имеются готовые решения на предыдущих моделях микроконтроллеров, и переходить на новые - сложно.
Также все новые микроконтроллеры имеют только фирменное описание. А оно написано на английском языке и с использованием многочисленных профессиональных терминов: ведь на профессионалов и рассчитано! А мы - ученики… Через какие-то время появляются примеры конструкций, более подробные описания с многочисленными комментариями и советами. Потом кто-то начнет переводить документацию на русский язык (не всё, но хотя бы самое сложное или наиболее часто используемое).
К новому микроконтроллеру может не быть и инструментария: компиляторы, отладчики и программаторы «не понимают» это изделие. Опять ожидание, пока авторы этих программ не обновят свои творения...

3. Необходимо выбрать язык программирования , на котором мы планируем писать программы для МК.
Выбор языка программирования - весьма щепетильное занятие. Для обучения программированию микроконтроллеров хотелось бы использовать язык программирования с простым синтаксисом: программист должен заниматься программой, но не ее оформлением!
Тут надо заранее сделать пояснение: в настоящее время среди разработчиков программ и устройств на микроконтроллерах популярны три «семейства» языков: Си (Пишут как «С»), Паскаль (Pascal) и Бейсик (BASIC). Паскаль изначально разрабатывался как инструмент изучения программированию. Бейсик самой структурой похож на Паскаль, но запись команд упрощена и требований к оформлению программы значительно меньше. Си – принято считать языком для профессионалов. Си – это как китайская философия: важен не только символ (команда), но и его начертание и цвет. Шутки шутками, но моё мнение таково: Си – это кошмар. Его использование оправдывается лишь в некоторых, весьма узко профильных, задачах. Но наша задача – попробовать свои силы, и минимально их тратить на задачи, не имеющих прямой связи с основной целью.

4. Нам необходима среда разработки программ для микроконтроллеров . Её выбор напрямую зависит от типа используемого МК и языка программирования.
Среда разработки программ очень важна для успешного освоения программирования микроконтроллеров. Писать программы в текстовом редакторе вроде «Блокнота» можно, но неудобно (проверено!). Да и в командной строке вызывать компилятор - дело неблагодарное в наш, графическо-оконный, век.
Выбор среды разработки напрямую зависит от микроконтроллера, на котором мы будет строить практическую часть обучения. Ко всему прочему нам надо иметь бесплатный инструментарий. Но, как показало тестирование таких программ, бесплатное ПО чаще всего имеет посредственное качество как с точки зрения и пользования, так и с точки зрения изучения программирования МК: наличие ошибок или недоработок в самих трансляторах создают дополнительные сложности и лишают уверенности в собственных силах.
Сойдет и демонстрационная версия, которая имела бы минимум ограничений и работала хотя бы пол года - именно такой срок необходим для получения навыков работы с микроконтроллерами в домашних условиях.

5. Программатор, с использованием которого будем загружать написанные программы в память МК . Выбор программатора также зависит от типа используемого МК. Есть, конечно, «универсальные» программаторы, позволяющие работать с разными микроконтроллерами и микросхемами памяти, но они дорогие. Да и не нужны в большинстве случаев. Поэтому проще изготовить что-то узкоспециализированное для данного семейства МК.
Но дело не столько в сложности схем программатора, а в методе подключения этого программатора к ПК. Тут необходимо пояснить: программатор - это электронный адаптер, преобразующий сигналы компьютерных интерфейсов (порты СОМ, LPT и USB) в сигналы, подаваемые на выводы МК для загрузки программы в его память. Электронным адаптером управляет программа ПК, которая и «заставляет» адаптер выдавать необходимые последовательности сигналов на выводы МК.
Если адаптер программатора, подключаемый к ПК через порты COM и LPT, возможно изготовить в домашних условиях - «на коленке», то изготовления такого адаптера, но подключаемого к USB порту, уже несколько проблематично: сердцем такого адаптера часто является… микроконтроллер. Тут возникает парадокс: для того чтобы запрограммировать МК нам необходимо запрограммировать МК.
Напрашивается логичный вопрос: а для чего изготавливать сложный адаптер, подключаемый к USB, когда можно сделать простой и подключить его к LPT или COM порту. Все дело в том, что многие (практически все) современные ПК не имеют в своем составе этих портов. Поэтому придется изготавливать более сложный адаптер для программирования МК.

Март 2010

Эти вопросы я задавал себе в марте, а сейчас уже конец ноября. Но это время не прошло даром: я нашел выход из ситуаций, описанных выше, и нашел ответы на все мучавшие меня вопросы. А теперь обо всём по порядку.

Ответ на вопрос номер 1
Если материалы предыдущих глав еще как-то можно было логически систематизировать и преподносить поэтапно, то материалы в последующих главах даются параллельно: одно подразумевает другое. Возможно, вам мой метод подачи новых материалов покажется несколько сумбурным, но придумать что-то более красивое по оформлению я не смог.

Ответ на вопрос номер 2
Микроконтроллер производства компании ATMEL ATMEGA48. Хорошо описан, выпускается уже несколько лет, не планируется к снятию с производства еще как минимум 3 года, имеет оптимальные технические параметры.

Ответы на вопросы 3 и 4
Среда программирования - BASCOM (производитель MCS Electronics, автор Марк Альбертс). Язык программирования по стилю и требованиям к оформлению текста программы схож с Паскалем, но синтаксис команд взят из BASIC.
Причины выбора:
- полнофункциональная демонстрационная версия компилятора (единственное ограничение: генерируемый компилятором код ограничен объемом 4 КБайт)
- желание автора программы сотрудничать (я сделал перевод сообщений интерфейса и справочной системы на русский язык, он добавил русский язык в эту программу)
- наличие русскоязычного форума пользователей данного компилятора

Ответ на вопрос номер 5
Совместить простоту схемы и USB не получилось. Было решено описать две модели программаторов: одна подключается к LPT порту компьютера, вторая к COM порту. При отсутствии этих портов вторая версия программатора может быть подключена к компьютеру с использованием преобразователя USB-COM. Так получаем связку USB-COM-программатор-микроконтроллер.
Первая модель программатора известна как STK-200/300, содержит микросхему буфера с третьим состоянием и несколько резисторов. Вторая модель - известный программатор USBasp.

Минимальный материальный набор для изучения программирования

С этой статьи мы начнем конкретно заниматься одним вопросом — программирование микроконтроллеров . Процесс будет проходить следующим образом — сначала статья по устройству микроконтроллера (к примеру, первая статья будет по портам ввода-вывода), а затем статья по программированию. Сегодняшний наш разговор вводный, и будет посвящен вопросам материального и программного обеспечения процесса изучения основ программирования микроконтроллеров.

Стартовый набор начинающего микроконтроллерщика

Для начала я бы разделил начинающих микроконтроллерщиков на три условные группы:
— радиолюбители, желающие собирать готовые решения на микроконтроллерах, но не имеющие желания изучать программирование
— желающие освоить программирование и собирать конструкции на микроконтроллерах, но выбравшие наиболее простой путь — Arduino
— желающие полностью разобраться в устройстве и программирование микроконтроллеров и собирать свои собственные конструкции

Для первой группы все очень просто:
— приобрести программатор и научиться с ним работать

Для второй группы остановлюсь немного подробнее.
Arduino ориентирована на начинающих, непрофессиональных пользователей, и состоит из двух частей — программной и аппаратной.
Программная часть состоит из бесплатной программной оболочки для написания программ, их компиляции и программирования устройства.
Язык программирования — стандартный С++ с некоторыми изменениями облегчающими работу с этим языком (хотя есть возможность создавать программы или подключать готовые файлы проектов используя стандартный язык С++). Научиться программировать в Arduino очень просто (поэтому программы на Arduino называются «наброски») — весь процесс программирования сводится в основном к выбору необходимых готовых библиотек для получения конкретного результата.
Аппаратная часть состоит из готовой платы с микроконтроллером с необходимой обвязкой для нормальной работы микроконтроллера и плат расширения (шилды). Кроме того выпускается множество готовых датчиков и исполнительных устройств. Весь процесс сборки конструкции на Arduino напоминает конструктор «Лего» — выбираете необходимые платы расширения и устройства и стыкуете их с основной платой. Для загрузки программы отдельный программатор не требуется.
Arduino вещь конечно хорошая, но предназначена в основном только для тех, кто хочет собирать конструкции на микроконтроллерах, но не хочет загружать свои мозги лишними (по их мнению) знаниями (это сугубо мое мнение).

Ну а мы причисляем себя к третьей группе и пойдем хотя и тернистым, но очень интересным путем.

Для того, чтобы начать практическое изучение как устройства, так и программирование микроконтроллера, нужно иметь минимальную материальную базу — стартовый набор. Стартовый набор, необходимый по моему разумению для освоения микроконтроллера можно приобрести в интернет-магазине сайта (так-что эту статью можно считать и коммерческой рекламой:)):

Хочу отметить комментарий одного читателя сайта. К сожалению комментарий куда-то улетучился, и не сохранилось даже имя читателя, но человек подметил очень точно — это не первый вариант набора, а уже третий, более дорогой — изменилась комплектация набора, она стала более расширенной, добавлены новые (нужные) комплектующие (прошу читателя сайта, оставившего комментарий, меня извинить за ошибку работы сайта). Я не пытаюсь навязать читателям сайта что-то купить в интернет-магазине сайта. Это совсем необязательно, можете заказать у Китайских товарищей.

А теперь к главному:
1. Для практических опытов нам потребуется микроконтроллер (а лучше три):
— наиболее популярные и востребованные микроконтроллеры — ATmega8A-PU и ATtiny2313A-PU, ATtiny13A- PU. Кстати, ATtiny13 очень популярный МК, и не зря его называют «малюткой» — малые возможности — но серьезные разработки.
2. Для записи программы в микроконтроллер необходим программатор:
— идеальное решение, на мой взгляд, — программатор USBASP, от которого мы к тому-же будем получать напряжение 5 Вольт для будущих конструкций.
3. Для визуальной оценки и выводов результатов работы программы необходимы средства отображения информации:
— светодиоды
— семисегментный светодиодный индикатор
— знакосинтезирующий (буквенно-цифровой) LCD дисплей
4. Для изучения процессов общения микроконтроллера с другими устройствами:
— цифровой датчик температуры DS18B20 и часы реального времени DS1307 (очень практичные устройства)
5. Кроме того нам потребуются транзисторы, резисторы, кварцевые резонаторы, конденсаторы, кнопки:
— биполярные транзисторы структуры NPN и PNP
— набор резисторов различного номинала
— кварцы (вот тут я выкинул лишнее) на 32,768 кГц, 8 МГц.
— керамические конденсаторы на 22 pF
— тактовые кнопки
6. Для сборки конструкций на микроконтроллере понадобится макетная плата для монтажа без пайки и набор перемычек к ней:
— макетная плата МВ102 (идеально иметь две такие платы — они стыкуются между собой, что очень пригодится в дальнейшем)
— соединительные перемычки к макетной плате трех типов — гибкие (мама-мама, папа-папа) и жесткие П-образной формы

Получается вот такой набор:

В дальнейшем, часть из этого набора — макетная плата и перемычки к ней, программатор всегда будут нужны для проектирования и тестирования ваших конструкций, а остальная часть может быть применена в этих конструкциях.

С материальной базой разобрались, переходим ко второму вопросу.

Выбор языка программирования и среды разработки для программирования

Честно говоря, выбор языка программирования и среды разработки вопрос очень ответственный, навязывать кому-то свои предпочтения и что-то советовать дело довольно-таки трудное.
Давайте попробуем подойти к этому выбору не предвзято, чисто с практической стороны.
1. Существует два основных языка программирования микроконтроллеров — Ассемблер (язык низкого уровня) и Си (язык высокого уровня).
Если мы хотим программировать микроконтроллеры используя полностью все их возможности (а мы это хотим), то необходимо изучать эти два языка.
2. Среда разработки для программирования микроконтроллеров.
Тут выбор большой и очень много мнений. Поэтому можно сказать: «Каждая лягушка хвалит свое болото». Мне, к примеру, очень нравится малораспространенная графическая среда разработки «Algorithm Builder», и «квакать» о ее преимуществах перед другими программами я могу очень долго. Но будем делать выбор, как было сказано выше, не предвзято и практично.
Микроконтроллеры AVR выпускает фирма Atmel, она же предоставляет в наше распоряжение бесплатную среду программирования «Atmel Studio» (бывшая AVR Studio). На ней мы и остановимся.
Интегральная среда разработки (IDE — Integrated development environment) Atmel Studio позволит нам:
— писать программы как на Ассемблере, так и на Си (Почему на Си. Программа «Atmel Studio» позволяет писать программы на трех языках (О чем мы и погорим в первой статье), но есть одно но: программы на Си++ мы рассматривать не будем, по одной причине, и в следующей статье я расскажу об этом
— отладить программу
— перевести программу в машинный код (откомпилировать)
— записать программу в микроконтроллер

Все, выбор мы сделали:


Теперь осталось выполнить два пункта:
1. Обзавестись каким-нибудь стартовым набором (для начала хватит и микроконтроллера ATmega8, нескольких светодиодов, пары кнопок и сопротивлений к ним).
2. Установить (именно установить, а не скачать, и с регистрацией) с официального сайта Atmel (http://www.atmel.com/ru/) программу Atmel Studio.
Программировать микроконтроллеры мы будем с использованием программатора USBASP.
Отдельной статьи по Atmel Studio я писать не буду, будем изучать ее постепенно, по мере надобности и в связке со статьями по устройству и программированию микроконтроллеров.

Здравствуйте, уважаемые Хабражители!

В этой статье я хочу рассказать о том, как однажды решил начать программировать микроконтроллеры, что для этого понадобилось и что в итоге получилось.

Тема микроконтроллеров меня заинтересовала очень давно, году этак в 2001. Но тогда достать программатор по месту жительства оказалось проблематично, а о покупке через Интернет и речи не было. Пришлось отложить это дело до лучших времен. И вот, в один прекрасный день я обнаружил, что лучшие времена пришли не выходя из дома можно купить все, что мне было нужно. Решил попробовать. Итак, что нам понадобится:

1. Программатор
На рынке предлагается много вариантов - от самых дешевых ISP (In-System Programming) программаторов за несколько долларов, до мощных программаторов-отладчиков за пару сотен. Не имея большого опыта в этом деле, для начала я решил попробовать один из самых простых и дешевых - USBasp. Купил в свое время на eBay за $12, сейчас можно найти даже за $3-4. На самом деле это китайская версия программатора от Thomas Fischl . Что могу сказать про него? Только одно - он работает. К тому же поддерживает достаточно много AVR контроллеров серий ATmega и ATtiny. Под Linux не требует драйвера.

Для прошивки надо соединить выходы программатора VCC, GND, RESET, SCK, MOSI, MISO с соответствующими выходами микроконтроллера. Для простоты я собрал вспомогательную схему прямо на макетной плате:

Слева на плате - тот самый микроконтроллер, который мы собираемся прошивать.

2. Микроконтроллер
С выбором микроконтроллера я особо не заморачивался и взял ATmega8 от Atmel - 23 пина ввода/вывода, два 8-битных таймера, один 16-битный, частота - до 16 Мгц, маленькое потребление (1-3.6 мА), дешевый ($2). В общем, для начала - более чем достаточно.

Под Linux для компиляции и загрузки прошивки на контроллер отлично работает связка avr-gcc + avrdude. Установка тривиальная. Следуя инструкции , можно за несколько минут установить все необходимое ПО. Единственный ньюанс, на который следует обратить внимание - avrdude (ПО для записи на контроллер) может потребовать права супер-пользователя для доступа к программатору. Выход - запустить через sudo (не очень хорошая идея), либо прописать специальные udev права. Синтаксис может отличаться в разных версиях ОС, но в моем случае (Linux Mint 15) сработало добавление следующего правила в файл /etc/udev/rules.d/41-atmega.rules:

# USBasp programmer SUBSYSTEM=="usb", ATTR{idVendor}=="16c0", ATTR{idProduct}=="05dc", GROUP="plugdev", MODE="0666"

После этого, естественно, необходим перезапуск сервиса
service udev restart
Компилировать и прошивать без проблем можно прямо из командной строки (кто бы сомневался), но если проектов много, то удобнее поставить плагин и делать все прямо из среды Eclipse.

Под Windows придется поставить драйвер. В остальном проблем нет. Ради научного интереса попробовал связку AVR Studio + eXtreme Burner в Windows. Опять-таки, все работает на ура.

Начинаем программировать

Программировать AVR контроллеры можно как на ассемблере (AVR assembler), так и на Си. Тут, думаю, каждый должен сделать свой выбор сам в зависимости от конкретной задачи и своих предпочтений. Лично я в первую очередь начал ковырять ассемблер. При программировании на ассемблере архитектура устройства становится понятнее и появляется ощущение, что копаешься непосредственно во внутренностях контроллера. К тому же полагаю, что в особенно критических по размеру и производительности программах знание ассемблера может очень пригодиться. После ознакомления с AVR ассемблером я переполз на Си.

После знакомства с архитектурой и основными принципами, решил собрать что-то полезное и интересное. Тут мне помогла дочурка, она занимается шахматами и в один прекрасный вечер заявила, что хочет иметь часы-таймер для партий на время. БАЦ! Вот она - идея первого проекта! Можно было конечно заказать их на том же eBay, но захотелось сделать свои собственные часы, с блэк… эээ… с индикаторами и кнопочками. Сказано - сделано!

В качестве дисплея решено было использовать два 7-сегментных диодных индикатора. Для управления достаточно было 5 кнопок - “Игрок 1” , “Игрок 2” , “Сброс” , “Настройка” и “Пауза” . Ну и не забываем про звуковую индикацию окончания игры. Вроде все. На рисунке ниже представлена общая схема подключения микроконтроллера к индикаторам и кнопкам. Она понадобится нам при разборе исходного кода программы:

Разбор полета

Начнем, как и положено, с точки входа программы - функции main . На самом деле ничего примечательного в ней нет - настройка портов, инициализация данных и бесконечный цикл обработки нажатий кнопок. Ну и вызов sei() - разрешение обработки прерываний, о них немного позже.

Int main(void) { init_io(); init_data(); sound_off(); sei(); while(1) { handle_buttons(); } return 0; }
Рассмотрим каждую функцию в отдельности.

Void init_io() { // set output DDRB = 0xFF; DDRD = 0xFF; // set input DDRC = 0b11100000; // pull-up resistors PORTC |= 0b00011111; // timer interrupts TIMSK = (1<

Настройка портов ввода/вывода происходит очень просто - в регистр DDRx (где x - буква, обозначающая порт) записивается число, каждый бит которого означает, будет ли соответствующий пин устройством ввода (соответствует 0) либо вывода (соответствует 1). Таким образом, заслав в DDRB и DDRD число 0xFF, мы сделали B и D портами вывода. Соответственно, команда DDRC = 0b11100000; превращает первые 5 пинов порта C во входные пины, а оставшиеся - в выходные. Команда PORTC |= 0b00011111; включает внутренние подтягивающие резисторы на 5 входах контроллера. Согласно схеме, к этим входам подключены кнопки, которые при нажатии замкнут их на землю. Таким образом контроллер понимает, что кнопка нажата.

Далее следует настройка двух таймеров, Timer0 и Timer1. Первый мы используем для обновления индикаторов, а второй - для обратного отсчета времени, предварительно настроив его на срабатывание каждую секунду. Подробное описание всех констант и метода настройки таймера на определенноый интервал можно найти в документации к ATmega8.

Обработка прерываний

ISR (TIMER0_OVF_vect) { display(); if (_buzzer > 0) { _buzzer--; if (_buzzer == 0) sound_off(); } } ISR(TIMER1_COMPA_vect) { if (ActiveTimer == 1 && Timer1 > 0) { Timer1--; if (Timer1 == 0) process_timeoff(); } if (ActiveTimer == 2 && Timer2 > 0) { Timer2--; if (Timer2 == 0) process_timeoff(); } }

При срабатывании таймера управление передается соответствующему обработчику прерывания. В нашем случае это обработчик TIMER0_OVF_vect, который вызывает процедуру вывода времени на индикаторы, и TIMER1_COMPA_vect, который обрабатывает обратный отсчет.

Вывод на индикаторы

Void display() { display_number((Timer1/60)/10, 0b00001000); _delay_ms(0.25); display_number((Timer1/60)%10, 0b00000100); _delay_ms(0.25); display_number((Timer1%60)/10, 0b00000010); _delay_ms(0.25); display_number((Timer1%60)%10, 0b00000001); _delay_ms(0.25); display_number((Timer2/60)/10, 0b10000000); _delay_ms(0.25); display_number((Timer2/60)%10, 0b01000000); _delay_ms(0.25); display_number((Timer2%60)/10, 0b00100000); _delay_ms(0.25); display_number((Timer2%60)%10, 0b00010000); _delay_ms(0.25); PORTD = 0; } void display_number(int number, int mask) { PORTB = number_mask(number); PORTD = mask; }

Функция display использует метод динамической индикации. Дело в том, что каждый отдельно взятый индикатор имеет 9 контактов (7 для управления сегментами, 1 для точки и 1 для питания). Для управления 4 цифрами понадобилось бы 36 контактов. Слишком расточительно. Поэтому вывод разрядов на индикатор с несколькими цифрами организован по следующему принципу:

Напряжение поочередно подается на каждый из общих контактов, что позволяет высветить на соответствующем индикаторе нужную цифру при помощи одних и тех же 8 управляющих контактов. При достаточно высокой частоте вывода это выглядит для глаза как статическая картинка. Именно поэтому все 8 питающих контактов обоих индикаторов на схеме подключены к 8 выходам порта D, а 16 управляющих сегментами контактов соединены попарно и подключены к 8 выходам порта B. Таким образом, функция display с задержкой в 0.25 мс попеременно выводит нужную цифру на каждый из индикаторов. Под конец отключаются все выходы, подающие напряжение на индикаторы (команда PORTD = 0;). Если этого не сделать, то последняя выводимая цифра будет продолжать гореть до следующего вызова функции display, что приведет к ее более яркому свечению по сравнению с остальными.

Обработка нажатий

Void handle_buttons() { handle_button(KEY_SETUP); handle_button(KEY_RESET); handle_button(KEY_PAUSE); handle_button(KEY_PLAYER1); handle_button(KEY_PLAYER2); } void handle_button(int key) { int bit; switch (key) { case KEY_SETUP: bit = SETUP_BIT; break; case KEY_RESET: bit = RESET_BIT; break; case KEY_PAUSE: bit = PAUSE_BIT; break; case KEY_PLAYER1: bit = PLAYER1_BIT; break; case KEY_PLAYER2: bit = PLAYER2_BIT; break; default: return; } if (bit_is_clear(BUTTON_PIN, bit)) { if (_pressed == 0) { _delay_ms(DEBOUNCE_TIME); if (bit_is_clear(BUTTON_PIN, bit)) { _pressed |= key; // key action switch (key) { case KEY_SETUP: process_setup(); break; case KEY_RESET: process_reset(); break; case KEY_PAUSE: process_pause(); break; case KEY_PLAYER1: process_player1(); break; case KEY_PLAYER2: process_player2(); break; } sound_on(15); } } } else { _pressed &= ~key; } }

Эта функция по очереди опрашивает все 5 кнопок и обрабатывает нажатие, если таковое случилось. Нажатие регистрируется проверкой bit_is_clear(BUTTON_PIN, bit) , т.е. кнопка нажата в том случае, если соответствующий ей вход соединен с землей, что и произойдет, согласно схеме, при нажатии кнопки. Задержка длительностью DEBOUNCE_TIME и повторная проверка нужна во избежание множественных лишних срабатываний из-за дребезга контактов. Сохранение статуса нажатия в соответствующих битах переменной _pressed используется для исключения повторного срабатывания при длительном нажатии на кнопку.
Функции обработки нажатий достаточно тривиальны и полагаю, что в дополнительных комментариях не нуждаются.

Полный текст программы

#define F_CPU 4000000UL #include #include #include #define DEBOUNCE_TIME 20 #define BUTTON_PIN PINC #define SETUP_BIT PC0 #define RESET_BIT PC1 #define PAUSE_BIT PC2 #define PLAYER1_BIT PC3 #define PLAYER2_BIT PC4 #define KEY_SETUP 0b00000001 #define KEY_RESET 0b00000010 #define KEY_PAUSE 0b00000100 #define KEY_PLAYER1 0b00001000 #define KEY_PLAYER2 0b00010000 volatile int ActiveTimer = 0; volatile int Timer1 = 0; volatile int Timer2 = 0; volatile int _buzzer = 0; volatile int _pressed = 0; // function declarations void init_io(); void init_data(); int number_mask(int num); void handle_buttons(); void handle_button(int key); void process_setup(); void process_reset(); void process_pause(); void process_timeoff(); void process_player1(); void process_player2(); void display(); void display_number(int mask, int number); void sound_on(int interval); void sound_off(); // interrupts ISR (TIMER0_OVF_vect) { display(); if (_buzzer > 0) { _buzzer--; if (_buzzer == 0) sound_off(); } } ISR(TIMER1_COMPA_vect) { if (ActiveTimer == 1 && Timer1 > 0) { Timer1--; if (Timer1 == 0) process_timeoff(); } if (ActiveTimer == 2 && Timer2 > 0) { Timer2--; if (Timer2 == 0) process_timeoff(); } } int main(void) { init_io(); init_data(); sound_off(); sei(); while(1) { handle_buttons(); } return 0; } void init_io() { // set output DDRB = 0xFF; DDRD = 0xFF; // set input DDRC = 0b11100000; // pull-up resistors PORTC |= 0b00011111; // timer interrupts TIMSK = (1< 5940 || Timer2 > 5940) { Timer1 = 0; Timer2 = 0; } } void process_reset() { init_data(); } void process_timeoff() { init_data(); sound_on(30); } void process_pause() { ActiveTimer = 0; } void process_player1() { ActiveTimer = 2; } void process_player2() { ActiveTimer = 1; } void handle_button(int key) { int bit; switch (key) { case KEY_SETUP: bit = SETUP_BIT; break; case KEY_RESET: bit = RESET_BIT; break; case KEY_PAUSE: bit = PAUSE_BIT; break; case KEY_PLAYER1: bit = PLAYER1_BIT; break; case KEY_PLAYER2: bit = PLAYER2_BIT; break; default: return; } if (bit_is_clear(BUTTON_PIN, bit)) { if (_pressed == 0) { _delay_ms(DEBOUNCE_TIME); if (bit_is_clear(BUTTON_PIN, bit)) { _pressed |= key; // key action switch (key) { case KEY_SETUP: process_setup(); break; case KEY_RESET: process_reset(); break; case KEY_PAUSE: process_pause(); break; case KEY_PLAYER1: process_player1(); break; case KEY_PLAYER2: process_player2(); break; } sound_on(15); } } } else { _pressed &= ~key; } } void handle_buttons() { handle_button(KEY_SETUP); handle_button(KEY_RESET); handle_button(KEY_PAUSE); handle_button(KEY_PLAYER1); handle_button(KEY_PLAYER2); } void display() { display_number((Timer1/60)/10, 0b00001000); _delay_ms(0.25); display_number((Timer1/60)%10, 0b00000100); _delay_ms(0.25); display_number((Timer1%60)/10, 0b00000010); _delay_ms(0.25); display_number((Timer1%60)%10, 0b00000001); _delay_ms(0.25); display_number((Timer2/60)/10, 0b10000000); _delay_ms(0.25); display_number((Timer2/60)%10, 0b01000000); _delay_ms(0.25); display_number((Timer2%60)/10, 0b00100000); _delay_ms(0.25); display_number((Timer2%60)%10, 0b00010000); _delay_ms(0.25); PORTD = 0; } void display_number(int number, int mask) { PORTB = number_mask(number); PORTD = mask; } void sound_on(int interval) { _buzzer = interval; // put buzzer pin high PORTC |= 0b00100000; } void sound_off() { // put buzzer pin low PORTC &= ~0b00100000; }

Прототип был собран на макетной плате.

Принципиальная схема программатора на LPT порт показана на рисунке. В качестве шинного формирователя используйте микросхему 74AC 244 или 74HC244 (К1564АП5), 74LS244 (К555АП5) либо 74ALS244 (К1533АП5).

Светодиод VD1 индицирует режим записи микроконтроллера,

светодиод VD2 - чтения,

светодиод VD3 - наличие питания схемы.

Напряжение, необходимое для питания схема берёт с разъёма ISP, т.е. от программируемого устройства. Эта схема является переработанной схемой программатора STK200/300 (добавлены светодиоды для удобства работы), поэтому она совместима со всеми программами программаторов на PC, работающих со схемой STK200/300. Для работы с этим программатором используйтепрограмму CVAVR

Программатор можно выполнить на печатной плате и поместить её в корпус разъёма LPT, как показано на рисунках:




Для работы с программатором удобно использовать удлинитель LPT порта, который несложно изготовить самому (к примеру, из кабеля Centronix для принтера), главное "не жалеть" проводников для земли (18-25 ноги разъёма) или купить. Кабель между программатором и программируемой микросхемой не должен превышать 20-30 см.

Микросхемы разного назначения применяются в составе электроники современной техники. Огромное многообразие такого рода компонентов дополняют микросхемы памяти. Этот вид радиодеталей (среди электронщиков и в народе) зачастую называют просто – чипы. Основное назначение чипов памяти – хранение определённой информации с возможностью внесения (записи), изменения (перезаписи) или полного удаления (стирания) программными средствами. Всеобщий интерес к чипам памяти понятен. Мастерам, знающим как программировать микросхемы памяти, открываются широкие просторы в области ремонта и настройки современных электронных устройств.

Микросхема памяти — это электронный компонент, внутренняя структура которого способна сохранять (запоминать) внесённые программы, какие-либо данные или одновременно то и другое.

По сути, загруженные в чип сведения представляют собой серию команд, состоящих из набора вычислительных единиц микропроцессора.

Следует отметить: чипы памяти всегда являются неотъемлемым дополнением микропроцессоров – управляющих микросхем. В свою очередь микропроцессор является основой электроники любой современной техники.

Набор электронных компонентов на плате современного электронного устройства. Где-то среди этой массы радиодеталей приютился компонент, способный запоминать информацию

Таким образом, микропроцессор управляет , а чип памяти хранит сведения, необходимые микропроцессору.

Программы или данные хранятся в чипе памяти как ряд чисел — нулей и единиц (биты). Один бит может быть представлен логическими нулем (0) либо единицей (1).

В единичном виде обработка битов видится сложной. Поэтому биты объединяются в группы. Шестнадцать бит составляют группу «слов», восемь бит составляют байт — «часть слова», четыре бита — «кусочек слова».

Программным термином для чипов, что используется чаще других, является байт. Это набор из восьми бит, который может принимать от 2 до 8 числовых вариаций, что в общей сложности даёт 256 различных значений.

Для представления байта используется шестнадцатеричная система счисления, где предусматривается использование 16 значений из двух групп:

  1. Цифровых (от 0 до 9).
  2. Символьных (от А до F).

Поэтому в комбинациях двух знаков шестнадцатеричной системы также укладываются 256 значений (от 00h до FFh). Конечный символ «h» указывает на принадлежность к шестнадцатеричным числам.

Организация микросхем (чипов) памяти

Для 8-битных чипов памяти (наиболее распространенный тип) биты объединяются в байты (8 бит) и сохраняются под определённым «адресом».

По назначенному адресу открывается доступ к байтам. Вывод восьми битов адреса доступа осуществляется через восемь портов данных.


Организация структуры запоминающего устройства. На первый взгляд сложный и непонятный алгоритм. Но при желании разобраться, понимание приходит быстро

Похожие публикации