Chevroletavtoliga - Автомобильный портал

Контроллер заряда mppt своими руками схема. Контроллер заряда аккумулятора от солнечной батареи: зачем нужен и как работает. Эффективность солнечных батарей

Здравствуйте. Продолжаю тему солнечной энергетики. Солнечные панели я уже обозревал ( и ). Также писал обзор и на простейший . Настала очередь познакомиться с более «продвинутым» контроллером, так называемым MPPT контроллером.
Что это, для чего, чем лучше PWM, а также распаковка, разборка, тестирование, всё это будет в обзоре.
Заинтересовавшихся прошу.

Теория:

Сначала немного о том для чего нужен контроллер заряда. И действительно, достаточно просто соединить солнечную панель с аккумулятором, и при наличии хоть какого-то света, а еще лучше - солнечного, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера.
Итак, что будет, если не применять его совсем? При прямом подключении солнечной панели к аккумулятору пойдет зарядный ток и напряжение на клеммах аккумулятора начнет постепенно расти. Пока оно не достигнет предельного напряжения зарядки (которое зависит от типа аккумулятора и его температуры), прямое подключение будет равнозначно присутствию контроллера моделей PWM или ON/OFF, поскольку в этом режиме эти модели просто соединяют вход и выход.
При достижении предельного напряжения (около 14 Вольт), ON/OFF контроллер, который является самым дешевым из всех типов, просто отключит солнечную батарею от аккумулятора и заряд прекратится, хотя в реальности аккумулятор заряжен еще не полностью и для полной зарядки требует поддержания на нем предельного напряжения в течение еще нескольких часов. Эту задачу решает PWM контроллер, который при помощи широтно-импульсного преобразования (ШИМ или, по английски - PWM) понижает напряжение солнечной батареи до нужного значения и поддерживает его.
Если же не использовать никакого контроллера, то необходимо постоянно следить при помощи вольтметра за зарядным напряжением и в нужный момент отключить солнечную панель. Но если забыть ее отключить, то это приведет к перезаряду, выкипанию электролита и сокращению срока службы аккумуляторов. Однако, если отключить ее не вовремя, как при использовании простого ON/OFF контроллера, аккумуляторы останутся заряженными не полностью (примерно на 90%), а регулярный недозаряд в конечном итоге приведет к значительному сокращению их срока службы.
Тут я думаю с необходимостью контроллера заряда можно закончить и перейти к описанию типов контроллеров заряда. Хотя про 2 типа (ON/OFF и PWM) уже было сказано выше. В общем существует третий тип контроллеров, так называемые MPPT контроллеры заряда. Для чего они нужны продемонстрирую на следующем графике:
На этом графике приводится нагрузочная характеристика стандартной 12 вольтовой солнечной панели с напряжением холостого хода около 20 вольт. Если подключить эту панель к 12 вольтовой свинцово-кислотной аккумуляторной батарее через PWM контроллер, можно получить рабочие точки в диапазоне 10-14,5В. Однако точка максимальной мощности солнечной панели находится выше (на этом графике это 17 вольт). И если снимать с панели эту мощность именно в этой точке, КПД всей солнечной установки будет выше. Вот для этого и применяются MPPT контроллеры. MPPT это Maximum Power Point Tracking, т.е. отслеживание точки максимальной мощности. Само отслеживание этой точки может осуществляться по разным алгоритмам и в разных MPPT контроллерах оно реализовано по разному. В самом простейшем случае эту точку можно задавать вручную.
Таким образом, главное отличие MPPT контроллера от PWM это наличие у первого преобразователя напряжения, из-за которого напряжение на солнечной панели не будет равно напряжению на аккумуляторной батарее.
Ну вот, надеюсь не сильно заумно написал.
MPPT контроллеры штука не из дешевых. Их стоимость начинается от 300 долларов. Описываемый же контроллер стоит существенно дешевле. Посмотрим чем он хорош или плох, как получится…

Упаковка и комплектация:

Контроллер был упакован в обычную картонную коробку, дополнительно обмотан «пупыркой». В комплекте кроме контроллера был еще лист А4 с описанием меню. Больше ничего. Т.е. никаких параметров, характеристик, руководств, ни-че-го. Фотографировать коробку, упаковку и горе-инструкцию я не стал, но на видео в конце обзора это всё есть.

Контроллер:

Инструкция по эксплуатации в электронном виде была найдена . Вот параметры контроллера, взятые из этой инструкции:
- Входное напряжение (от солнечной панели) 12-60 В;
- Выходное напряжение 15-90 В;
- Выходной ток 0-10А;
- Максимальная выходная мощность 600 Вт.
Габаритные размеры и вес:




Небольшое описание словами: На передней панели расположен цветной дисплей и 4 кнопки:
SET - выбор поля;
Стрелки вверх/вниз - увеличение/уменьшение величины в выбранном поле;
OK - подтверждение выбора или включение/выключение работы контроллера.
На левой стороне расположен вентилятор, на правой клеммы подключения солнечной панели и аккумулятора.
Подключение:
Очерёдность подключения следующая: сначала солнечную панель, затем аккумуляторную батарею. В большинстве контроллеров заряда делать нужно наоборот, т.е. сначала батарею, потом панель, т.к. контроллер питается от батареи. Здесь же контроллер питается от солнечной панели. Вот такая особенность.
Идем дальше, рассмотрим экран:
Экран разбит на 4 области: 3 горизонтальных и одну вертикальную. Перечисляю поля сверху вниз:
1. Напряжение на солнечной панели;
2. Напряжение на аккумуляторной батарее;
3. Ток заряда;
4. Мощность заряда;
5. Суммированная энергия заряда;
6. Время заряда
С помощью кнопок можно задать: напряжение точки максимальной мощности, максимальное напряжение аккумуляторной батареи, максимальный ток заряда, время свечения экрана, ёмкость аккумуляторной батареи, время зарядки аккумуляторной батареи, яркость экрана, скорость работы вентилятора. Как это делать, описано в инструкции, а также я это продемонстрировал в видеоролике в конце обзора. Все эти настройки можно записать в 1 из 20 ячеек памяти.

Разборка:

Чтобы разобрать корпус, необходимо открутить с одной из сторон 4 винта, лучше это делать со стороны вентилятора. И далее вытащить и плату и переднюю панель.







К качеству сборки и пайки претензий нет, всё аккуратно и чисто. Есть претензии к компоновке. Я не понимаю, зачем применять алюминиевый корпус, если не использовать его в качестве радиатора, а ставить внутрь маленький радиатор и обдувать его вентилятором. Мне кажется это верхом конструкторской глупости. В общем рекомендую транзисторы снять с радиатора и посадить на корпус. Вентилятор демонтировать. Тем более, что он ужасно шумный и потребляет лишнюю энергию.

Тестирование:

Сначала я планировал к этому контроллеру подключить мою 20-ти ваттную солнечную панель и автомобильный аккумулятор. Т.е. заменить свой PWM контроллер на этот и рассказать какой это классный контроллер и насколько он лучше контроллера PWM. Но не тут-то было. Сделав так я пришёл к выводу, что контроллер неработоспособен, т.к. ток и напряжение на аккумулятор не ограничивается и вся энергия из солнечной панели прямиком «шуруется» в аккумулятор. Чтобы изучить работу контроллера я подключил вместо солнечной панели блок питания с напряжением холостого хода около 16 вольт, а к клеммам подключения аккумуляторной батареи подключил 0,5 Вт нагрузочный резистор 2 кОм. Параллельно блоку питания и резистору подключил по мультиметру.
Сразу скажу, контроллер с приемлемой точностью измеряет напряжения на солнечной панели и на аккумуляторной батарее.
Далее, в меню контроллера, я выставил напряжение солнечной панели 10 вольт, напряжение на аккумуляторе 11,15 вольта. При включении, увидел что на входе, что на выходе напряжение около 15 вольт.

Что и требовалось доказать, контроллер работает некорректно.
Однако я пошёл дальше и задал 14В на входе и 20В на выходе, получил 16В и 20В соответственно.

Уже лучше.
Следующая точка тестирования: 14В и 40В. Получил: 15,5В и 40В.


Идём дальше. Задал 13 вольт на входе, и 90В на выходе. Получил 13В и 76В соответственно.

Вот это нормальный режим работы MPPT контроллера. Т.е. контроллер поддерживает на входе напряжение заданное ранее как «напряжение максимальной мощности панели». На выходе контроллер работает в режиме контролирования тока заряда. Просто входной мощности недостаточно, чтобы поднять напряжение до максимальнодопустимого, также выставленного ранее. Как только напряжение на аккумуляторной батарее достигнет максимального, контроллер перейдёт в режим поддержания напряжения и не даст подняться ему выше.

Видеообзор:

В видеообзоре распаковка, разборка и тестирование прибора. Также я подробно показал как работать с меню.

Итог:

В результате всего вышесказанного могу ответственно заявить, что данный контроллер работоспособен и является MPPT контроллером с несколькими оговорками:
1. Контроллер не способен автоматически находить точку максимальной мощности солнечной панели, напряжение этой точки необходимо задавать вручную (конструктивная особенность);
2. Контроллер может быть применим при условии, что напряжение на аккумуляторной батарее выше напряжения холостого хода солнечной панели, иначе ограничений по напряжению и току заряда нет (конструктивная особенность);
3. Контроллер при включении автоматически не считывает из памяти все параметры, поэтому ежедневно требует ручной начальной инициализации (программная недоработка, можно выйти из ситуации применив дополнительный контроллер, например, Ардуино, для начальной инициализации сабжа).
Также к «минусам» можно отнести шумность вентилятора и странную конструктивную особенность прибора: алюминиевый корпус не используется в качестве радиатора. Но здесь достаточно просто произвести необходимые доработки, убрав внутренний маленький радиатор и вентилятор, «посадить» силовые транзисторы на корпус.

Ну вот как-то так получилось. На первый взгляд «минусов» больше, чем «плюсов». Так это или нет не знаю.
При написании данной статьи я перерыл некоторое количество информации по поводу имеющихся в наличии MPPT контроллеров и суммируя могу заявить, что далеко не все продаваемые недорогие MPPT контроллеры являются таковыми. Т.е. производители часто пишут эту аббревиатуру, обманывая покупателей. Это утверждение не относится к сабжу.
Повторю, что обозреваемый контроллер это MPPT контроллер, хоть и самого начального уровня.

Надеюсь информация найдёт своего читателя и будет ему полезна. Удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +30 Добавить в избранное Обзор понравился +49 +77

— вниманию читателей предлагается контроллер заряда фотоэлектрических систем при токе заряда до 8А и напряжении аккумуляторов 12 В. Контроллер оптимизирует процесс заряда, не допуская перезаряда аккумуляторов в широком диапазоне освещенности и температуры панели.

Контроллер заряда солнечной батареи содержит доступные компоненты общей стоимостью менее 3 долларов (менее 200 рублей). Несколько устройств в течение 6 месяцев эксплуатируются с панелями, имеющими максимальную мощность от 40 до 100 ватт.

Вступление

Несмотря на привлекательность идеи солнечной энергетики, ее реальное внедрение в энергоснабжение сельских и дачных домов условно рентабельно только на широтах Краснодарского края и южнее. Тем не менее, энтузиасты приобретают солнечные панели с максимальной мощностью от 40 до 100 ватт и пробуют использовать системы на их основе в качестве резервного источника питания для аварийного освещения и компьютерной техники. Как правило, эти люди обладают руками, растущими из правильного места, и знают практическую электронику. Вот именно для их подготовлена эта статья.

Описание схемы устройства

Существует закономерность, что для эффективного выбора мощности модуль контроллера обязан следить за точкой предельной мощности солнечной панели, то есть точку, в которой и напряжение и ток, отдаваемые панелью, максимальны. Универсальные промышленные контроллеры, отслеживающие положение рабочей точки и рассчитанные на широкий диапазон мощностей солнечных панелей, собранных в батареи, достаточно дороги и избыточны в случае эксплуатации одиночной панели.
Точка максимальной мощности и температурный диапазон эксплуатации указываются в паспортных данных качественных панелей.

При проектировании предлагаемого контроллера реализованы обе основных задачи эксплуатации — непрерывное поддержание батареи в точке максимальной мощности и температурная коррекция положения рабочей точки. Контроллер заряда солнечной батареи , а вернее блок-схема представлена на Рисунке 1 и содержит эквивалент солнечной батареи в виде источника тока SB, обладающего внутренним сопротивлением R BH .

При отсутствии внешнего освещения R BH стремится к бесконечности, а ток к нулю. При росте освещенности R BH стремится нулю, а ток к максимальному, технически допустимому значению. Рассмотрим работу схемы. В исходном состоянии (при отсутствии освещения) конденсатор С1 разряжен, на выходе компаратора U1 присутствует «1», ключ S1 разомкнут. U oп равно паспортному значению точки максимальной мощности солнечной панели.

При росте освещенности емкость С1 будет получать заряд через внутреннее сопротивление солнечной панели. Когда напряжение на С1 превышает опорное напряжение, в выходной цепи компаратора появляется «О», замыкающий ключ S1. Емкость С1 сбрасывает заряд через S1 на нагрузку R H , а далее процесс повторяется. Чем выше освещённость, тем чаще происходит повторение описанного выше процесса.

По сути, мы имеем релаксационный генератор — преобразователь освещенности в частоту.
В практической схеме частота следования импульсов тока составляет единицы герц на рассвете и в сумерки, до десятков килогерц при максимальной освещенности, что обеспечивает широкий динамический диапазон работоспособности контроллера.

Принципиальная схема: контроллер заряда солнечной батареи, представлена на Рисунке 2.

Поскольку ранее мы подробно разобрали алгоритм работы контроллера, то остановимся только на нескольких моментах.

  1. Схема гарантированно работоспособна с 12-вольтовыми солнечными панелями мощностью от 40 Вт до 100 Вт, имеющими напряжение холостого хода не более 22 В, номинальное напряжение, соответствующее точке максимальной мощности 17-18 В и номинальный ток2…8А.
  2. Компаратор U1-2 срабатывает при напряжении на аккумуляторной батарее выше 14.4 вольт, принудительно ограничивая длительность импульсов зарядного тока, что предотвращает перезаряд аккумулятора.
  3. Питание компаратора и источника опорного напряжения производится с выхода устройства, что гарантирует автоматическое отключение контроллера заряда солнечной батареи при отключении аккумулятора.

Настройка схемы

Перед началом настройки временно разорвите цепь выхода компаратора U1 -2. Вместо термистора подключите сопротивление 8.2 кОм, примерно равное сопротивлению 10-килоомного термистора при температуре 25 градусов Цельсия. Если вы не планируете использовать термокомпенсацию точки максимальной мощности, или расстояние от панели до контроллера больше 2 метров, резисторы R15, R17 и термистор R16 могут быть удалены без ущерба для работоспособности схемы. При этом резистор R4 подключается к плюсовой шине.

Операции настойки выполняются в следующей последовательности:

    1. Подключите к выходу контроллера заряженную примерно на 50-60% аккумуляторную батарею небольшой мощности, например 7 Ач от источника бесперебойного питания. Как правило, такие аккумуляторы есть в арсенале мастера.
    2. Проверьте наличие опорного напряжения 8 В.
    3. Подключите к входу контроллера регулируемый источник 10-24 В с током до 2 А через сопротивление 5 Ом, имитируя подключение солнечной батареи.
    4. Медленно поднимая напряжение, контролируйте состояние выходной части компаратора U1-1. Если при напряжении, равном номинальному напряжению панели, для примера 17.2 В, с которой будет использоваться контроллер заряда солнечной батареи , на выходе U1-1 все еще будет высокий потенциал, регулируем R5 до возникновения автоколебаний.
    5. Далее контролируя напряжение на конденсаторе С1 и увеличивая входное напряжение, убеждаемся, что напряжение на конденсаторе С1 остается неизменным и равным номинальному напряжению солнечной панели. При помощи осциллографа убедитесь, что форма сигнала на стоке G3 близка к показанной на Рисунке 3.
  1. Напряжение на аккумуляторе начнет расти. Когда оно достигнет 14.5 В, прекратите настройку, отключите аккумулятор и источник питания. Восстановите соединение выхода компаратора U1-2 с элементами схемы.
  2. Подключите аккумулятор и источник питания. Если форма импульсов изменилась, и ток заряда резко упал, регулируйте R10 до тех пор, пока изменение ограничения зарядного тока не будет наступать при напряжении на заряжаемом аккумуляторе 14.4 В.На этом настройка может считаться законченной.

Конструктивные особенности

При пиковом значении тока более 3 А для транзистора Q3 необходим теплоотвод. Разумеется, полевой МОП-транзистор не утратит работоспособность без заметного ухудшения параметров при температурных значениях в пределах 100 градусов, но в случае желания иметь уверенно работающий прибор, радиатор необходим.

В качестве дросселя L1 использован дроссель режекторного фильтра от блока питания компьютера. Обмотки дросселя соединены последовательно. При токах более 5 А дроссель может нагреваться до 60 градусов, но это не влияет на надежность устройства.

К вопросу о линеаризации характеристики термистора

В процессе разработки схемы контроллера были исследованы различные варианты управления положением рабочей точкой контроллера при помощи измерения температуры панели. В одной из моделей использовалась более сложная схема термокомпенсации, основанная на суммирующем ОУ для сложения опорного напряжения с выходным напряжением температурного датчика на термисторе. Это решение не применяется в описываемом контроллере, но автор считает полезным упомянуть его в рамках данной статьи.

Наилучшая линеаризация выходного сигнала датчика получается при включении термистора по схеме, показанной на Рис 4.

Динамический диапазон изменения выходного сигнала сужается, чувствительность термистора в данном случае значительно не ухудшается, оставаясь постоянной в довольно большом температурном диапазоне.

Одним из важнейших компонентов домашней солнечной электростанции является контроллер заряда аккумуляторов. Именно это устройство следит за процессом заряда/разряда аккумуляторов, поддерживая оптимальный режим их работы. Существует множество схем контроллеров для солнечных батарей – от самых простых, выполненных порою кустарным способом, до очень сложных, с применением микропроцессоров. Причем контроллеры заряда для солнечных батарей, сделанные своими руками, частенько работают лучше аналогичных промышленных устройств такого же типа.

Для чего нужны контроллеры заряда аккумуляторов

Если аккумулятор подсоединить напрямую к клеммам солнечных батарей, то заряд его будет происходить непрерывно. В конечном итоге на уже полностью заряженный аккумулятор будет продолжать поступать ток, что вызовет повышение напряжения на несколько вольт. В результате происходит перезаряд АКБ, повышается температура электролита, причем эта температура достигает таких значений, что электролит закипает, происходит резкий выброс паров из банок аккумулятора. Как следствие, может произойти полное испарение электролита и высыхание банок. Естественно, это не добавляет «здоровья» аккумулятору и резко снижает ресурс его работоспособности.

Контроллер в системе солнечного заряда аккумуляторов

Вот, чтобы не допустить подобных явлений, чтобы оптимизировать процессы заряда/разряда, и нужны контроллеры.

Три принципа построения контроллеров заряда

По принципу действия различают три типа солнечных контроллеров.
Первый, самый простой тип – это устройство, выполненное по принципу «On/Off» («Вкл./Выкл.»). Схема такого аппарата представляет собой простейший компаратор, который включает или выключает цепь заряда в зависимости от значения напряжения на клеммах аккумулятора. Это самый простой и дешевый тип контроллеров, но и способ, которым он производит заряд, самый ненадежный. Дело в том, что контроллер отключает цепь заряда по достижении предельного значения напряжения на клеммах аккумуляторной батареи. Но при этом не происходит полного заряда банок. Максимально достигается не более 90% заряда от номинального значения. Вот такой постоянный недобор заряда значительно уменьшает работоспособность аккумулятора и срок его работы.


Вольт-амперная характеристика солнечного модуля

Второй тип контроллеров – это устройства, построенные по принципу ШИМ (широтно-импульсной модуляции). Это более сложные аппараты, в которых кроме дискретных компонентов схемы имеются уже и элементы микроэлектроники. Аппараты на базе ШИМ (англ. – PWM) осуществляют зарядку аккумуляторов ступенчато, выбирая оптимальные режимы заряда. Эта выборка производится автоматически и зависит от того, как глубоко разряжены АКБ. Контроллер повышает напряжение, одновременно понижая силу тока, обеспечивая тем самым полную зарядку аккумуляторной батареи. Большой недостаток ШИМ-контроллера – заметные потери в режиме зарядки аккумулятора – теряются до 40%.


Третий тип – это контроллеры MPPT , то есть работающие по принципу отыскания точки максимальной мощности солнечного модуля. В процессе работы устройства этого типа используют максимально доступную мощность для любого режима заряда. По сравнению с другими, аппараты этого типа отдают на заряд аккумуляторных батарей примерно на 25% - 30% больше энергии, чем другие аппараты.


Заряд АКБ производится меньшим напряжением, чем это делают контроллеры других типов, но большей силой тока. Коэффициент полезного действия аппаратов MPPT достигает 90% - 95%.

Простейший самодельный контроллер

При самостоятельном изготовлении любого контроллера необходимо обязательно соблюдать определенные условия. Во-первых, максимальное напряжение на входе должно быть равным напряжению АКБ без нагрузки. Во-вторых, должно быть выдержано соотношение: 1,2P


Этот аппарат предназначен для работы в составе солнечной электростанции малой мощности. Принцип работы контроллера предельно прост. Когда напряжение на клеммах аккумуляторов достигнет заданного значения, заряд прекращается. В дальнейшем производится только так называемый капельный заряд.


Контроллер, смонтированный на печатной плате

При падении напряжения ниже установленного уровня подача энергии на аккумуляторы возобновляется. Если при работе на нагрузку в отсутствии заряда напряжение АКБ будет ниже 11 вольт, контроллер отключит нагрузку. Тем самым исключается разряд аккумуляторов в период отсутствия солнца.

Аналоговый контроллер для маломощных гелиевых систем

Аналоговые устройства используются, в основном, в гелиевых системах, имеющих небольшую мощность. В мощных системах целесообразно применять цифровые последовательные аппараты типа MPPT. Эти контроллеры прерывают зарядный ток, когда аккумулятор будет полностью заряжен. В предлагаемой схеме аналогового контролера используется параллельное подключение. При таком подключении солнечный модуль всегда соединен с аккумулятором через специальный диод. Когда напряжение на аккумуляторе достигнет заданного значения, контроллер параллельно солнечному модулю включает цепь нагрузочного сопротивления, которое принимает на себя избыток энергии от модуля.

Это устройство было разработано и собрано под конкретную систему, состоящую из солнечной панели с 36 ячейками, с выходным напряжением холостого хода 18 вольт и с током короткого замыкания до одного ампера. Емкость аккумулятора до 50 ампер-часов, при номинальном напряжении 12 вольт. Перед тем, как включить собранный аппарат в рабочую конфигурацию системы, необходимо произвести его настройку. Для быстрой настройки нужно взять предварительно заряженный аккумулятор. Солнечную батарею с соблюдением полярности нужно подключить к клеммам PV по схеме, а аккумулятор – к клеммам ВАТ. К клеммам аккумулятора необходимо также подключить цифровой вольтметр.


Теперь для получения максимальной отдачи от солнечной батареи, нужно сориентировать ее на солнце. После этого медленно поворачивать винт двадцатиоборотного переменного резистора номиналом в 100 кОм. Вращение винта производится до тех пор, пока светодиод не начнет мигать. После того, как начнется мигание, винт следует продолжать медленно поворачивать до тех пор, пока вольтметр не покажет значение напряжения на клеммах аккумулятора, равное желаемому. На этом настройка устройства завершена.

В процессе эксплуатации системы при достижении напряжением на клеммах аккумулятора предельного значения светодиод начинает выдавать краткие световые импульсы с длительными промежутками. При продолжении заряда аккумулятора длительность световых импульсов увеличивается, а интервал между ними, наоборот, сокращается.

Разумеется, при наличии определенных знаний и навыков можно собрать и более сложное устройство, например, MPPT, но если речь заходит о покупке дорогостоящего оборудования для домашней электростанции, то, вероятно, есть смысл все-таки купить промышленный аппарат, на который распространяется к тому же и гарантия изготовителя. И не подвергать аккумуляторные батареи риску повреждения.

Контроллер заряда является очень важным узлом системы, в которой электрический ток создают солнечные панели. Устройство управляет зарядкой и разрядкой аккумуляторных батарей. Именно благодаря ему, батареи не могут перезарядиться и разрядиться настолько, что восстановить их рабочее состояние будет невозможно.

Такие контролеры можно сделать своими руками.

Самодельный контроллер: особенности, комплектующие

Устройство предназначено для работы только , которая создает ток с силой, не более 4 А. Емкость аккумулятора, зарядкой которого , является 3 000 А*ч.

Для изготовления контроллера нужно подготовить следующие элементы:

  • 2 микросхемы: LM385-2.5 и TLC271 (является операционным усилителем);
  • 3 конденсатора: С1 и С2 являются маломощными, имеют 100n; С3 имеет емкость 1000u, рассчитан на 16 V;
  • 1 индикаторный светодиод (D1);
  • 1 диод Шоттки;
  • 1 диод SB540. Вместо него можно использовать любой диод, главное, чтобы он мог выдержать максимальный ток солнечной батареи;
  • 3 транзистора: BUZ11 (Q1), BC548 (Q2), BC556 (Q3);
  • 10 резисторов (R1 – 1k5, R2 – 100, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k). Все они могут быть 5%. Если хочется большей точности, то можно взять резисторы 1%.

Чем можно заменить некоторые комплектующие

Любой из этих элементов можно заменять. При установке других схем нужно подумать об изменении емкости конденсатора С2 и подборе смещения транзистора Q3.

Вместо транзистора MOSFET можно установить любой другой. Элемент должен иметь низкое сопротивление открытого канала. Диод Шоттки лучше не заменять . Можно установить обычный диод, но его нужно правильно разместить.

Резисторы R8, R10 равны 92 кОм. Такое значение нестандартное. Из-за этого такие резисторы найти сложно. Их полноценной заменой может быть два резистора с 82 и 10 кОм. Их нужно включать последовательно .

Читайте также: Особенности внешних аккумуляторов с солнечной батареей

Если контроллер не будет использоваться в агрессивной среде, можно провести установку подстроечного резистора. Он дает возможность управлять напряжением. В агрессивной среде он долго не поработает.

При необходимости использовать контроллер для более сильных панелей нужно провести замену транзистора MOSFET и диода более мощными аналогами. Все остальные компоненты менять не нужно. Нет смысла устанавливать радиатор для регулирования 4 А. При установке MOSFET на подходящем теплоотводе устройство сможет работать с более продуктивной панелью.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору . Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Зарядка происходит периодически. При этом ее продолжительность зависит от того, каким является зарядный ток аккумуляторной батареи, и насколько мощные подключенные к ней устройства. Зарядка длится до тех пор, пока напряжение не станет равным 14 В.

Схема включается за очень короткое время. На ее включение влияет время зарядки С2 током, который ограничивает транзистор Q3. Ток не может быть больше 40 мА.

Приведена схема эффективного 12В зарядного устройства (солнечного контроллера), с защитой аккумуляторов от пониженного напряжения.

Характеристики устройства

Низкое потребление мощности в режиме простоя
Схема была разработана для небольших и средних свинцово-кислотных аккумуляторных батарей и потребляет маленький ток (5 мА) в режиме простоя. Это увеличивает продолжительность жизни аккумуляторных батарей.

Легкодоступные компоненты
В устройстве используются обычные компоненты (не SMD), которые легко можно найти в магазинах. Ничего не требуется прошивать, единственное нужен будет вольтметр и регулируемый источник питания для настройки схемы.

Последняя версия устройства
Это уже третья версия устройства, поэтому в нем исправлены большинство ошибок и недочетов, которые присутствовали в предыдущих версиях зарядника.

Регулировка напряжения
В приборе используется параллельный стабилизатор напряжения, чтобы напряжение аккумулятора не превышало норму, обычно это 13.8 Вольт.


Контроллер отсоединяет аккумуляторную батарею, если напряжение падает ниже определенной точки (настраивается), обычно это 10.5 Вольт

В большинстве солнечных зарядных устройствах для защиты от утечки тока аккумулятора на солнечную панель, используется диод Шоттки. А шунтирующий стабилизатор напряжения используется когда аккумулятор полностью заряжен.
Одной из проблем такого подхода являются потери на диоде и как следствие его нагрев. К примеру, солнечная панель 100 Ватт, 12В, подает 8А на аккумуляторную батарею, на диоде Шоттки падение напряжение составит 0.4В, т.е. рассеиваемая мощность составит около 3.2 Ватта. Это во первых потери, а во вторых для диода понадобится радиатор для отвода тепла. Проблема в том, что уменьшить падение напряжения не получится, несколько диодов включенных параллельно, уменьшат ток, но падение напряжения такое и останется. В представленной ниже схеме, вместо обычных диодов используются мосфеты, следовательно мощность теряется только на активное сопротивление (резистивные потери).
Для сравнения, в 100 Вт панели при использовании мосфетов IRFZ48 (КП741А) потери мощности составляют всего 0.5Ватта (на Q2). А это значит меньший нагрев и больше энергии для аккумуляторов. Еще важным моментов является то, что мосфеты имеют положительный температурный коэффициент и могут быть включены в параллель для уменьшения сопротивления в включенном состоянии.

В приведенной выше схеме используется пара нестандартных решений.

Зарядка

Между солнечной панелью и нагрузкой не используется диод, вместо него стоит мосфет Q2. Диод в мосфете обеспечивает протекание тока от панели к нагрузке. Если на Q2 появляется значительное напряжение, то транзистор Q3 открывается, заряжается конденсатор С4, что заставляет ОУ U2c и U3b открыть мосфет Q2. Теперь, падение напряжения вычисляется по закону Ома, т.е. I*R, и оно намного меньше, чем если бы там стоял диод. Конденсатор С4 периодически разряжается через резистор R7, и Q2 закрывается. Если от панели протекает ток, то ЭДС самоиндукции дросселя L1 сразу же заставляет открыться Q3. Это происходит очень часто (множество раз за секунду). В случае, когда ток идет на солнечную панель, Q2 закрывается, а Q3 не открывается, т.к. диод D2 ограничивает ЭДС самоиндукции дросселя L1. Диод D2 может быть рассчитан на ток 1А, однако в процессе тестирования выяснилось, что такой ток возникает редко.

Подстроечник VR1 устанавливает максимальное напряжение. Когда напряжение превышает 13.8В, то операционный усилитель U2d открывает мосфет Q1 и выход с панели "закорачивается" на землю. Помимо этого, операционник U3b отключает Q2 и т.о. панель отключается от нагрузки. Это необходимо, поскольку Q1 помимо солнечной панели "коротит" нагрузку и аккумулятор.

Управление N-канальными мосфетами

Для управления мосфетами Q2 и Q4 требуется большее напряжение, чем используемое в схеме. Для этого, ОУ U2 с обвязкой из диодов и конденсаторов создает повышенное напряжение VH. Это напряжение используется для питания U3, на выходе которого будет повышенное напряжение. Связка U2b и D10 обеспечивают стабильность выходного напряжения на уровне 24 Вольт. При таком напряжении, через затвор-исток транзистора будет напряжение не меньше 10В, поэтому тепловыделение будет маленькое.
Обычно, N-канальные мосфеты имеют намного меньшее сопротивление, чем Р-канальные, поэтому они и были использованы в данной схеме.

Защита от пониженного напряжения

Мосфет Q4, операционник U3a с внешней обвязкой из резисторов и конденсаторов, предназначены для защиты от пониженного напряжения. Здесь Q4 используется нестандартною. Диод мосфета обеспечивает постоянное прохождение тока в аккумулятор. Когда напряжение выше установленного минимума, то мосфет открыт, допуская небольшое падение напряжения при зарядке аккумулятора, но более важным является то, что он дает возможность прохождения тока от аккумулятора на нагрузку, если солнечная батарея не может обеспечить достаточную выходную мощность. Предохранитель защищает от возникновения короткого замыкания на стороне нагрузки.

Ниже представлены рисунки расположения элементов и печатных плат.

Настройка устройства

При нормальной использовании устройства, джампер J1 не должен быть вставлен! Светодиод D11 используется для настройки. Для настройки устройства, к выводам "нагрузка" подключите регулируемый блок питания.

Установка защиты от пониженного напряжения
Вставьте джампер J1.
В блоке питание установите выходное напряжение на 10.5В.
Вращайте подстроечный резистор VR2 против часовой стрелки до тех пор, пока не загорится светодиод D11.
Немного поверните VR2 по часовой стрелке, пока светодиод не погаснет.
Выньте джампер J1.

Установка максимального напряжения
В блоке питание установите выходное напряжение на 13.8В.
Вращайте подстроечный резистор VR1 по часовой стрелке до тех пор, пока не погаснет светодиод D9.
Медленно поверните VR1 против часовой стрелки, пока светодиод D9 не загорится.

Контроллер настроен. Не забудьте вынуть джампер J1!

Если мощность всей системы будет небольшая, то мосфеты могут быть заменены на более дешевые IRFZ34. А если система будет мощнее, то мосфеты можно заменить на более мощные IRFZ48.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 ИС источника опорного напряжения

LM336-2.5

1 В блокнот
U2 Операционный усилитель

LM324

1 В блокнот
U3 Операционный усилитель

LM358

1 В блокнот
Q1, Q2, Q4 MOSFET-транзистор

IRFZ44

3 КП723А В блокнот
Q3 Биполярный транзистор

BC327

1 КТ685А В блокнот
D1 Диод Шоттки 1.5КЕ16 1 В блокнот
D2, D4 Диод Шоттки

1N5819

2 КДШ2105В В блокнот
D3, D5-D8, D10 Выпрямительный диод

1N4148

6 КД522А В блокнот
D9, D11 Светодиод 2 В блокнот
C1, C3 1000 мкФ 25 В 2 В блокнот
C2, C4-C7 Конденсатор 100 нФ 5 В блокнот
C9 Электролитический конденсатор 100 мкФ 35 В 1 В блокнот
C8, C10, C12 Электролитический конденсатор 10 мкФ 25 В 3 В блокнот
C11 Конденсатор 1 нФ 1 В блокнот
R1, R9, R11, R16, R19 Резистор

10 кОм

5 В блокнот
R2, R10 Резистор

56 кОм

2 В блокнот
R3 Резистор

1 кОм

1 В блокнот
R4, R12 Резистор

2.2 МОм

2 В блокнот
R5, R8, R13-R15, R18 Резистор

100 кОм

6 В блокнот
R6 Резистор

4.7 кОм

1 В блокнот
R7 Резистор

Похожие публикации