Chevroletavtoliga - Автомобильный портал

Опыты алессандро вольта о существовании животного электричества. Алессандро Вольта и Луиджи Гальвани: неоконченный спор. Даниель, Лекланше и другие

Принято думать, что сделавшие эпоху в развитии учения об электричестве открытия Гальвани были плодом случая. Вероятно, такое мнение основано на начальных словах трактата Гальвани: "Я разрезал и препарировал лягушку... и, имея в виду совершенно другое, поместил её на стол, на котором находилась электрическая машина... Один из моих помощников остриём скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки... Другой заметил... что это удаётся тогда, когда из кондуктора машины извлекается искра... Удивлённый новым явлением, он тотчас же обратил на него моё внимание, хотя я замышлял совсем другое и был поглощён своими мыслями".

Однако случайность открытия была очень незначительной, тот же Гальвани или кто-либо другой непременно пришли бы к открытию явления. Не случайно у Гальвани стояла электрическая машина, так же как и не случайным было то,что он задумал какой-то эксперимент с препаратом. Несомненно, что идеи французских материалистов о материальности психических процессов толкали научную мысль на раскрытие в первую очередь физической природы ощущения, а успехи, достигнутые физиологами, микроскопистами и химиками в понимании таких важных жизненных процессов, как кровообращение, пищеварение, дыхание, стимулировали такие поиски. Изучение электрических явлений, уже сведшее с высот на землю гром и молнию, дало материал ля вывода о важной роли электричества в биологии. Сокращение мышц при электрическом разряде ("электрический удар") приближало мысль, что и в поведении электрических скатов, угрей, сомов мы имеем дело также с электрическим ударом. И, действительно, опыты Джона Уолша (Walsh) и Ларошели доказали электрическую природу удара ската, а анатом Гунтер дал точное описание электрического органа этого животного. Исследования Уолша и Гунтера были опубликованы в "Phil. Trans." в 1773 г. Случайное открытие философа Зульцера в 1752 г., что прикосновение к кончику языка двух разнородных металлов вызывает своеобразное кислое вкусовое ощущение, было им описано, ибо автор чувствовал научный интерес этого открытия в эпоху изучения действия физических раздражителей. В числе этих физических раздражителей первое место занимало электричество, и практическая медицина возлагала большие надежды на электрические методы лечения.

О степени интереса к электрическим методам лечения можно судить, например, по письму Марата к Руму де-Сен-Лорен от 9 ноября 1783 г., в котором он сообщает о своих физических исследованиях и об отношении к ним академии. Из письма и приложенных к нему документов, между прочим, видно, что врач и физик Марат, будущий знаменитый "друг народа", с успехом применял физические методы лечения и разработал интересную методику экспериментального исследования природы огня, света и электричества. Опыты Марата привлекали большое внимание, в том числе и таких деятелей, как Франклин. Специально по вопросу об электромедицине Марат говорит в этом письме о своём намерении "заняться электричеством в области медицины, наукой, которая так сильно интересует общество" . Критикуя премированную работу аббата Бертелона, который "выдаёт электризацию за универсальное средство от всех болезней", Марат сообщает о своей работе, получившей премию Руанской академии, предложившей конкурсную тему: "Определить степень и условия, при которых можно рассчитывать на электричество в лечении болезней". Как видим, интерес к электромедицине в эпоху Гальвани был значительным.

Письмо Марата, в котором он обвиняет академию в невнимании к его научным заслугам, интересно и в другом отношении. Разработанная Маратом методика наблюдений в тёмной комнате позволила, по его утверждению, видеть материю огня и электричества, наблюдать дифракцию у краёв призмы. Эти идеи Марата - несомненный отзвук увлечения различными "флюидамрг", в том числе и психическими флюидами. Академия, не нашедшая возможным проверить опыты Марата, оказалась вынужденной образовать авторитетную комиссию для проверки опытов заведомого шарлатана Месмера. Месмер, прибывший в Париж в 1771 г., ловко использовал модные научные теории об огненных, электрических, магнитных и других флюидах и утверждал, что им открыт новый вид тонкого агента - "животный магнетизм". "Животный магнетизм,- говорил Месмер,- может скопляться, концентрироваться и переноситься без помощи тел посредствующих; он отражается, как свет...". Само собой разумеется, что "животный магнетизм есть универсальное лекарство и спаситель человеческого рода". Месмер имел большой успех, его поклонники собирали ему огромные суммы денег, преследовали противников месмеризма вплоть до нападения на Бертолле; король предлагал ему пожизненную пенсию в 20 тысяч франков за раскрытие секрета.

После его отъезда из Франции была образована правительственная комиссия в составе четырёх медиков и академиков - Леруа, Бори, Лавуазье и Бальи. Бальи представил доклад комиссии в августе 1784 г. Этот доклад вызвал протесты и возражения со стороны месмеристов, так как комиссия после тщательного анализа фактов пришла к выводу, что постоянного агента не существует и что случаи излечения им нервных трансов имеют своим источником воображение. Вообще говоря, в донесении комиссии не говорится о невозможности животного магнетизма, такая гипотеза не противоречила научным воззрениям того времени, но она не обнаружила неизменного действия в проверенных ею фактах, а потому и констатировала отсутствие физического агента в этих фактах.

Таким образом, ко времени начала опытов Гальвани (1786) не было недостатка в попытках физической трактовки психических и физиологических явлений. Практическая медицина сделала свои выводы из успехов естествознания и из научных воззрений эпохи, почва для возникновения учения о животном электричестве была вполне подготовлена.

Нет ничего удивительного в том, что профессор анатомии и медицины Болонского университета Луиджи Гальвани (родился 19 сентября 1737 г., умер 4 декабря 1798 г.) был необычайно поражён наблюдением, сделанным его сотрудниками, с описания которого начинается его знаменитый трактат "О силах электричества при мышечном движении". Как справделйво указал впоследствии Вольта, в самом факте вздрагивания лапки препарированной лягушки при электрическом разряде с физической точки зрения не было ничего нового: это явление электрической индукции, а именно явление так называемого возвратного удара, разобранного Магоном в 1779 г. Но Гальвани подошёл к факту не как физик, а как физиолог, его заинтересовала способность мёртвого препарата проявлять жизненные сокращения под влиянием электричества.

Он с величайшим терпением и искусством исследовал эту способность, изучая её локализацию в препарате, условия возбудимости, действие различных форм электричества и в частности атмосферного электричества. Классические опыты Гальвани сделали его отцом электрофизиологии, значение которой в наше время трудно переоценить. Но Гальвани во время исследования действия атмосферы на препарат пришёл к замечательному открытию. Тщетно ожидая сокращения мышц в ясную погоду, он, "утомлённый... тщетным ожиданием... начал прижимать медные крючки, воткнутые в спинной мозг, к железной решетке" * ... "Хотя я,- говорит он далее,- нередко наблюдал сокращения, но ни одно не соответствовало перемене в состоянии атмосферы и электричества... Когда же я перенёс животное в закрытую комнату, поместил на железной пластине и стал прижимать к ней проведённый через спинной мозг крючок, то появились такие же сокращения, такие же движения". Отсюда Гальвани, осуществив ряд экспериментов, приходит к выводу о существовании нового источника и нового вида электричества. Его приводят к такому выводу опыты составления замкнутой цепи из проводящих тел и металлов и лягушечного препарата. Особенно эффектен следующий опыт: "если держать висящую лягушку пальцами за одну лапку так, чтобы крючок, проходящий через спинной мозг, касался бы какой-нибудь серебряной пластинки, а другая лапка свободно могла бы касаться той же пластинки, то как только эта лапка касается указанной пластинки, мышцы начинают немедленно сокращаться. При этом лапка встаёт и поднимается и затем, вновь упав на пластинку, вместе с тем приходит в соприкосновение с последней, снова по той же причине поднимается вверх, и, таким образом, продолжает далее попеременно подниматься и падать, так что эта лапка, к немалому восхищению и радости наблюдающего за ней, начинает, кажется, соперничать с каким-то электрическим маятником".

* (В первоначальном рассказе Гальвани (см. Розенбергер, П) упоминание о медных крючках отсутствует и появилось позднее в его трактате,откуда и цитируется при ведённая нами выдержка. )

В такой сложной форме был открыт новый источник электричества, создающий в проводящей замкнутой цепи длительный разряд. Естественно, что физиолог Гальвани не мог допустить и мысли, что причина явления кроется в контакте разнородных металлов, и предложил, что мышца является своеобразной батареей лейденских банок, непрерывно возбуждаем эй действием мозга, которое передаётся по нервам.

Теория животного электричества подводила базу под практическую электромедицину, и открытие Гальвани произвело сенсацию. В числе ревностных адептов новой теории оказался и знаменитый Вольта, не замедливший приступить к проверке и к тщательному количественному исследованию явления. Это исследование он предпринял во всеоружии современной ему электрометрической техники. В первых своих статьях ("О животном электричестве", письмо доктору Баронио отЗ апреля 1792 г., и двух статьях "О животном электричестве", напечатанных в "Физико-медицинском журнале" Брунвелли) Вольта разделяет точку зрения Гальвани. Однако уже здесь намечается будущий отход, от этой теории, выдвигаются на первый план физические моменты эффекта. Прежде всего Вольта устанавливает, что соответствующим образом "препарированная лягушка представляет, если можно так выразиться, животный электрометр, несравненно более чувствительный, чем всякий другой самый чувствительный электрометр".

Затем Вольта устанавливает важность контакта разнородных металлов. "Такое различие металлов безусловно необходимо; если же обе обкладки из одного и того же металла, то следует, чтобы они отличались, по крайней мере, по способу их приложения..." (т. е. по состоянию контактной поверхности). Далее Вольта показывает, что ток электрического флюида обусловлен контактом разнородных металлов и может производить не только мышечные сокращения, но и другие раздражения нервов. В частности Вольта повторяет опыт Зульцера (не зная пока, что этот опыт был уже осуществлён) и обращает внимание, "что этот вкус продолжает ощущаться и даже усиливается в продолжение всего времени, пока эти два металла, олово и серебро, остаются приложенными один к кончику языка, другой к другим частям последнего и пока они соприкасаются друг с другом, составляя некоторую проводящую дугу. Это доказывает, что переход электрического флюида с одного места на другое совершается постоянно и беспрерывно". Наконец, Вольта устанавливает полярность эффекта: перемена обкладок местами вызывает изменение вкуса с кислого на щелочной. В свете этих фактов теория мышечной лейденской банки Вольта представляется несостоятельной.

В последующих статьях: "Описание открытий Гальвани" (два письма к члену Королевского общества - Кавалло), "Третья статья о животном электричестве" (письмо к проф. Альдини - племяннику Гальвани) и "Новая статья о животном электричестве" (три письма к Вассали - профессору Туринского университета), Вольта полностью порывает с теорией животного электричества и даёт физическую трактовку эффекта. Во втором письме к Кавалло Вольта пишет: "... я открыл новый весьма замечательный закон, который относится собственно не к животному электричеству, а к обычному электричеству, так как этот переход электрического флюида, переход, который не является моментальным, каким был бы разряд, но постоянным и продолжающимся всё время, пока сохраняется сообщение между обеими обкладками,имеет место независимо от того,наложена ли эта обкладка на живое или мёртвое животное вещество, или на другие не металлические, но достаточно хорошие проводники, как, например, на воду или на смоченные ею тела". А первое письмо к Вассали (от 10 февраля 1794 г.) Вольта прямо начинает вопросом: "Что вы думаете о так называемом животном электричестве? Что касается меня, то я давно убеждён, что всё действие возникает первоначально вследствие прикосновения металлов к какому-нибудь влажному телу или самой воде".

Физиологические раздражения нервов являются результатом проходящего тока, и эти раздражения "тем сильнее, чем дальше отстоят друг от друга применённые два металла в том ряду, в каком они поставлены нами здесь: цинк, оловянная фольга, обыкновенное олово в пластинках, свинец, железо, латунь и различного качества бронза, медь, платина, золото, серебро, ртуть, графит". Этот знаменитый ряд напряжений Вольта и открытый им закон напряжений составляют ядро всего эффекта. Животные органы, по Вольта, "являются чисто пассивными, простыми, очень чувствительными электрометрами, и активны не они, а металлы, т. е. что от соприкосновения последних и происходит первоначальный толчок электрического флюида, одним словом, что такие металлы не простые проводники или передатчики тока, но настоящие двигатели электричества..." . В одном из примечаний к этой статье Вольта вновь подчёркивает, что к идее о контактном напряжении он пришёл уже более трёх лет тому назад и уже в 1793 г. дал свой ряд металлов.

Таким образом, суть эффекта заключается, по мнению Вольта, в свойстве проводников "вызывать и приводить в движение электрический флюид там, где несколько таких проводников разного класса и сорта встречаются и соприкасаются между собою".

"Отсюда и получается, что если из них три и больше, и притом различные, составляют вместе проводящую цепь, если, например, между двумя металлами - серебром и железом, свинцом и латунью, серебром и цинком и т. д.- ввести один или более проводников, именно из того класса, который назван классом влажных проводников, так как они представляют жидкую массу или содержат некоторую влагу (к ним причисляются животные тела и все их свежие и сочные части), если, говорю я, проводник этого второго класса находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов, то вследствие этого возникает постоянный электрический ток того или иного направления, смотря по тому, с какой из сторон действие на него оказывается сильнее в результате такого соприкосновения".

Так ясно и чётко Вольта сформулировал условия возникновения постоянного тока: наличие замкнутой цепи из различных проводников, причём по крайней мере один должен быть проводником второго класса и соприкасаться с различными проводниками первого класса. Когда гальванисты возражали опытами, в которых мышечные движения возбуждались дугой из однородного проводника и даже, как в опытах Валли, соприкосновениями различных препаратов без металлического проводника, то Вольта указывал, что и в этих опытах имеется неоднородность. Концы одной проводящей дуги различны, осуществить их полную однородность почти невозможно, контактная разность может возникнуть и при соприкосновении различных проводников второго класса. "... Неметаллические проводники, проводники жидкие или содержащие в себе в той или иной мере влагу, те, которые мы называем проводниками второго класса, и они одни, сочетаясь друг с другом, будут являться возбудителями, как металлы, или проводники первого класса в сочетании с проводниками второго класса...".

В дальнейшем Вольта в целях устранения всяких сомнений в не физиологической, а чисто физической сути дела исключает животные препараты, служившие до тех пор индикаторами тока. Он разрабатывает методику измерений контактных разностей потенциалов своим конденсаторным электрометром. Об этих классических опытах Вольта сообщает в письме к Грену 1795 г. и Альдини в 1798 г.

20 марта 1800 г. Вольта написал свое знаменитое письмо Бенксу с описанием своего столба,- изобретения, произведшего подлинную революцию в науке об электричестве. В письме к Барту от 29 августа 1801 г. Вольта сообщает о найденном им законе напряжения для проводников первого класса . 7 и 21 ноября 1801 г. в Париже он прочитал две лекции о своем столбе и законе напряжений. Первое сообщение об этих лекциях было опубликовано Пфаффом в IX томе гильбертовских "Анналов" за 1801 г., второе - Био в X томе тех же "Анналов". Так завершилась история выдающегося открытия и вместе с тем история научной деятельности Гальвани и Вольта * .

* (Александр Вольта родился в Комо 19 февраля 1745 г. Уже с 18 лет ведёт переписку с Нолле по вопросам физики, на девятнадцатом году написал латинскую поэму о современных физико-химических открытиях. Первая работа 1764 г. посвящена лейденской банке, следующая работа 1771 г.- "Эмпирические исследования способов возбуждения электричества и улучшение конструкции машины". С 1774 г.- преподаватель физики в Комо. В 1777 г. изобретает электрофор, затем конденсатор и электрофор с конденсатором. Занимаясь исследованием горючего газа, изобретает электрический пистолет, водородную лампу, эвдиометр. С 1777 г.- профессор физики в Павии. В 1793 г. занимается опытами по расширению газов. В восьмидесятых годах изобретает пламенный зонд. За изобретение столба получил награду от Наполеона, был избран членом Института. После своего знаменитого изобретения отошёл от научной работы и только в 1817 г. опубликовал два исследования о граде и о периодичности гроз. В 1819 г. оставил профессорскую кафедру. Умер 5 марта 1827 г. в один день с Лапласом. )

Природа открытого эффекта была очень сложна, и при тогдашнем уровне физико-химических наук и физиологии раскрыть картину явления было невозможно. В споре о природе явления по существу оказались правы обе стороны. Гальвани стал основоположником электрофизиологии, а Вольта - основоположником учения об электричестве. В лабиринте противоречивых опытов и наблюдений Вольта нащупал правильный путь, нашёл опытный физический закон напряжений, дал правильное описание цепи электрического тока. Впереди ещё предстояли большие споры по вопросу о причине и природе контактной разности потенциалов, но в её существовании уже сомнений не оставалось, а в вольтовом столбе наука получила мощное орудие исследования, которым она и не замедлила воспользоваться.

В 1790 г. итальянский ученый Л. Гальвани (1737 - 1798), медик по образованию, экспериментируя с мышцами лягушки, заметил, что сокращение мышц происходит в момент разряда электрической машины, имеющейся в его лаборатории. Он установил, что сокращение мышцы происходит и без разряда и опубликовал результаты своих экспериментов в книге «Трактат о силах электричества при мышечном движении», вышедшей в 1791 г.

Гальвани сообщал: «Когда я перенес лягушку в комнату и положил на железную дощечку и когда я прижал медный крючок, который был продет через спинной нерв, к дощечке, те же спазматические содрогания были налицо. Я производил опыты с разными металлами в различные часы дня в разных местах - результаты были одни и те же, разница была в том, что содрогания были более сильные при одних металлах, чем при других.

Затем я испытывал различные тела, которые не являются проводниками электричества, например, стекло, смолу, резину, камень и сухое дерево. Явления не было. Это было несколько неожиданно и заставило меня предположить, что электричество находится внутри животного».

Из ясных, вполне однозначных опытов Гальвани сделал неправильные выводы. Он считал, что источником электричества в наблюдаемом им явлении служит мышца. Это отразилось и в названии открытого им феномена - «животное электричество».

Ознакомившись с описанием опытов своего соотечественника, А. Вольта (1745 - 1827) повторил их, постепенно отходя от несущественного. Результаты многочисленных экспериментов привели исследователя к очень важным выводам. Так, Вольта убедился, что ответственными за появление электричества оказываются металлы различной природы, которые замыкаются жидкостью, содержащейся в мышце лягушки. В подтверждение этого Вольта провел опыт с двумя различными металлами, используя вместо мышц воду или слабый раствор кислоты. Эффект не только проявился, но и заметно усилился. В письме от 10 февраля 1794 г., адресованном аббату А. М. Вассали, занимавшему должность профессора физики в Туринском университете, Вольта пишет: «Что касается меня, то я давно убежден, что все действие возникает вследствие прикосновения металлов к какому-нибудь влажному телу или к самой воде. В силу такого соприкосновения, электрический флюид гонится в это влажное тело или в воду от самих металлов, от одного больше, от другого меньше (больше всего от цинка, меньше всего от серебра)». Отвлекаясь от идеи «животного электричества», которую так горячо и не без некоторого основания отстаивал Гальвани, Вольта приходит к конструкции первого источника тока, источника электрической энергии, названного современниками «вольтовым столбом».

20 марта 1800 г. Вольта в письме президенту Лондонского Королевского общества сэру И. Бэнксу пишет, что им создан прибор, «который по своим действиям, то есть по сотрясению, испытываемому рукой и т. п., сходен с лейденской банкой, или, еще лучше, со слабо заряженной батареей, но который, однако, действует непрерывно, то есть его заряд после каждого разряда восстанавливается сам собой; одним словом, этот прибор создает неуничтожаемый заряд, дает непрерывный импульс электрическому флюиду».

Значение этого открытия Вольта часто сравнивают по его последствиям с запуском ядерного реактора, который был осуществлен 142 года спустя. Из рук Вольта ученые получили источник электрической энергии, который давал возможность проводить систематические исследования в области электричества. Дешевизна и доступность в изготовлении элементов Вольта способствовали вовлечению в электрические исследования еще большего количества ученых, что не замедлило сказаться и на количестве научных сообщений в этой области знаний. Далее приведем только краткий перечень важнейших исследований в области электричества, вызванных открытием Вольта.

Принято думать, что сделавшие эпоху в развитии учения об электричестве открытия Гальвани были плодом случая. Вероятно, такое мнение основано на начальных словах трактата Гальвани: «Я разрезал и препарировал лягушку… и, имея в виду совершенно другое, поместил её на стол, на котором находилась электрическая машина… Один из моих помощников остриём скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки… Другой заметил… что это удаётся тогда, когда из кондуктора машины извлекается искра… Удивленный новым явлением, он тотчас же обратил на него моё внимание, хотя я замышлял совсем другое и был поглощён своими мыслями».

Однако случайность открытия была очень незначительной, тот же Гальвани или кто-либо другой непременно пришли бы к открытию явления. Не случайно у Гальвани стояла электрическая машина, так же как и не случайным было то, что он задумал какой-то эксперимент с препаратом. Несомненно, что идеи французских материалистов о материальности психических процессов толкали научную мысль на раскрытие в первую очередь физической природы ощущения, а успехи, достигнутые физиологами, микроскопистами и химиками в понимании таких важных жизненных процессов, как кровообращение, пищеварение, дыхание, стимулировали такие поиски. Изучение электрических явлений, уже сведшее с высот на землю гром и молнию, дало материал для вывода о важной роли электричества в биологии. Сокращение мышц при электрическом разряде («электрический удар») приближало мысль, что и в поведении электрических, скатов, угрей, сомов мы имеем дело также с электрическим ударом. И, действительно, опыты Джона Уолша (Walsh) и Ларошели доказали электрическую природу удара ската, а анатом Гунтер дал точное описание электрического органа этого животного. Исследования Уолша и Гунтера, были опубликованы в «Phil. Trans.» в 1773 г. Случайное открытие философа, Зульцера в 1752 г., что прикосновение к кончику языка двух разнородных металлов вызывает своеобразное кислое вкусовое ощущение, было, им описано, ибо автор чувствовал научный интерес этого открытия в эпоху изучения действия физических раздражителей. В числе этих физических, раздражителей первое место занимало электричество, и практическая медицина возлагала большие надежды на электрические методы лечения.

О степени интереса к электрическим методам лечения можно судить, например, по письму Марата к Руму де Сен-Лорен от 9 ноября 1783 г., в котором он сообщает о своих физических исследованиях и об отношении к ним академии. Из письма и приложенных к нему документов, между прочим, видно, что врач и физик Марат, будущий знаменитый «друг народа», с успехом применял физические методы лечения и разработал интересную методику экспериментального исследования природы огня, света и электричества. Опыты Марата привлекали большое внимание, в том числе и таких деятелей, как Франклин. Специально по вопросу об электромедицине Марат говорит в этом письме о своём намерении «заняться электричеством в области медицины, наукой которая так сильно интересует общество». Критикуя премированную работу аббата Бертелона, который «выдаёт электризацию за универсальное средство от всех болезней», Марат сообщает о своей работе, получившей премию Руанской академии, предложившей конкурсную тему: «Определить степень и условия, при которых можно рассчитывать на электричество в лечении болезней». Как видим, интерес к электромедицине в эпоху Гальвани был значительным.

Письмо Марата, в котором он обвиняет академию в невнимании к его научным заслугам, интересно и с другом отношении. Разработанная Маратом методика наблюдений в тёмной комнате позволила, по его утверждению, видеть материю огня и электричества, наблюдать дифракцию у краёв призмы. Эти идеи Марата - несомненный отзвук увлечения различными «флюидами», в том числе и психическими флюидами. Академия, не нашедшая возможным проверить опыты Марата, оказалась вынужденной образовать авторитетную комисию для проверки опытов заведомого шарлатана Месмера. Месмер, прибывший в Париж в 1771 г., ловко использовал модные научные теории об огненных, электрических, магнитных и других флюидах и утверждал, что им открыт новый вид тонкого агента - «животный магнетизм». «Животный магнетизм,-говорил Месмер, может скопляться, концентрироваться и переноситься без помощи тел посредствующих; он отражается, как свет…». Само собой разумеется, что «животный магнетизм есть универсальное лекарство и спаситель человеческого рода». Месмер имел большой успех, его поклонники собирали ему огромные суммы денег, преследовали противников месмеризма вплоть до нападения на Бертолле; король предлагал ему пожизненную пенсию в 20 тысяч франков за раскрытие секрета.

После его отъезда из Франции была образована правительственная комиссия в составе четырёх медиков и академиков - Леруа, Бори, Лавуазье и Бальи. Бальи представил доклад комиссии в августе 1784 г. Этот доклад вызвал протесты и возражения со стороны месмеристов, так как, комиссия после тщательного анализа фактов пришла к выводу, что постоянного агента не существует и что случаи извлечения им нервных трансов, имеют своим источником воображение. Вообще говоря, в донесении комиссии не говорится о невозможности животного магнетизма, такая гипотеза не противоречила научным воззрениям того времени, но она не обнаружила неизменного действия в проверенных ею фактах, а потому и констатировала отсутствие физического агента в этих фактах.

Таким образом, ко времени начала опытов Гальвани (1786) не было, недостатка в попытках физической трактовки психических и физиологических явлений. Практическая медицина сделала свои выводы из успехов, естествознания и из научных воззрений эпохи, почва для возникновения, учения о животном электричестве была вполне подготовлена.

Нет ничего удивительного в том, что профессор анатомии и медицины Болонского университета Луиджи Гальвани (родился 19 сентября 1737 г., умер 4 декабря 1798 г.) был необычайно поражён наблюдением, сделанным его сотрудниками, с описания которого начинается его знаменитый трактат «О силах электричества при мышечном движении». Как справедливо указал впоследствии Вольта, в самом факте вздрагивания лапки препарированной лягушки при электрическом разряде с физической точки зрения не было ничего нового: это явление электрической индукции а именно явление так называемого возвратного удара, разобранного Магоном в 1779 г. Но Гальвани подошёл к факту не как физик, а как физиолог, его заинтересовала способность мёртвого препарата проявлять жизненные сокращения под влиянием электричества.

Он с величайшим терпением и искусством исследовал эту способность, изучая её локализацию в препарате, условия возбудимости, действие различных форм электричества и в частности атмосферного электричества. Классические опыты Гальвани сделали его отцом электрофизиологии, значение которой в наше время трудно переоценить. Но Гальвани во время, исследования действия атмосферы на препарат пришёл к замечательному открытию. Тщетно ожидая сокращения мышц в ясную погоду, он, «утомлённый… тщетным ожиданием… начал прижимать медные крючки, воткнутые в спинной мозг, к железной решетке» … «Хотя я, - говорит он далее, - нередко наблюдал сокращения, но ни одно не соответствовало перемене в состоянии атмосферы и электричества… Когда же я перенёс животное в закрытую комнату, поместил на железной пластине и стал прижимать к ней проведённый через спинной мозг крючок, то появились, такие же сокращения, такие же движения». Отсюда Гальвани, осуществив ряд экспериментов, приходит к выводу о существовании нового источника и нового вида электричества. Его приводят к такому выводу опыты составления замкнутой цепи из проводящих тел и металлов и лягушечного препарата. Особенно эффектен следующий опыт: «если держать висящую лягушку пальцами за одну лапку так, чтобы крючок, проходящий через спинной мозг, касался бы какой-нибудь серебряной пластинки, а другая лапка свободно могла бы касаться той же пластинки, то как только эта лапка касается указанной пластинки, мышцы начинают немедленна сокращаться. При этом лапка встаёт и поднимается и затем, вновь упав на пластинку, вместе с тем приходит в соприкосновение с последней, снова по той же причине, поднимается вверх, и, таким образом, продолжает далее попеременно подниматься и падать, так что эта лапка, к немалому восхищению и радости наблюдающего за ней, начинает, кажется, соперничать с каким-то электрическим маятником».

В такой сложной форме был открыт новый источник электричества, создающий в проводящей замкнутой цепи длительный разряд. Естественно, что физиолог Гальвани не мог допустить и мысли, что причина явления кроется в контакте разнородных металлов, и предложил, что мышца является своеобразной батареей лейденских банок, непрерывно возбуждаемой действием мозга, которое передаётся по нервам.

Теория животного электричества подводила базу под практическую электромедицину, и открытие Гальвани произвело сенсацию. В числе ревностных адептов новой теории оказался и знаменитый Вольта, не замедливший приступить к проверке и к тщательному количественному исследованию явления. Это исследование он предпринял во всеоружии современной ему электрометрической техники. В первых своих статьях («О животном электричестве», письмо доктору Баронио от 3 апреля 1792 г., и двух статьях «О животном электричестве», напечатанных в «Физико-медицинском журнале» Брунвелли) Вольта разделяет точку зрения Гальвани. Однако уже здесь намечается будущий отход от этой теории, выдвигаются на первый план физические моменты эффекта. Прежде всего Вольта устанавливает, что соответствующим образом «препарированная лягушка представляет, если можно так выразиться, животный электрометр, несравненно более чувствительный, чем всякий другой самый чувствительный электрометр».

Затем Вольта устанавливает важность контакта разнородных металлов. «Такое различие металлов безусловно необходимо; если же обе обкладки из одного и того же металла, то следует, чтобы они отличались, по крайней мере, по способу их приложения…» (т. е. по состоянию контактной поверхности). Далее Вольта показывает, что ток электрического флюида обусловлен контактом разнородных металлов и может производить не только мышечные сокращения, но и другие раздражения нервов. В частности Вольта повторяет опыт Зульцера (не зная пока, что этот опыт был уже осуществлён) и обращает внимание, «что этот вкус продолжает ощущаться и даже усиливается в продолжение всего времени, пока эти два металла, олово и серебро, остаются приложенными один к кончику языка, другой к другим частям последнего и пока они соприкасаются друг с другом, составляя некоторую проводящую дугу. Это доказывает, что переход электрического флюида с одного места на другое совершается постоянно и беспрерывно». Наконец, Вольта устанавливает полярность эффекта: перемена обкладок местами вызывает изменение вкуса с кислого на щелочной. В свете этих фактов теория мышечной лейденской банки Вольта представляется несостоятельной.

В последующих статьях: «Описание открытий Гальвани» (два письма к члену Королевского общества - Кавалло), «Третья статья о животном электричестве» (письмо к проф. Альдини - племяннику Гальвани) и «Новая статья о животном электричестве» (три письма к Вассали - профессору Туринского университета), Вольта полностью порывает с теорией животного электричества и даёт физическую трактовку эффекта. Во втором письме к Кавалло Вольта пишет: «… я открыл новый весьма замечательный закон, который относится собственно не к животному электричеству, а к обычному электричеству, так как этот переход электрического флюида, переход, который не является моментальным, каким был бы разряд, но постоянным и продолжающимся всё время, пока сохраняется сообщение между обеими обкладками, имеет место независимо от того, наложена ли эта обкладка на живое или мёртвое животное вещество, или на другие не металлические, но достаточно хорошие проводники, как, например, па воду или на смоченные ею телаь. А первое письмо к Вассали (от 10 февраля 1794 г.) Вольта прямо начинает вопросом: «Что вы думаете о так называемом животном электричестве? Что касается меня, то я давно убеждён, что всё действие возникает первоначально вследствие прикосновения металлов к какому-нибудь влажному телу или самой воде».

Физиологические раздражения нервов являются результатом проходящего тока, и эти раздражения «тем сильнее, чем дальше отстоят друг от друга применённые два металла в том ряду, в каком они поставлены нами здесь: цинк, оловянная фольга, обыкновенное олово в пластинках, свинец, железо, латунь и различного качества бронза, медь, платина, золото, серебро, ртуть, графит. Этот знаменитый ряд напряжений Вольта и открытый им закон напряжений составляют ядро всего эффекта. Животные органы, по Вольта, «являются чисто пассивными, простыми, очень чувствительными электрометрами, и активны не они, а металлы, т. е. что от соприкосновения последних и происходит первоначальный толчок электрического флюида, одним словом, что такие металлы не простые проводники или передатчики электричества…». В одном из примечаний к этой статье Вольта вновь подчёркивает, что к идее о контактном напряжении он пришёл уже более трёх лет тому назад и уже в 1793 г. дал свой ряд металлов.

Таким образом, суть эффекта заключается, по мнению Вольта, в свойстве проводников «вызывать и приводить в движение электрический флюид там, где несколько таких проводников разного класса и сорта встречаются и соприкасаются между собою».

«Отсюда и получается, что если из них три и больше, и притом различные, составляют вместе проводящую цепь, если, например, между двумя металлами - серебром и железом, и т. д. - ввести один или более именно из того класса, который назван классом влажных так как они представляют жидкую массу или содержат некоторую влагу (к ним причисляются животные тела и все их свежие сочные части), если, говорю я, проводник этого второго класса находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов, то вследствие этого возникает постоянный электрический ток того или иного направления, смотря по тому, с какой из сторон действие на него оказывается сильнее в результате косновения».

Так ясно и чётко Вольта сформулировал условия возникновения постоянного тока: наличие замкнутой цепи из различных проводников, причём по крайней мере один должен быть проводником второго класса и соприкасаться с различными проводниками первого класса. Когда гальванисты возражали опытами, в которых мышечные движения возбуждались дугой из однородного проводника и даже, как в опытах Валли, соприкосновениями различных препаратов без металлического проводника, то Вольта указывал, что и в этих опытах имеется неоднородность. Концы одной проводящей дуги различны, осуществить их полную однородность почти невозможно, контактная разность может возникнуть и при соприкосновении различных проводников второго класса.

«… Неметаллические проводники, проводники жидкие или содержащие в себе в той или иной мере влагу, те, которые мы называем проводниками второго класса, и они одни, сочетаясь друг с другом, будут являться возбудителями, как металлы, или проводники первого класса в сочетании с проводниками второго класса…».

В дальнейшем Вольта в целях устранения всяких сомнений в не физиологической, а чисто физической сути дела исключает животные препараты, служившие до тех пор индикаторами тока. Он разрабатывает методику измерений контактных разностей потенциалов своим конденсаторным электрометром. Об этих классических опытах Вольта сообщает в письме к Грену в 1795 г. и Альдини в 1798 г.

20 марта 1800 г. Вольта написал свое знаменитое письмо Бенксу с описанием своего столба - изобретения, произведшего подлинную революцию в науке об электричестве. В письме к Барту от 29 августа 1801 г. Вольта сообщает о найденном им законе напряжения для проводников первого класса [А/В + В/С = А/С]. 7 и 21 ноября 1801 г. в Париже он прочитал две лекции о своем столбе и законе напряжений. Первое сообщение об этих лекциях было опубликовано Пфаффом в IX томе гильбертовских «Анналов» за 1801 г., второе - Био в X томе тех же «Анналов». Так завершилась история выдающегося открытия и вместе с тем история научной деятельности Гальвани и Вольта
Гемфри Дэви.(Александр Вольта родился в Комо 19 февраля 1745 г. Уже с 18 лет ведёт переписку с Нолле по вопросам физики, на девятнадцатом году написал латинскую поэму о современных физико-химических открытиях. Первая работа 1764 г. посвящена лейденской банке, следующая работа 1771 г. - «Эмпирические исследования способов возбуждения электричества и улучшение конструкции машины». С 1774 г. - преподаватель физики в Комо. В 1777 г. изобретает электрофор, затем конденсатор и электрофор с конденсатором. Занимаясь исследованием горючего газа, изобретает электрический пистолет, водородную лампу, эвдиометр. С 1777 г.- профессор физики в Павии. В 1793 г. занимается опытами по расширению газов. В восьмидесятых годах изобретает пламенный зонд. За изобретение столба получил награду от Наполеона, был избран членом Института. После своего знаменитого изобретения отошёл от научной работы и только в 1817 г. опубликовал два исследования о граде и о периодичности гроз. В 1819 г. оставил профессорскую кафедру. Умер 5 марта 1827 г. в один день с Лапласом.)

Природа открытого эффекта была очень сложна, и при тогдашнем уровне физико-химических наук и физиологии раскрыть картину явления было невозможно. В споре о природе явления по существу оказались правы обе стороны. Гальвани стал основоположником электрофизиологии, а Вольта - основоположником учения об электричестве. В лабиринте противоречивых опытов и наблюдений Вольта нащупал правильный путь, нашёл опытный физический закон напряжений, дал правильное описание цепи электрического тока. Впереди ещё предстояли большие споры по вопросу о причине и природе контактной разности потенциалов, но в её существовании уже сомнений не. оставалось, а в вольтовом столбе наука получила мощное орудие исследования, которым она и не замедлила воспользоваться.

Алессандро Вольта (1745-1827) – итальянский учёный-физик, один из авторов учения об электричестве, известный физиолог и химик. Открытое им «контактное электричество» создало глубокую предпосылку для изучения природы тока и поиска направлений его практического использования.

Алессандро Вольта (Alessandro Giuseppe Antonio Anastasio Gerolamo Umberto Volta)

Алессандро Вольта появился на свет 18 февраля 1745 года в итальянском городишке Комо, расположенном рядом с Миланом. Его родители Филиппо и Маддалена были представителями среднего класса, поэтому могли создать ребенку хорошие условия жизни. В раннем детстве воспитанием мальчика занималась кормилица, уделявшая мало внимания развитию ребенка. Будущий ученый начал разговаривать только в четыре года, с трудом произнося звуки. Тогда все свидетельствовало об определенной умственной отсталости ребенка, произнесшего первым слово «Нет».

Только к семи годам мальчик приобрел полноценную речь, но вскоре потерял отца. На воспитание Алессандро взял родной дядя, который дал возможность получить племяннику хорошее образование в школе ордена иезуитов. Он с усердием изучал историю, латынь, математику, жадно впитывая все знания. Практически сразу выявилась страсть Вольты к физическим явлениям. Ради этого он устроил переписку с известным в то время автором и демонстратором физических опытов аббатом Жаном-Антуаном Нолле.

В 1758 году земляне в очередной раз наблюдали приближение к планете кометы Галлея. Пытливый ум Вольта сразу проявил огромный интерес к этому явлению, и юноша принялся изучать научное наследие Исаака Ньютона. Также он интересовался работами и по мотивам одной из них соорудил в своем городе громоотвод, оглашавший окрестности звоном колокольчиков во время грозы.

После окончания учебы Алессандро остался преподавать физику в гимназии Комо. Однако роль скромного учителя не соответствовала уровню таланта Вольты и через несколько лет он становится профессором физики одного из старейших университетов в Павии (город на севере Италии в регионе Ломбардия). После переезда сюда Вольта много путешествовал по Европе, побывав со своими лекциями во многих столицах. В этой должности ученый проработает 36 лет, а в 1815 году он возглавил философский факультет университета в Падуе.

Первые открытия

Ещё в годы учительства Вольта всецело предавался науке и активно занимался изучением атмосферного электричества, проводя серию опытов по электромагнетизму и электрофизиологии. Первым заметным изобретением итальянца стал конденсаторный электроскоп, оснащенный расходящимися соломинками. Такой прибор был гораздо чувствительнее своих предшественников с подвешенными на нитке шариками.

В 1775 году Алессандро изобрел электрофор (электрическую индукционную машину), способную вырабатывать разряды статического электричества. В основе работы прибора лежало явление электризации с помощью индукции. Он состоит из двух металлических дисков, один из которых покрыт смолой. В процессе его натирания происходит заряд отрицательным электричеством. При поднесении к нему другого диска последний заряжается, однако если отвести несвязанный ток в землю предмет получит положительный заряд. С помощью многократного повторения этого цикла можно существенно увеличивать заряд. Автор утверждал, что его прибор не теряет эффективности даже через трое суток после зарядки.

Во время одной из лодочных прогулок по озеру, Вольта сумел убедиться, что находящийся на дне газ хорошо горит. Это позволило ему сконструировать газовую горелку и выдвинуть предположение о возможности строительства линии проводной сигнальной электропередачи. В 1776 году ученому удалось создать электро-газовый пистолет («пистолет Вольта»), действие которого основано на взрыве метана от электрической искры.

Вольтов столб

К своему самому известному открытию ученый пришел занимаясь изучением опытов своего соотечественника Луиджи Гальвани, которому удалось обнаружить эффект сокращения мышечных волокон препарированной лягушки в процессе взаимодействия ее вскрытого нерва с двумя разнородными металлическими пластинками. Автор открытия объяснил явление существованием «животного» электричества, однако Вольта предложил другую интерпретацию. По его мнению, подопытная лягушка выступала своеобразным электрометром, а источником тока был контакт разнородных металлов. Сокращение мышц было вызвано вторичным эффектом от действия электролита – жидкости, находящейся в тканях лягушки.

Чтобы доказать правильность выводов Вольта провел эксперимент на самом себе. Для этого он приложил к кончику языка оловянную пластинку и параллельно к щеке серебряную монету. Предметы были соединены небольшой проволочкой. В результате ученый почувствовал языком кисловатый привкус. В дальнейшем он усложнил свой опыт. На этот раз Алессандро положил себе на глаз кончик оловянного листочка, а во рту разместил серебряную монету. Предметы соприкасались друг с другом с помощью металлических острий. Всякий раз при контакте он чувствовал глазом свечение, подобное эффекту молнии.

В 1799 году Александро Вольта окончательно пришел к выводу, что «животного электричества» не существует, а лягушка реагировала на электрический ток возникающий при контакте разнородных металлов.

Этот вывод Алессандро использовал при разработке собственной теории «контактного электричества». Сначала он доказал, что при взаимодействии двух металлических пластин одна приобретает большее напряжение. В ходе дальнейшей серии экспериментов Вольта убедился, что для получения серьезного электричества одного контакта разнородных металлов мало. Оказывается, для появления тока необходима замкнутая цепь, элементами которой выступают проводники двух классов – металлы (первый) и жидкости (второй).

В 1800 году ученый сконструировал Вольтов столб – простейший вариант источника постоянного тока. В его основе лежали 20 пар металлических кружочков, выполненные из двух видов материала, которые были разделены бумажными или тканевыми прослойками, смоченными щелочным раствором или соленой водой. Присутствие жидких проводников автор объяснял наличием особого эффекта, согласно которому в ходе взаимодействия двух различных металлов появляется некая «электродвижущая» сила. Под ее воздействием электричество противоположных знаков сосредотачивается на разных металлах. Однако Вольта не смог понять, что ток возникает как результат химических процессов между жидкостями и металлами, поэтому представил иное объяснение.

Если сложить вертикальный ряд пар различных металлов (например, цинка и серебра без прокладок), то заряженная током одного знака цинковая пластина будет взаимодействовать с двумя серебряными, которые заряжены электричеством противоположного знака. В результате вектор их совместного действия будет обнуляться. Для обеспечения суммирования их действий необходимо создать контакт цинковой пластины только с одной серебряной, что можно достичь с помощью проводников второго класса. Они эффективно дифференцируют пары металлов и не создают помех для движения тока.

Вольтов Столб — гальванический элемент (химический источник постоянного тока). По сути дела — это первая в мире аккумуляторная батарея

О своем открытии в 1800 году Вольта сообщил Лондонскому королевскому обществу. С этого времени источники постоянного тока, изобретенные Вольтой, стали известны всему физическому сообществу.

Несмотря на определенную научную ограниченность выводов Алессандро вплотную приблизился к созданию гальванического элемента, который связан с трансформацией химической энергии в электрическую. В дальнейшем ученые многократно проводили эксперименты с вольтовым столбом, которые привели к открытию химических, световых, тепловых, магнитных действий электричества. Одним из наиболее заметных вариантов конструкции вольтова столба можно признать гальваническую батарею В. Петрова.

В качестве эксперимента, можно создать Волтов столб своими руками из подручных средств.

Вольтов столб своими руками. Между медными монетами находится кусочки салфетки смоченные уксусом (электролитом) и кусочки алюминиевой фольги

Другие изобретения

Иногда Вольту считают создателем прототипа современной свечи зажигания, без которой невозможно представить автомобиль. Он сумел изготовить простую конструкцию, состоящую из металлического стержня, который находился внутри глиняного изолятора. Также он создал собственную электрическую батарею, названную им «короной сосудов». Она состоит из последовательно соединенных медных и цинковых пластин, которые находятся внутри сосудов с кислотой. Тогда это был солидный источник тока, которого сегодня хватило бы на приведение в действие маломощного электрического звонка.

Вольта создал специальный прибор, предназначенный для изучения свойств горящих газов, который получил название эвдиометр. Он представлял собой сосуд, наполненный водой, который в перевернутом виде опускается в специальную чашу с жидкостью. После долгой паузы в 1817 году Вольту публикует теорию града и периодичности гроз.

Семейная жизнь

Супругой итальянского ученого стала графиня Тереза Перегрини, родившая ему троих сыновей.В 1819 году, находящийся в годах ученый, покидает общественную жизнь и удаляется к себе в имение. Алессандро Вольта скончался 5 марта 1827 года в собственном имении Камнаго и был захоронен на его территории. Впоследствии оно получило новое название Камнаго-Вольта.

После смерти судьба сыграла с ученым злую шутку. Во время выставки, посвященной вековому юбилею создания «Вольтова столба» случился большой пожар, практически полностью уничтоживший его личные вещи и приборы, а причиной возгорания была названа неисправность электрических проводов.

  • Находясь в библиотеке Академии, Наполеон Бонапарт прочитал на лавровом венке надпись: «Великому Вольтеру» и удалил из нее две последние буквы, оставив вариант «Великому Вольте».
  • Наполеон был хорошо расположен к великому итальянцу и однажды уподобил, изобретенный им «Вольтов столб» самой жизни. Французский император назвал прибор позвоночником, почки положительным полюсом, а желудок отрицательным. Впоследствии по приказу Бонапарта в честь Вольты выпустят медаль, наделят его титулом графа и в 1812 году назначат президентом коллегии выборщиков.

Вольта демонстрирует Наполеону свои изобретения — Вольтов столб и гелиевую пушку

  • По инициативе Вольты в науке были утверждены понятия электродвижущая сила, ёмкость, цепь и разность напряжений. Его собственное имя носит единица измерения электрического напряжения (с 1881 года).
  • В 1794 году Алессандро организовал опыт под мрачным названием «Квартет мертвых». В нем участвовали четверо человек с мокрыми руками. Один из них правой рукой соприкасался с цинковой пластинкой, а левой прикасался к языку второго. Он, в свою очередь, касался глаза третьего, державшего препарированную лягушку за лапки. Последний прикасался к туловищу лягушки правой рукой, а в левой держал серебряную пластинку, которая соприкасалась с цинковой. В ходе последнего касания первый человек резко вздрагивал, второй ощущал во рту кислый вкус, третий чувствовал свечение, четвертый переживал неприятные симптомы, а мертвая лягушка будто оживала, трепеща своим телом. Это зрелище потрясало до глубины души всех очевидцев.
  • Именем Вольта названа научная награда за заслуги ученых в области электричества.
  • Вольта скончался в один день и час с известным французским математиком Пьером-Симоном Лапласом.
  • Портрет учёного был изображен на итальянской денежной купюре.

Портрет Алессандро Вольты на купюре в 10000 лир. Купюра вышла в обращение в 1984 году

  • В итальянском городе Комо есть музей Алессандро Вальта — его открыли в 1927 году к столетию со дня смерти ученого.

Казалось бы, XVII век очень немного внес в развитие познания электрических и магнитных явлений, но именно тогда был заложен фундамент и дан мощный импульс исследованиям этих явлений в последующих столетиях.

Во время опытов с электрической машиной, проводимых учеными XVIII века, замечали переход электричества с натираемого стеклянного круга на кондуктор. Много раз пробовали разряжать «лейденскую банку» через длинную цепь взявшихся за руки людей, но никто не высказал ясной мысли о возможности длительного течения электричества по проводникам.

Открытию электрического тока предшествовали опыты итальянского анатома Луиджи Гальвани.

Работая в лаборатории, где проводились опыты с электричеством, Гальвани наблюдал явление, которое было известно многим еще до него. Оно заключалось в том, что если через нерв лягушачьей ножки, соединённой проволочкой с землей, разряжать кондуктор электрической машины, то наблюдались судорожные сокращения её мышц. Но однажды Гальвани заметил, что лапка пришла в движение, когда с ее нервом соприкасался только стальной скальпель. Удивительнее всего было то, что между электрической машиной и скальпелем не было никакого контакта. Это поразительное открытие заставило Гальвани поставить ряд опытов для обнаружения причины наблюдаемого явления. В один из осенних дней 1780 года Гальвани провел эксперимент с целью выяснить, вызывает ли такие же движения в лапке электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько лягушачьих лапок в окне, закрытом железной решеткой. И он обнаружил в противоположность своим ожиданиям, что сокращения лапок происходят в любое время, вне всякой зависимости от состояния погоды. Присутствие рядом электрической машины или другого источника электричества оказалось ненужным. Гальвани установил далее, что вместо железа и латуни можно использовать любые два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали никакого эффекта. К сожалению, Гальвани пришел к заключению, что в тканях тела лягушки заключается «животное электричество». Поэтому при соединении проводниками (медь, железо) нерва с мускулами происходит разряд. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричество какого-либо другого происхождения. Обнаружение электрического тока все еще оставалось тайной. Где же появляется ток: только в тканях тела лягушки, только в разнородных металлах или же в комбинации металлов и тканей?

Луиджи Гальвани (1737–1798) – итальянский врач, анатом и физиолог, один из основателей электрофизиологии. Образование получил в Болонском университете, там же преподавал медицину.

Алессандро Вольта (1745–1827) – итальянский физик и физиолог, один из основоположников учения об электричестве. Установил связь между количеством электричества, емкостью и напряжением, изобрел первый химический источник тока на медно-цинковой паре («вольтов столб», или «батарея Вольта»). В апреле 1800 г. в Париже Вольта был принят Первым консулом Франции – Наполеоном. Наполеон интересовался науками, справедливо полагая, что сила государства в новом веке немыслима без процветания просвещения. Продемонстрировав восхищенному Наполеону свои опыты, Вольта стал рыцарем Почетного легиона, получил звание сенатора и графа.

Вольта прожил долгую и счастливую жизнь. К сожалению, почти все его личные вещи, приборы, а также 11 громадных папок его трудов сгорели во время пожара. Но Вольта вечен в вольте – единице электрического напряжения.

К счастью, история распорядилась так, что результаты опытов Гальвани, изложенные им в его знаменитом «Трактате об электрических силах при мышечном движении», увидевшем свет в 1791 году, попались на глаза итальянскому ученому Алессандро Вольта.

Потрясенный Вольта перечитывает трактат и находит в нем то, что ускользнуло от внимания самого автора, – упоминание о том, что эффект содрогания лапок наблюдался лишь тогда, когда лапок касались двумя различными металлами. Вольта решает поставить видоизмененный опыт, но не на лягушке, а на самом себе. «Признаюсь, – писал он, – я с неверием и очень малой надеждой на успех приступил к первым опытам: такими невероятными казались они мне, такими далекими от всего, что нам доселе известно было об электричестве... Ныне я обратился к опытам, сам был очевидцем, сам производил чудное действие и от неверия перешел, может быть, к фанатизму!»

Теперь Вольту можно было увидеть за странным занятием: он брал две монеты – обязательно из разных металлов – и... клал их себе в рот – одну на язык, другую – под язык. Если после этого монеты или кружочки Вольта соединял проволочкой, он чувствовал кисловатый вкус, тот самый вкус, но гораздо слабее, что мы можем чувствовать, лизнув одновременно два контакта батарейки. Из опытов, проведенных раньше с электрофором, Вольта знал, что такой вкус вызывается электричеством. Вольта предположил, что причиной явления, наблюдавшегося Гальвани, служило присутствие двух разных металлов. Руководствуясь этой мыслью, он поставил много опытов и, наконец, сделал важное открытие, о чем сообщил в 1800 году Лондонскому королевскому обществу. Вольта писал, что он нашел новый источник электричества, действующий подобно батарее слабо заряженных «лейденских банок». Однако в отличие от гальванической батареи его прибор заряжается сам собой и разряжается непрерывно. При этом он дал и описание своего прибора.


15 июня 1802 г. во Франции, в то время одной из самых передовых в научном отношении стран, учреждается государственная премия в виде золотой медали и солидной денежной суммы «тому, кто своими открытиями, подобно Вольте и Франклину, продвинет вперед науку об электричестве и магнетизме». Отдавший это распоряжение Первый консул, будущий император Наполеон I, заканчивает свое указание пророческими словами: «Моя цель состоит в поощрении, в привлечении внимания физиков к этому отделу физики, представляющему, как мне чувствуется, путь к великим открытиям». Первым этой награды был удостоен в 1806 г. Гемфри Дэви. Кстати, французская премия была вручена англичанину именно в тот момент, когда эти страны находились в состоянии войны. Однако никакого возмущения общественности не последовало. Со стороны Наполеона I это действительно был поступок, достойный подражания.


Вольта устроил свой прибор так. Он поставил друг на друга несколько дюжин попарно собранных цинковых и медных кружков, разделенных бумагой, смоченной соленой водой. Когда экспериментатор прикасался одной рукой к нижнему медному, а другой рукой – к верхнему цинковому кружкам, то испытывал сильный электрический удар. При этом прибор не разряжался, и, сколько бы раз он не касался кружков, удар повторялся, т.е. заряд электричества возникал непрерывно. Таким образом, Вольта получил первый довольно мощный источник электричества – знаменитый «вольтов столб», составивший целую эпоху в истории физики (рис. 6.1).

Так было открыто новое явление – непрерывное движение электричества в проводнике, или электрический ток. Создание первого источника электрического тока сыграло громадную роль в развитии науки об электричестве и магнетизме. Современник Вольта французский ученый Араго считал вольтов столб «самым замечательным прибором, когда-либо изобретенным людьми, не исключая телескопа и паровой машины».

Сразу вслед за этим Вольта сделал еще одно великое изобретение: он изобрел гальваническую батарею, пышно названную «короной сосудов» и состоявшую из многих

последовательно соединенных цинковых и медных пластин, опущенных попарно в сосуды с разбавленной кислотой, – уже довольно солидный источник электрической энергии (рис. 6.2). Можно считать, что с того дня источники постоянного электрического тока

вольтов столб и гальваническая батарея – стали известны многим физикам и нашли широкое применение в последующих исследованиях.

Прибор Вольта побудил ученых к работе над изобретением подобных источников тока. В частности, гальванический элемент был устроен английским химиком Джоном Даниэлем (1790–1845). В элементе Даниэля цилиндрически изогнутая медная пластинка погружена в раствор медного купороса. Цинковая пластинка находится в пористом глиняном сосуде, наполненном разбавленной серной кислотой. По проводнику, соединяющему медную пластинку с цинковой, течет электрический ток. В 1839 году немецкий физик Роберт Бунзен (1811–1899) заменил медную пластинку угольным цилиндриком, погруженным в азотную кислоту. Наконец, парижский химик Лекланше создал очень дешевый и удобный элемент, нашедший широкое применение. В его элементе также есть цилиндрически изогнутая цинковая пластинка и угольный цилиндрик, но они оба погружены в раствор нашатыря.

Похожие публикации