Chevroletavtoliga - Автомобильный портал

Ионистор для запуска двигателя. Суперконденсаторы (ионисторы). Выход на рынок? Не так скоро, как хотелось бы

Суперконденсатор (или по-другому ионистор) представляет собой устройство для накопления электрической энергии, занимающее среднее положение между аккумуляторной батареей и электролитом. Правда, в отличие от них, эти изделия имеют несравнимо меньшие размеры и выглядят как обычные электролитические конденсаторы (смотрите рисунок ниже).

По своим характеристикам суперконденсатор (СК) существенно отличается от рядовых электролитических изделий, поскольку он более долговечен и имеет меньшую токовую утечку. Основная цель разработки этих изделий – создание накопителей энергии нового поколения, способных заменить привычные аккумуляторные батареи.

Характерные отличия

Помимо уже перечисленных выше достоинств, суперконденсатор характеризуется более высоким, чем у батарей, показателем удельной ёмкости, что позволяет использовать его в качестве источника питания в электромобилях, например. Благодаря уникальным энергетическим свойствам, время зарядки этого электролитического элемента заметно сокращается (то же самое можно сказать и о периоде его разрядки).

Дополнительная информация. Перечисленные свойства позволяют использовать конденсаторы большой ёмкости в современных источниках возобновляемой энергии (солнечных батареях, ветровых генераторах и т. п.).

При его эксплуатации удаётся добиться более экономичного режима работы за счёт возможности аккумулирования избытков полученной от источников энергии.

Внешне суперконденсатор выглядит как обычный элемент с двумя электродами, используемый вместо аккумулятора.

Подобно АКБ, в своих внутренних полостях он также содержит электролит, который при взаимодействии с пластинами вырабатывает электроэнергию.

Особенности конструкции и производители

Электроды этого изделия изготавливаются из специального пористого материала, покрытого сверху тонким слоем активированного угля. В качестве электролитического состава используются смеси неорганического или органического происхождения. Основные его отличия от привычного конденсатора состоят в следующем:

  • Между обкладками в этом изделии размещается не обычный слой диэлектрика, а вдвое толще, что позволяет получить очень тонкий зазор. Такая конструкция обеспечивает возможность накапливать электроэнергию в больших объёмах (электрическая ёмкость в этом случае значительно возрастает);
  • Далее суперконденсатор, в отличие от других образцов, аккумулирует и расходует заряд достаточно быстро;
  • Благодаря использованию двойного слоя диэлектрика повышается общая площадь электродов, а габариты при этом остаются прежними. Технические характеристики изделия при этом заметно улучшаются.

К особенностям этих конденсаторов, появившихся в 1962 году, также следует отнести энергетическую структуру их электродов, один из которых имеет электронную проводимость, а другой – так называемую «ионную». В результате этого в процессе их зарядки осуществляется разделение противоположных по знаку зарядов, приводящее к накапливанию на обкладках положительного и отрицательного потенциала (смотрите фото).

В 1971 году лицензию на производство этих уникальных изделий получила известная японская корпорация NEC, успешно освоившая к этому времени практически все электротехнические направления. Именно ей удалось продвинуть и окончательно утвердить на рынке электронных изделий уникальную технологию производства суперконденсаторов. С 2000-х годов она успешно освоена практически во всех экономически развитых странах мира.

Виды суперэлектролитов

Все известные образцы электролитических изделий этого класса подразделяются на следующие виды:

  • Двухслойные конденсаторные структуры (ДСК);
  • Гибридные электролитические элементы;
  • Псевдоконденсаторы.

Рассмотрим каждый из них чуть подробнее.

Двухслойные структуры имеют в своём составе два пористых электрода с проводящим углеродным покрытием, разделенных особым составом (электролитным сепаратором). Процесс аккумулирования энергии в этих образованиях осуществляется за счет разделения противоположных по знаку зарядов, сопровождающегося образованием на электродах значительных по амплитуде потенциалов.

На величину электрического заряда таких структур существенное влияние оказывает емкость двойного накопительного слоя, выполняющего функцию своеобразного поверхностного конденсатора. Между собой эти две накопительные системы соединяются в последовательную цепочку посредством объединяющего их электролита.

Дополнительная информация. В данном случае он играет роль проводника с ионным типом проводимости.

Гибридные электролиты можно отнести к категории переходных структур, занимающих промежуточное положение между аккумулятором и конденсатором. Выбор такого названия для этих изделий обусловлен тем, что электроды в них изготавливаются из материалов разного типа, вследствие чего характер накопления зарядов несколько различен.

Обычно функцию катода в них выполняет материал, обладающий так называемой «псевдо ёмкостью», а процесс аккумулирования заряда происходит вследствие протекания окислительно-восстановительных реакций. Такая «архитектура» электролитов этой группы позволяет увеличить суммарную емкость конденсатора, а также расширить диапазон допустимых напряжений.

В этих изделиях чаще всего применяются сложные сочетания материала электродов, представляющих собой комбинацию из особого типа проводящих полимеров (или смешанных оксидов). Ведутся исследования по другим перспективным материалам (композитам, в частности), получаемым методом осаждения оксидов металлов на углеродные основания или полимеры.

Псевдоконденсаторы по своим техническим показателям гораздо ближе к перезаряжаемым аккумуляторным батареям, имеющим два твёрдотельных электрода. В основе их действия лежит сочетание следующих двух механизмов:

  • Процессы заряда и разряда (аналогичные реакциям, происходящим в обычных аккумуляторах);
  • Взаимодействия электростатического характера, присущие структурам с двойным электрическим слоем.

Приставка «псевдо» означает, что емкость этих элементов определяется не столько характером электростатических процессов, сколько зависимостью от реакций, связанных с переносом электролитических зарядов.

Области применения

Наиболее часто изделия этого класса применяются в следующих механизмах, агрегатах и образцах оборудования:

  • В системах с источниками возобновляемой энергии, нуждающихся в аккумулировании накапливаемых потенциалов (солнечные батареи, ветряные генераторы и т. п.);
  • В современных транспортных средствах (электрокарах, например), а также в устройствах запуска двигателей автомобилей на водородном топливе;
  • За счёт высокой энергетической плотности и повышенной удельной емкости эти изделия широко применяются в электронной аппаратуре (в качестве источников кратковременного и мощного импульса);
  • Также они востребованы в системах бесперебойного питания, в которых в полной мере используется их основное преимущество – обеспечивать мгновенную передачу мощности.

Обратите внимание! Сюда же следует отнести развивающиеся отрасли, предполагающие использование систем непрерывного питания на экономичном топливе.

Кроме того, суперконденсаторы могут применяться в следующих устройствах:

  • В системах демпфирования энергетических нагрузок, а также в устройствах запуска электродвигателей;
  • В комплексах, функционирование которых связано с критическими нагрузками (оборудование портов, больничных учреждений, вышек мобильной связи, банковских центров и т. п.);
  • В источниках резервного электроснабжения оборудования ПК и систем сбора данных (микропроцессоров и ЗУ), а также в мобильных телефонах.

Достоинства и недостатки конденсаторных изделий

К числу достоинств изделий рассматриваемого класса следует отнести:

  • Низкую удельную стоимость (из расчета на единицу ёмкости);
  • Высокие показатели ёмкостной плотности и КПД циклов заряда-разряда (до 95% и выше);
  • Надёжность, долговечность и экологическая чистота;
  • Прекрасные показатели удельной мощности;
  • Достаточно широкий диапазон температур, при которых возможна их эксплуатация;
  • Наибольшая из всех возможных для изделий данной категории скорость заряда и разряда;
  • Допустимость полной потери ёмкости (практически до нуля).

Ещё одно немаловажное преимущество СК – их сравнительно малые размеры и вес (по отношению к другим типам электролитических изделий).

Среди присущих им «минусов» хотелось бы отметить следующие недостатки:

  • Относительно малая плотность накапливаемых энергий;
  • Низкий показатель вольтажа, приходящегося на единицу ёмкости элемента;
  • Высокий уровень неконтролируемого саморазряда.

Добавим к этому не до конца проработанную технологию производства изделий.

Перспективы применения

В ближайшем будущем предполагается практически повсеместное использование суперконденсаторов, которые будут внедряться в большинство энергоёмких производств (включая медицинскую отрасль, аэрокосмическую промышленность и военную технику).

Одновременно с их внедрением всё более повышается удельная емкость этих изделий, что в перспективе позволит полностью заменить батареи конденсаторами. Также намечается процесс интегрирования суперконденсаторов в различные структуры современного электронного производства, включая изготовление управляющих и регулирующих элементов.

В заключение отметим, что конденсаторные изделия этого класса позволяют внедрить в жизнь экологически чистые способы экономии энергии, намного более перспективные, чем все известные до сих пор. В ближайшее время предполагается дальнейшее расширение сфер применения этих технологий, которые могут захватить всю автотранспортную отрасль, а также устройства связи и мобильную технику.

Видео

Как только человек придумал самодвижущуюся тележку на паровом двигателе (1768г.), а позже (1886) усовершенствовал мотор до ДВС – у водителя появилась задача не только направлять лошадиные силы в нужную сторону, но и запускать их в работу.

Проблема пуска двигателя в разные времена решалась по-разному. Для парового мотора достаточно было развести огонь под котлом, бензиновые двигатели требовали мышечной силы или химического источника тока.

С появлением аккумуляторов возникла необходимость обслуживания и контроля заряда стартерных батарей, особенно в зимний период. Часто, в помощь штатному АКБ, автовладельцу приходилось использовать внешний источник тока: сетевое пусковое устройство, запасной свинцово-кислотный АКБ, или новинку последних лет компактные пусковые устройства на базе Литий-Полимеров.

Главная проблема химических источников тока – саморазряд и старение. Срок службы классического свинцово-кислотного аккумулятора со свободным электролитом составляет около 3х лет. Гелевые и AGM аккумуляторы «живут» дольше, однако и они не вечны. Даже если АКБ бездействует – в нём происходят химические процессы, которые приводят к постепенной потере ёмкости батареи.

Это замечание верно и для пусковых устройств на основе аккумуляторов, например, средний срок службы Li-Po пускача составляет 3-5 лет, за это время токопроводный гель которым наполнены аккумуляторы твердеет и постепенно теряет свои свойства. Инженеры- конструкторы давно ищут источник тока который мог бы заменить аккумуляторы и избавить автовладельцев от «слабых мест» АКБ.



Речь в данной статье пойдёт о конденсаторах. Точнее о супер-конденсаторах или ионисторах, способных отдавать огромные токи и обладающих рядом преимуществ в сравнении с аккумуляторами. Как заменить АКБ машины на сборку из конденсаторов, конструкторы ещё не придумали, однако инженерам из Carku удалось создать устройство способное помочь в запуске двигателя автомобиля, тот самый ATOM 1750 .

Главное отличие данного аппарата от аккумуляторных аналогов – вечный срок службы ! Если говорить о пусковых устройствах на базе Литий-полимерных или Свинцово-кислотных батарей, то продолжительность их работы ограничена одной-тремя тысячами циклов заряд/разряд. Конденсаторные пускачи обеспечивают до миллиона циклов. Для того, чтобы представить масштаб предположим, что Вы используете ATOM 1750 дважды в день в течение календарного года. Ресурса прибора при такой интенсивности работы хватит (1.000.000: (365х2))= 1млн. : 730= 1369 лет .

Вторая особенность – неприхотливость ионисторов. Для хранения конденсаторных пусковых устройств не нужны особые условия: вы можете положить аппарат в бардачок или под сиденье авто, и вспомнить о нём, только когда аккумулятору машины понадобится помощь. Аппарат – идеальный вариант для забывчивых водителей. Если следить за уровнем заряда батареи нет ни времени ни желания – аппарат можно спокойно хранить в машине в самые лютые холода или в жару.


Третий плюс – наличие встроенного литиевого аккумулятора. Запас энергии, который хранится в полностью заряженной Li-Ion батарее аппарата ёмкостью 6000mAh – сможет зарядить конденсаторы устройства для более чем 6 пусков подряд. Батарея не участвует в пуске, и предназначена только для зарядки конденсаторов. Вот здесь и кроется та самая ложка дёгтя: любой аккумулятор боится глубокого разряда. Если батарею на долгое время оставить без зарядки – АКБ , рано или поздно, выйдет из строя. Саморазряд, свойственный в той или иной мере любому аккумулятору добьёт разряженную батарею. Напоминаем , что профилактическую зарядку неиспользуемой литиевой батареи необходимо проводить 1 раз в пол-года .


Высокие и низкие температуры хранения ускоряют процессы саморазряда и деградации АКБ . Температурный режим хранения встроенного аккумулятора рекомендованный производителем составляет от 0 до +25 С. Впрочем, даже если штатная батарея устройства выйдет из стоя конденсаторы АТОМ 1750 – запитанные от разряженного автомобильного АКБ всё равно смогут запустить двигатель машины.

Плюс номер четыре . Возможность зарядки ионисторов прибора от разряженной АКБ машины. Для пуска двигателя достаточно подключить крокодилы аппарата к клеммам «уставшего » АКБ и уже через 45-60 сек. – автомобиль будет готов к старту.


Более подробно про особенности АТОМ 1750 :

Аппарат представляет собой профессиональный джамп-стартер. В отличие от Li-Po аналогов, пуск двигателя производится не за счёт энергии запасённой в аккумуляторе, а при помощи мощных ультраконденсаторов. Мощности пускача достаточно для запуска бензиновых двигателей объёмом до и для работы с дизельными моторами до .


МОЩЬ

Сборка из пяти ионисторов ёмкостью 350F каждый, выдаёт пусковые токи до 350А , что говорит о широком диапазоне применения данного устройства.


Высокий стартовый ток АТОМ 1750 подкреплён стабильным напряжением, которое выдают конденсаторы. Аппарат обеспечивает заявленный ток на протяжении 3х секунд, что является одним из важнейших условий запуска двигателя.


МОБИЛЬНОСТЬ

Вес пускача составляет 1.3 кг. Для сравнения, схожий по возможностям свинцово-кислотный бустер весит более 6 кг (DRIVE 900 ), а разница в габаритах впечатляет ещё больше.


На боковых гранях АТОМ 1750 расположены:


На передней панели расположен:

Дисплей (1) для отображения рабочих параметров, кнопка «Boost» (2) для заряда ионисторов от встроенного аккумулятора, кнопки включения фонаря и питания устройства (3).


ЗАЩИТА

В качестве силовых кабелей на аппарате используются медные провода сечением 6мм2 , длинной 300 мм.


Интеллектуальный блок, не только защищает пусковое устройство от переполюсовки, короткого замыкания и обратных токов генератора, но и позволяет за несколько минут продиагностировать АКБ машины и вывести результаты проверки на табло.


АТОМ 1750 - подскажет владельцу, что аккумулятор машины нуждается в зарядке, либо, что АКБ – пора заменить на новый.


Если при подключении к аккумулятору машины на экране появляется надпись J UMP START READY – цепь работает в штатном режиме. Можно приступать к пуску двигателя.

Надпись «REVERSED » сообщает о неправильном подключении крокодилов. Следует проверить полярность – красный зажим должен быть соединён с плюсовым контактом АКБ, чёрный с минусовым.

ЗАРЯДКА

Обратите внимание, при подключении АТОМ к источнику тока, сначала заряжаются ультраконденсаторы, затем, начинается зарядка встроенной батареи устройства.


Представим себе ситуацию, когда вокруг никого а запустить двигатель у штатного АКБ машины – не получается.


Первый способ запуска машины с помощьюАТОМ 175 – заключается в зарядке конденсаторов непосредственно от клемм разряженного АКБ автомобиля. После подключения аппарата дожидаемся появления надписи JUMP START READY и запускаем двигатель не снимая крокодилы с клемм. Время зарядки конденсаторов зависит от уровня разряда АКБ и составляет от 45 сек до 2.5мин.


Второй способ зарядки – через гнездо прикуривателя. Атом 1750 можно подключить к бортовой сети с помощью специального переходника из комплекта. Время зарядки около 2 минут.


Третий источник энергии – встроенная батарея прибора. После нажатия на кнопку Boost – аппарат использует энергию запасённую в Литиевом аккумуляторе. Время зарядки – 2-3мин .


Ну и последний вариант зарядки, если под рукой нет иных источников, - придётся искать розетку. С помощью блока питания от мобильной электроники (5V, 2А ) – конденсаторы можно зарядить и от сети.


Ещё один Важный момент. Заряжать Атом 1750 можно не только от собственного разряженного АКБ , но и от ЛЮБОГО автомобиля-донора (большая и маленькая машины – показать). В отличие от «прикуривания» - операция зарядки ионисторов АТОМ 1750 - абсолютно безопасна, и не требует соблюдения никаких условностей, кроме полярности подключения.


ПУСК АВТОМОБИЛЯ

Для того, чтобы приступить к использованию Джамп-стартера хозяину машины следует убедиться, что зажигание автомобиля выключено. При подключении - следует соблюдать полярность: красный кабель устройства соединяется с плюсовой клеммой аккумулятора автомобиля, чёрный с минусовой клеммой.

После подключения можно приступать к запуску двигателя. Если в течение 3х секунд мотор не запустился – следует зарядить конденсаторы ещё раз и повторить попытку.

После того, как двигатель заработал «крокодилы» с клемм аккумулятора следует снять.

ATOM 1750 поставляется в картонной коробке.

В комплекте с аппаратом:

    Шнур для зарядки аппарата от прикуривателя автомобиля;

    USB-Кабель.



Напоминаем, что одним из условий продолжительной службы аппарата является своевременная зарядка встроенного аккумулятора устройства, поэтому после каждого пуска с использованием энергии аккумулятора – необходимо отправить АТОМ на зарядку. При длительном хранении рекомендуем заряжать устройство до уровня 80-90% один раз в 6 месяцев. Хранить аппарат следует при плюсовой температуре.

Суперконденсатор предназначен для установки в автомобили и спецтехнику различных типов, это современный источник для накопления и выдачи импульсной энергии в нужный момент. Эта энергия может использоваться как для запуска двигателя при севшем или замерзшем аккумуляторе, так и для стабилизации напряжения бортовой сети автомобиля.

Модули Titan позволяют:

выдавать необходимое напряжение и силу тока для запуска двигателя при низких температурах (до -40°С); осуществлять запуск ДВС при разряженном аккумуляторе, который не способен обеспечить пусковой ток, но обладает достаточной энергией для заряда суперконденсаторного модуля; завести двигатель на замерзшей или разряженной АКБ предпусковым подогревателем (Webasto и проч.); выдавать нужное количество импульсной энергии для стабильной работы бортовой сети при больших нагрузках; повысить надежность работы, снизить риск выхода из строя элементов электрической сети транспортного средства из-за перегрузки; увеличить срок службы АКБ в 2-4 раза.

Стабилизация напряжения бортовой сети при больших нагрузках

Модуль подключается параллельно штатной АКБ. Такой тип подключения требует хорошего состояния штатной аккумуляторной батареи. Применяется для стабилизации напряжения бортовой сети.

Суперконденсатор поможет при функционировании устройств, которые в короткий промежуток времени потребляют большое количество энергии. Такие нагрузки возникают, например, при работе серьезных аудиосистем или лебедки на внедорожном автомобиле. Такие ударные нагрузки наносят ущерб АКБ. За счет более низкого внутреннего сопротивления и способности принимать на себя импульсную нагрузку, суперконденсатор обеспечивает комфортный режим эксплуатации для аккумулятора и продлит срок его службы.

Titan поможет запустить двигатель на морозе. Температуры ниже -10°С отрицательно влияют на емкость аккумулятора, что может привести к проблемам при запуске ДВС. Емкость суперконденсатора в морозы практически не меняется, это позволит ему всегда отдать максимальную энергию в цепь для прокрутки стартера.

Параллельный тип подключения, с буферным модулем


Запуск двигателя с разряженным аккумулятором

Модуль подключается последовательно к штатной АКБ и непосредственно к клеммам стартера. Данный вариант обеспечивает наличие постоянного напряжения на клеммах стартера, которое необходимо для уверенного запуска ДВС. Использование модулей Titan для последовательного подключения будет актуально для автомобилей с большим количеством дополнительного оборудования, потребляющего электроэнергию. Например, в автомобилях такси, полиции, скорой помощи и др., где постоянно работает световое оборудование, рация, GPS-навигация. Работа оборудования постоянно высаживает заряд аккумулятора, а генератор, при постоянной работе ДВС на холостых оборотах, не дает достаточного заряда. Применение суперконденсаторов с низким внутренним сопротивлением, высокой удельной мощность и надежной отдачей энергии при низких температурах, позволяет осуществить запуск при невысоком заряде АКБ (от 9-ти Вольт) и даже в условиях низких температур.

Суперконденсатор будет также полезен для владельцев автомобилей с установленной системой предпускового подогрева, которая обеспечивает подготовку ДВС к старту в холодную погоду. Все предпусковые подогреватели питаются от аккумулятора и разряжают его в процессе подогрева, таким образом уже на прогретом двигателе существует возможность получить проблемы с запуском.

Особенности работы модуля Titan с предпусковыми подогревателями:

Гарантированный пуск прогретого ДВС, при разряженной подогревателем АКБ;
Снижение нагрузки на замерзшую АКБ.
Прокрутка стартера может быть не произведена только по причине сильного износа и/или очень низкого заряда аккумулятора, который не в состоянии обеспечить током втягивающее реле.

Последовательный тип подключения, с преобразователем DC-DC


Уверенный запуск двигателя и стабилизация напряжения бортовой сети

В данном случае, модуль с повышающим DC-DC, подключенный непосредственно к стартеру, обеспечивает надежную прокрутку и запуск ДВС, а буферный модуль, подключенный параллельно к АКБ, – питание втягивающего реле. Такой суперконденсатор сочетает в себе все преимущества модулей с буферным и последовательным типами подключений. Таким образом, даже при изношенных АКБ обеспечивается самый высокий уровень стабилизации всех параметров электрической бортовой сети и уверенный запуск двигателя при самых низких температурах.

Установка модуля Titan с гибридным типом подключения позволит:

осуществить запуск при разряженных аккумуляторных батареях, которые не способны обеспечить пусковой ток, но обладают достаточной энергией для заряда
суперконденсаторов;
осуществить запуск в условиях низких температур;
увеличить срок службы аккумуляторных батарей в 2-4 раза;
при работе совместно с предпусковым подогревателем, гарантировать пуск прогретого ДВС, при разряженной подогревателем или замерзшей АКБ;
обеспечить импульсной энергией дополнительные устройства и системы, повысить надежность работы электрической сети автомобиля в целом.

Гибридный тип подключения, с буферным модулем и DC-DC преобразователем


Основные преимущества суперконденсаторов

Высокая удельная мощность Идеальное устройство для работы при резких и значительных изменениях мощности (в несколько раз).
Высокие стабилизационные свойства. Быстрый заряд/разряд (секунды).
Эффективность при рекуперации энергии и пусках двигателей.
Широкий диапазон рабочих температур от -45 до 70°C.
Возможность работы в экстремальных условиях.
Срок службы не менее 10 лет, до 1 млн. циклов заряда-разряда.
Отсутствие необходимости замены в течение долгого времени.
Снижение эксплуатационных затрат систем.
Герметичность и экологичность.
Низкая стоимость владения, отсутствие затрат на эксплуатацию и утилизацию.
Небольшая масса и малые габариты.
Широкий спектр применений, автономность, мобильность.
Совместная работа с предпусковыми подогревателями.
Устройства сертифицированы по ГОСТ.

Руководство по установке модулей МСКА в автомобиль

Ниже описана методика крепления и подключения модулей МСКА в автомобиле. Рассмотрен вариант крепления модуля с помощью безразмерных металлических хомутов сбоку или сверху аккумуляторной батареи автомобиля. Приведены рекомендации и фотографии установленных таким образом модулей. Данная методика может быть также применена для крепления модулей к несущим частям кузова автомобиля, таким как балки, кронштейны крепления навесного оборудования и т.п.

Подготовка к установке.
Для крепления модуля к аккумуляторной батарее понадобятся:

  • 2 металлических хомута длиной по 1 метр;
  • 2 замка к хомутам;
  • Термоусадочная трубка такого диаметра, чтобы ее можно было с небольшим зазором надеть на хомут - 2 метра;
  • Провод сечением не менее 16 мм2 для подключения модуля к аккумулятору. Длина определяется в зависимости от места установки и удобства безопасной прокладки провода;
  • Наконечники для провода соответствующего диаметра;
  • Прокладка из листовой резины или силикона толщиной 3-5 мм и размером чуть больше, чем модуль.


Инструменты:

  • Отвертка шлицевая и крестовая №2;
  • Пассатижи или плоскогубцы;
  • Бокорезы;
  • Пресс для обжимки наконечников (вместо пресса можно использовать тиски или молоток с наковальней);
  • Фен строительный для усадки трубки;
  • Лампочка автомобильная 12В 55Вт с проводами (лучше всего подойдет противотуманная фара, к которой подключены провода с зажимами типа «крокодил»).

Выбор способа крепления.
Модуль необходимо закрепить в автомобиле таким образом, чтобы исключить случайное повреждение устройств автомобиля, электропроводки и т.п. Также следует исключить возможность случайного короткого замыкания как клемм модуля, так и клемм аккумулятора.
В зависимости от этого решаем, как закрепить модуль к аккумулятору (сверху или сбоку). Закроется ли капот и крышка аккумуляторного отсека, не будет ли корпус модуля касаться токоведущих проводов, не приведет ли к короткому замыканию незначительное перемещение модуля во время движения.


Крепление модуля к аккумулятору.
Для удобства рекомендуем вынуть аккумулятор из отсека и крепить к нему модуль в теплом помещении на столе или верстаке. Если это сделать тяжело, то будем крепить модуль не снимая аккумулятора с автомобиля.
Для начала подготовим хомуты.

Обрежем их на необходимую длину, так, чтобы можно было охватить аккумулятор вместе с модулем. Закрепим замки на хомутах и наденем на хомуты термоусадочную трубку таким образом, чтобы она находилась в месте контакта хомута и модуля, а также изолировала хомуты от близко расположенных проводов и клемм аккумулятора.
Закрепим термоусадочную трубку на хомутах при помощи фена. Установим модуль с нужной стороны аккумулятора, обхватим их хомутами и затянем замки хомутов.
Расположение замков может быть произвольным, но выбирается таким образом, чтобы они не касались других деталей автомобиля и его проводки.
Для удобства, а в некоторых случаях для защиты клемм аккумулятора от замыкания между модулем и аккумулятором необходимо проложить прокладку из листовой резины, которая будет не только служить амортизатором, но и защитит клеммы аккумулятора и провода, идущие к ним.


Установка аккумулятора с модулем в автомобиль.
Берем аккумулятор с закрепленным на нем модулем и ставим на штатное место аккумулятора. Проверяем, что крышка аккумуляторного отсека (если она имеется) свободно ставится на место, а установленный модуль ничему не мешает и жестко закреплен на аккумуляторе.
Жестко закрепляем аккумулятор штатными креплениями и подключаем клеммы к аккумулятору.

Подключение модуля к бортовой сети.

Отмеряем необходимую длину провода для соединения клеммы «-» модуля с клеммой «-» аккумулятора. Провод должен быть минимальной длины, но при этом не должен лежать на острых краях металлических деталей кузова, не должен перетираться о другие детали при движении автомобиля. Делаем аналогичный провод и для соединения клеммы «+» модуля с клеммой «+» аккумулятора.
На концы проводов, идущие к модулю, запрессовываем при помощи пресса наконечники. Если пресса нет, то можно либо обжать наконечник на провод в тисках, либо расплющить его молотком на наковальне.
Главное, чтобы контакт провода с наконечником был надежным, а провод не болтался в наконечнике. После этого наденем по кусочку термоусадочной трубки на места запрессовки и усадим их с помощью фена, чтобы они случайно не замкнули на корпус модуля.
На концы проводов, которые будут подключаться к аккумулятору, в зависимости от типа клемм, могут закрепляться и наконечники, аналогичные тем, которые подключаются к модулю, и трубчатые наконечники. Может быть так, что клеммы аккумулятора позволяют подключать провода без наконечников. Здесь необходимо руководствоваться конкретной ситуацией.


Теперь подключим провод к клеммам модуля и аккумулятора. Клемму «-» модуля подключаем к клемме «-» аккумулятора. А второй провод пока подключаем только к клемме «+» модуля, а второй конец этого провода пока никуда не подключаем.
Заряжаем модуль. Для этого включаем между проводом, идущим от клеммы «+» модуля и клеммой «+» аккумулятора лампочку. Лампочка должна загореться, что свидетельствует о начале зарядки модуля. Зарядка модуля может длиться от 3 до 20 минут, в зависимости от мощности лампочки и емкости модуля. Как только лампочка полностью погаснет (не будет тускло светиться, а погаснет), ее можно отключать, а провод от клеммы «+» модуля подключаем к клемме «+» аккумулятора.
Соединения проводов от модуля к аккумулятору и к модулю должны быть максимально надежными, поскольку от этого зависит не только эффективность работы модуля в автомобиле, но и безопасность. Плохие соединения могут вызвать коррозию контактов, их разогрев во время работы, и даже привести к пожару.
Клеммы аккумулятора и модуля рекомендуется дополнительно изолировать, надев на них изолирующие колпачки или защитив специальным составом, который полимеризуется на воздухе, образуя защитную пленку. Можно также использовать нейтральный силиконовый герметик. Это также дополнительно защитит клеммы от коррозии во время эксплуатации.



Примеры установки суперконденсаторов







Что такое суперконденсаторы (ионисторы)

Суперконденсатор – новый накопитель энергии и источник тока, по своим техническим характеристикам занимающий промежуточное положение между аккумуляторными батареями и традиционными конденсаторами. Отличительными особенностями суперконденсаторов являются высокая мощность, способность быстро отдавать и накапливать энергию, устойчивость к неблагоприятным факторам внешней среды, долговечность, эксплуатационная надежность и экологичность.

Последнее время суперконденсаторы во всем мире играют всё возрастающую роль, темпы роста рынка суперконденсаторов составляют 30-40% в год. Области применения суперконденсаторов постоянно расширяются, находя все новые и новые области применения во всех без исключения отраслях, от бытовой электроники, мобильных телефонов и компьютеров до гибридного транспорта, систем Smart Grid и космических технологий. Суперконденсаторы уверенно занимают свое место в системах качественной энергии для промышленности и телекоммуникаций, а также в индустрии возобновляемых источников энергии. Применение суперконденсаторов в устройствах и системах уже стало не только технической необходимостью, но и символом инновационности и современности применяемых устройств, технологий и систем.

Конденсаторы с двойным электрическим слоем (ДЭС)

Наиболее привлекательными с коммерческой точки зрения являются конденсаторы с двойным электрическим слоем (ДЭС), или как их называют EDLC (Electric Double-Layer Capacitor), которые имеют необычно высокую плотность энергии по сравнению с обычными конденсаторами. По сравнению с аккумуляторными батареями, суперконденсаторы обладают в десятки раз большей мощностью и гораздо большим сроком службы. Это две основные причины, почему инженеры всё чаще выбирают суперконденсаторы для различных применений. Суперконденсаторы ДЭС - это накопители энергии, которые могут заменить обычные конденсаторы или аккумуляторные батареи во многих приложениях, где требуются большая энергия по сравнению с той, которую способны обеспечить обычные конденсаторы и/или высокая мощность и длительный срок службы, которые не могут обеспечить аккумуляторные батареи.

Параметры

Традиционный конденсатор

Суперконденсатор

Аккумуляторная батарея

Время разряда

10 -6 ~ 10- 3 сек.

1 ~ 30 сек.

0.3 ~ 3 ч.

Время заряда

10 -6 ~ 10- 3 сек.

1 ~ 30 сек.

1 ~ 5 ч.

Плотность энергии (Вч*ч/кг )

< 0.1

1 ~ 10

20 ~ 100

Плотность мощности (Вт/кг)

< 10,000

10,000

50 ~ 200

Эффективность заряда/разряда

более 0,95

0,85 ~ 0,98

0.7 ~ 0.85

Количество циклов заряда-разряда

Неограниченно

Более 500 тыс

500 ~ 2,000

ДЭС - это два неактивных высокопористых угольных электрода и коллектор тока, погруженные в электролит с определенным потенциалом напряжения.

В ячейке конденсатора ДЭС положительный потенциал электрода притягивает отрицательно заряженные ионы, в то время когда тот же потенциал на отрицательном электроде привлекает положительно заряженные ионы. Сепаратор не позволяет электродам создать короткое замыкание. Большое количество энергии, которую может запасти ДЭС, достигается за счет огромной площади поверхности, которую обеспечивают пористые угольные электроды.

Накопление энергии в ДЭС - процесс физический и обратимый с минимальными потерями, что и обуславливает столь длительный срок службы ДЭС и их огромный циклический ресурс. Поскольку скорость заряда и разряда зависит исключительно от физического перемещения ионов, ДЭС могут накапливать и отдавать энергию намного быстрее, чем аккумуляторные батареи, в которых процесс напрямую зависит от медленных химических реакций. Этим же обусловлена возможность ДЭС выдавать на порядки более высокую мощность, чем аккумуляторные батареи.

Суперконденсатор, распространившийся в последнее время, не совсем корректное название такого устройства как ионистор. Ионистор в свою очередь является разновидностью конденсатора. Ионистор изобретен довольно давно - в 50-х годах, но в таком виде как сейчас он существует с 1982 года. Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году.

С появлением ионисторов стало возможным использовать конденсаторы в электрических цепях не только как преобразующий элемент, но и как источник напряжения. Ионистор широко применяются в качестве замены батареек для хранения информации о параметрах изделия при отсутствии внешнего питания. Такие элементы имеют несколько преимуществ над обычными химическими источниками тока — гальваническими элементами и аккумуляторами:

  • Высокие скорости заряда и разряда.
  • Простота зарядного устройства
  • Малая деградация даже после сотен тысяч циклов заряда/разряда
  • Малый вес по сравнению с электролитическими конденсаторами подобной ёмкости
  • Низкая токсичность материалов
  • Неполярность (хотя на ионисторах и указаны "+" и "-", это делается для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе).

Плотность энергии ионисторов пока еще в несколько раз меньше возможностей аккумуляторов. Например, плотность энергии ионистора BCAP3000 3000Ф x 2.7В массой 0.51 кг составляет 21.4 кДж/кг. Это в 7.6 раз меньше плотности энергии свинцовых электролитических аккумуляторов, в 25 раз меньше литий-полимерных аккумуляторов, но в десятки раз больше плотности энергии электролитического конденсатора. Плотность мощности ионистора зависит от внутреннего сопротивления. В последних моделях ионисторов внутреннее сопротивление достаточно мало, что позволяет получать мощность, сравнимую с аккумуляторной.

В 1997 году исследователи из CSIRO разработали супер-конденсатор, который мог хранить большой заряд за счёт использования плёночных полимеров в качестве диэлектрика. Электроды были изготовлены из углеродных нанотрубок. У обычных конденсаторов удельная энергия составляет 0,5 Вт·ч/кг, а у конденсаторов PET она была в 4 раза больше.

В 2008 году исследователи разработали опытный образец ионистора на основе графеновых электродов, обладающий удельной энергоёмкостью до 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30—40 Вт·ч/кг).

Срок службы ионисторов велик. Проводились исследования по определению максимального числа циклов заряд-разряд. После 100 000 циклов не наблюдалось ухудшения характеристик. Согласно недавним заявлениям сотрудников MIT, ионисторы могут в скором времени заменить обычные аккумуляторы. Кроме того, в 2009 году были проведены испытания аккумулятора на основе ионистора, в котором в пористый материал были введены наночастицы железа. Полученный двойной электрический слой пропускал электроны в два раза быстрее за счет создания туннельного эффекта.

Новая конструкция суперконденсатора, предложенная специалистами из Nanotek Instruments Inc. (США), имеет электроды, состоящие из графена с примесями повышающего проводимость ацетилена и связующего вещества PTFE. В качестве электролита использовалось вещество, известное в электрохимии как EMIMBF4. К слову, именно эта научная группа в 2006 году впервые предположила, что графен в принципе может использоваться для создания подобных устройств. В результате применения указанных веществ ученые создали в защитной камере конденсаторы размерами не больше монеты.

Энергетическая плотность полученного устройства по порядку сравнима с никель-металлогидридными батареями. Если говорить о цифрах, то плотность энергии в созданном устройстве - порядка 85,6 Вт*час/кг при комнатной температуре и порядка 136 Вт*час/кг при 80 градусах по шкале Цельсия. Однако, как было отмечено выше, устройство имеет громадное преимущество по сравнению с привычными батареями, заключающееся в том, что оно может быть заряжено и разряжено чрезвычайно быстро. Сами разработчики считают свое творение настоящим технологическим прорывом. Возможность быстрого заряда означает, что в будущем подобная конструкция может использоваться для питания мобильных телефонов и другой пользовательской портативной техники.

Суперконденсаторы Российского производства

В Национальном исследовательском технологическом университете России МИСиС в сотрудничестве с компанией ТЭЭМП, на основе уникального материала, схожего с графеном и нанотрубками, разработали супер конденсаторы, которые применили в системах для запуска двигателей тяжелой техники при экстремально низких температурах.

Внутри суперконденсатора - наноуглеродный материал из органического волокна с высокой проводимостью тока и повышенной удельной энергоемкостью - до 20 Ф/куб.см активной массы (одно из распространенных в научной среде его названий - "вискерсы") и низкой себестоимостью производства. Новая идеология сборки модулей суперконденсаторов, снижающая трудоёмкость изготовления накопителей, и оригинальная технология получения электродных материалов из органических волокон в перспективе позволяют снизить себестоимость изготовления накопителя энергии почти в 3 раза, - говорят представители компании «ТЭЭМП». Производство новейших российских суперконденсаторов по описанной выше технологии планируется запустить в первом квартале 2017 года в Московская области.

Первая линейка устройств с использованием суперконденсаторов нового типа уже создана. Разработчики акцентируют в ней внимание на системе запуска двигателей, «содержащей внутри гибридный накопитель электроэнергии на основе модуля суперконденсаторов и бензиновый генератор». Она способна работать в автономном режиме, не требует наличия электросети и в заряженном состоянии может 10 раз подряд завести, к примеру, тяжелый самосвал при температурах от -40 °C до -60° C. Система может использоваться для запуска самолетов малой авиации, которые требуют большой мощности в короткий промежуток времени, что быстро выводит обычные аккумуляторы из строя. Такое устройство уже тестировалось осенью 2016 года для запуска военной техники и получило положительные отзывы.

Шумиха вокруг строительства Элоном Маском «Гигафабрики аккумуляторов» по производству литий-ионных батарей еще не стихла, как появилось сообщение о событии, которое может существенно скорректировать планы «миллиардера-революционера».
Речь идет о недавнем пресс-релизе компании Sunvault Energy Inc ., которой совместно с Edison Power Company удалось создать крупнейший в мире графеновый суперконденсатор емкостью 10 тысяч (!) Фарад .
Цифра эта столь феноменальна, что у отечественных специалистов вызывает сомнение - в электротехнике даже 20 Микрофарад (то есть 0,02 Миллифарад), это немало. Сомневаться, однако, не приходится — директором Sunvault Energy является Билл Ричардсон, экс-губернатор штата Нью-Мексик и бывший министр энергетики США. Билл Ричардсон - человек известный и уважаемый: он служил послом США в ООН, проработал несколько лет в аналитическом центре Киссинджера и МакЛарти, а за свои успехи в освобождении американцев, оказавшихся в плену у боевиков в разных «горячих точках», даже выдвигался на Нобелевскую премию мира. В 2008 году он был одним из кандидатов от Демократической партии на пост президента США, но уступил Б.Обаме.

Сегодня Sunvault бурно развивается, создав совместное предприятие c Edison Power Company под названием Supersunvault, а в совет директоров новой фирмы вошли не только ученые (один из директоров - биохимик, еще один - предприимчивый онколог), но и известные люди с хорошей деловой хваткой. Отмечу, что только за последние два месяца фирма повысила емкость своих суперконденсаторов в десять раз - с тысячи до 10 000 Фарад, и обещает повысить ее еще больше, чтобы накопленной в конденсаторе энерги и хватало для электроснабжения целого дома, то есть - Sunvault готова выступить прямым конкурентом Элона Маска, планирующего выпуск супербатарей типа Powerwall с емкостью порядка 10 КВт-ч.

Преимущества графеновой технологии и конец «Гигафабрики».

Здесь нужно напомнить о главном отличии конденсаторов от аккумуляторов - если первые быстро заряжаются и разряжаются, но накапливают мало энерги и, то аккумуляторы - наоборот. Отметим основные преимуществоа графеновых суперконденсаторо в .

1. Быстрая зарядка — конденсаторы заряжаюются примерно в 100-1000 раз быстрее аккумуляторов.

2. Дешевизна : если обычные литий-ионные батареи стоят порядка 500 долларов за 1 КВт-ч накапливаемой энерги и, то суперконденсатор - всего 100, а к концу года создатели обещают снизить стоимость до 40 долларов. По своему составу это обычный углерод — один из самых распространенных на Земле химических элементов.

3. Компактность и плотность энерги и . Новый графеновый суперконденсатор поражает не только своей фантастической емкостью, превосходящей известные образцы примерно в тысячу раз, но и компактностью - по размерам он с небольшую книгу, то есть раз в сто компактнее использующихся ныне конденсаторов на 1 Фарад.

4. Безопасность и экологичность . Они значительно безопаснее аккумуляторов, которые греются, содержат опасную химию, а иногда еще и взрываются.Сам графен является биологически разложимым веществом, то есть на солнце он просто распадается и экологию не портит. Он химически неактивен и экологию не портит.

5. Простота новой технологии получения графена . Громадные территории и капиталовложения, масса рабочих, ядовитые и опасные вещества, используемые в технологическом процессе литий-ионных батарей - все это резко контрастирует с поразительной простотой новой технологии. Дело в том, что графен (то есть тончайшая, одноатомная пленка углерода) в компании Sunvault получают… с помощью обычного СD-диска, на который наливается порция взвеси графита. Затем диск вставляется в обычный DVD-привод, и прожигается лазером по специальной программе - и слой графена готов! Сообщается, что открытие это было сделано случайно - студентом Махером Эль-Кади, работавшим в лаборатории химика Ричарда Канера. Затем он прожег диск, используя программу LightScribe, и получил на выходе слой графена.
Более того, по заявлению исполнительного директора Sunvault Гэри Монахана на конференции на Уолл-Стрит, фирма работает над тем, чтобы графеновые накопители энерги и можно было изготавливать обычной печатью на 3Д-принтере - а это сделает их производство не только копеечным, но и практически общедоступным. А в сочетании с недорогими солнечными панелями (сегодня их стоимость снизилась до 1,3 доллара за Вт), графеновые суперконденсаторы дадут миллионам людей шанс обрести энергетическую независимость, вообще отключившись от сетей электроснабжения, и даже более того - самим стать поставщиками электроэнерги и, разрушая «естественные» монополии.
Таким образом, сомневаться не приходится: графеновые суперконденсаторы — это революционный прорыв в области накопления энерги и . И это плохая новость для Элона Маска - строительство завода в Неваде обойдется ему примерно в 5 миллиардов долларов, «отбить» которые даже без таких конкурентов было бы непросто. Похоже, что если строительство завода в Неваде уже ведется, и вероятно, будет завешено, то остальные три, которые запланировал Маск - вряд ли будут заложены.

Выход на рынок? Не так скоро, как хотелось бы.

Революционность подобной технологии очевидна. Неясно другое - когда она выйдет на рынок? Уже сегодня громоздкий и дорогостоящий проект «Гигафабрики» литий-ионных Элона Маска выглядит динозавром индустриализма. Однако какой бы революционной, нужной и экологически чистой ни бала новая технология, это еще не значит, что она придет к нам за год-два. Мир капитала не может избежать финансовых потрясений, но довольно успешно избегает технологических. В подобных случаях начинают работать закулисные договоренности между крупными инвесторами и политическими игроками. Стоит напомнить, что Sunvault - это фирма, расположенная в Канаде, а в совет директоров входят люди, которые хотя и обладают обширными связями в политической элите Соединенных Штатов, но все же не входят в ее нефтедолларовое ядро, более или менее явная борьба с которым, видимо, уже началась.
Что для нас наиболее важно, это возможности, которые открывают возникающие энергетические технологии: энергетическая независимость для страны, а в перспективе - и для каждого ее гражданина. Конечно, графеновые суперконденсаторы — это скорее «гибридная», переходная, технология, она не позволяет непосредственно получать энерги ю, в отличие от магнито-гравитационных технологий , которые обещают полностью изменить саму научную парадигму и облик всего мира. Наконец, есть революционные финансовые технологии , которые фактически табуированы глобальной нефтедолларовой мафией. И все же это весьма впечатляющий прорыв, тем более интересный, что он происходит в «логове нефтедолларового Зверя» — в Соединенных Штатах.
Всего полгода назад я писал об успехах итальянцев в технологии холодного ядерного синтеза, но за это время мы узнали о впечатляющей LENR-технологии американской компании SolarTrends, и о прорыве германской Gaya-Rosch, а теперь - и о действительно революционной технологии графеновых накопителей. Даже этот краткий перечень показывает, что проблема не в том, что у нашего, или у какого-либо иного правительства нет возможностей уменьшить счета, которые мы получаем за газ и электроэнерги ю, и даже не в непрозрачном расчете тарифов.
Корень зла - в неведении тех, кто платит по счетам, и нежелании что-то менять у тех, кто их выписывает . Лишь для обывателей энерги я, это электричество. В действительности энерги я — это власть.

Научное издание Science сообщило о технологическом прорыве, совершенном австралийскими учёными в области создания суперконденсаторов.

Сотрудникам Университета Монаша, расположенного в городе Мельбурн, удалось изменить технологию производства суперконденсаторов, изготавливаемых из графена, таким образом, что на выходе получены изделия с более высокой коммерческой привлекательностью, чем аналоги, существовавшие ранее.

Специалисты уже давно говорят о волшебных качествах суперконденсаторов на основе графена, а испытания в лабораториях не раз убедительно доказывали тот факт, что они лучше обычных. Такие конденсаторы с приставкой «супер» ждут создатели современной электроники, автомобильные компании и даже строители альтернативных источников электроэнерги и.

Огромнейший по срокам цикл жизнедеятельности, а также способность суперконденсатора зарядиться за максимально короткий промежуток времени позволяют конструкторам решать с их помощью сложные задачи при проектировании разных устройств. Но на пути триумфального шествия графеновых конденсаторов до этого времени стоял низкий показатель их удельной энерги и. В среднем ионистор или суперконденсатор имел показатель удельной энерги и порядка 5―8 Вт*ч/кг, что на фоне быстрой разрядки делало графеновое изделие зависимым от необходимости очень часто обеспечивать подзарядку.

Австралийские сотрудники кафедры изучения производства материалов из Мельбурна, руководимые профессором Дэном Ли, сумели 12-ти кратно увеличить удельную энергетическую плотность конденсатора из графена. Теперь этот показатель у нового конденсатора равен 60Вт*ч/кг, а это уже повод говорить о технической революции в данной сфере. Изобретатели сумели победить и проблему быстрой разрядки графенового суперконденсатора, добившись того, что он теперь разряжается медленнее, чем даже стандартный аккумулятор.


Добиться столь впечатляющего результата учёным помогла технологическая находка: они взяли адаптивн ую графено-гелевую плёнку и создали из неё очень маленький электрод. Пространство между листами из графена изобретатели заполнили жидким электролитом, дабы меж ними образовалось субнанометровое расстояние. Такой электролит присутствует и в обычных конденсаторах, где он выступает в роли проводника электричества. Здесь же он стал не только проводником, но и преградой для соприкосновения между собой графеновых листов. Именно такой ход позволил достичь более высокой плотности конденсатора с одновременным сохранением пористой структуры.

Сам же компактный электрод был создан по технологии, которая знакома производителям привычной нам всем бумаги . Данный способ достаточно дёшев и прост, что позволяет с оптимизмом смотреть на возможность коммерческого производства новых суперконденсаторов.

Журналисты поспешили заверить мир, что человечество получило стимул к разработке совершенно новых электронных устройств. Сами же изобретатели устами профессора Ли пообещали помочь графеновому суперконденсатору очень быстро преодолеть путь из лаборатории на завод.

Нравится вам это или нет, но эра электрических автомобилей неуклонно приближается. И в настоящее время только одна технология сдерживает прорыв и захват рынка электромобилями, технология аккумулирования электрической энерги и. Несмотря на все достижения ученых в этом направлении, большинство электрических и гибридных автомобилей имеют в своей конструкции литий-ионные аккумуляторные батареи, которые имеют свои положительные и отрицательные стороны, и могут обеспечить пробег автомобиля на одном заряде лишь на небольшую дистанцию, достаточную лишь для перемещений в городской черте. Все ведущие мировые автопроизводители понимают эту проблему и занимаются поисками методов увеличения эффективности электрических транспортных средств, что позволит увеличить дальность поездки на одном заряде аккумуляторных батарей.

Одним из направлений повышения эффективности электрических автомобилей является сбор и повторное использование энерги и, превращающейся в тепло при торможении автомобиля и при движении автомобиля по неровностям дорожного покрытия. Уже разработаны методы возврата такой энерги и, но эффективность ее сбора и повторного использования крайне низка из-за малой скорости работы аккумуляторных батарей. Времена торможения обычно исчисляются секундами и это слишком быстро для аккумуляторных батарей, на зарядку которых требуются часы времени. Поэтому для аккумулирования "быстрой" энерги и требуются другие подходы и аккумулирующие устройства, на роль которых больше всего походят конденсаторы большой емкости, так называемые суперконденсаторы.

К сожалению, суперконденсаторы еще не готовы выйти на "большую дорогу", несмотря на то, что они способны быстро заряжаться и разряжаться, их емкость пока относительно низка. Помимо этого, надежность суперконденсаторов также оставляет желать лучшего, материалы, используемые в электродах суперконденсаторов, постоянно разрушаются в результате многократных циклов заряда-разрядки. А это вряд ли допустимо с учетом того, что за всю жизнь электрического автомобиля количество циклов работы суперконденсаторов должно составить много миллионов раз.

У Сэнтэкумэра Кэннэппэна (Santhakumar Kannappan) и у группы его коллег из Института науки и техники, Кванджу, Корея, имеется решение вышеописанной проблемы, основой которого является один из наиболее удивительных материалов современности - графен. Корейские исследователи разработали и изготовили опытные образцы высокоэффективных суперконденсаторов на основе графена, емкостные параметры которых не уступают параметрам литий-ионных аккумуляторных батарей, но которые способны очень быстро накапливать и отдавать свой электрический заряд. Помимо этого, даже опытные образцы графеновых суперконденсаторов способны выдержать без потери своих характеристик многие десятки тысяч рабочих циклов.
Уловка, которая позволила добиться столь внушительных показателей, заключается в получении особой формы графена, у которой имеется огромная площадь эффективной поверхности. Исследователи получили такую форму графена, смешав частицы окиси графена с гидразином в воде и размельчив все это с помощью ультразвука. Получившийся графеновый порошок был упакован в дискообразных таблеток и высушен при температуре 140 градусов по шкале Цельсия и при давлении 300 кг/см в течение пяти часов.

Получившийся материал получился очень пористым, у одного грамма такого графенового материала его эффективная площадь соответствует площади баскетбольной площадки. Помимо этого, пористая природа этого материала позволяет ионной электролитической жидкости EBIMF 1 M заполнить полностью весь объем материла, что приводит к увеличению электрической емкости суперконденсатора.

Измерение характеристик опытных суперконднсаторов показали, что их электрическая емкость составляет около 150 Фарад на грамм, плотность хранения энерги и составляет 64 ватта на килограмм, а плотность электрического тока равна 5 амперам на грамм. Все эти характеристики сопоставимы с аналогичными характеристиками литий-ионных аккумуляторов, плотность хранения энерги и которых составляет от 100 до 200 Ватт на килограмм. Но у этих суперконденсаторов имеется одно огромное преимущество, они могут полностью зарядиться или полностью отдать весь накопленный заряд всего за 16 секунд. И это время является самым быстрым временем заряда-разрядки на сегодняшний день.

Этот набор внушительных характеристик, плюс несложная технология изготовления графеновых суперконденсаторов могут послужить оправданием заявлению исследователей, которые написали, что их "графеновые суперконденсаторные устройства аккумулирования энерги и уже прямо сейчас готовы для массового производства и могут появиться в ближайших поколениях электрических автомобилей".

Группа ученых из университета Райс (Rice University) приспособили разработанный ими метод производства графена при помощи лазера для изготовления электродов суперконденсаторов.

С момента его открытия графен, форма углерода, кристаллическая решетка которого имеет одноатомную толщину, помимо всего прочего рассматривался в качестве альтернативы электродам из активированного угля, используемым в суперконденсаторах, конденсаторах с большой емкостью и малыми токами собственной утечки. Но время и проведенные исследования показали, что графеновые электроды работают не намного лучше, чем электроды из микропористого активированного угля, и это послужило причиной снижения энтузиазма и сворачивания ряда исследований.

Тем не менее, графеновые электроды обладают некоторыми неоспоримыми преимуществами по сравнению с электродами из пористого углерода.

Графеновые суперконденсаторы могут работать на более высоких частотах, а гибкость графена позволяет создавать на его основе чрезвычайно тонкие и гибкие устройства аккумулирования энерги и, которые как нельзя лучше подходят для использования в носимой и гибкой электронике.

Два вышеупомянутых преимущества графеновых суперконденсаторов послужили причиной для проведения очередных исследований группой ученых из университета Райс (Rice University). Они приспособили разработанный ими метод производства графена при помощи лазера для изготовления электродов суперконденсаторов.

«То, чего нам удалось добиться, сопоставимо с показателями микросуперконденсаторов, которые имеются в наличии на рынке электронных приборов» - рассказывает Джеймс Тур (James Tour), ученый, руководивший исследовательской группой, - «При помощи нашего метода мы можем получать суперконденсаторы, имеющие любую пространственную форму. При необходимости упаковать графеновые электроды на достаточно малой площади, мы просто складываем их как лист бумаги ».

Для производства графеновых электродов ученые использовали лазерный метод (laser-induced grapheme, LIG), в котором луч мощного лазера нацеливается на мишень из недорогого полимерного материала.

Параметры лазерного света подобраны таким образом, что он выжигает из полимера все элементы, кроме углерода, который формируется в виде пористой графеновой пленки. Эта пористый графен, как показали исследования, обладает достаточно большим значением эффективной площади поверхности, что делает его идеальным материалом для электродов суперконденсаторов.

То, что делает результаты исследований группы из университета Райс столь привлекательными, это простота производства пористого графена.

«Графеновые электроды делаются очень просто. Для этого не требуется чистого помещения и в процессе используются обычные промышленные лазеры, которые успешно работают в цехах заводов и даже на открытом воздухе» - рассказывает Джеймс Тур.

Кроме простоты производства, графеновые суперконденсаторы показали весьма впечатляющие характеристики. Эти устройства накопления энерги и выдержали без потери электрической емкости тысячи циклов заряда-разряда. Более этого, электрическая емкость таких суперконденсаторов практически не изменилась после того, как гибкий суперконденсатор был деформирован 8 тысяч раз подряд.

«Мы продемонстрировали, что разработанная нами технология позволяет производить тонкие и гибкие суперконденсаторы, которые могут стать компонентами гибкой электроники или источниками энерги и для носимой электроники, которая может быть встроена прямо в одежду или в предметы повседневного использования» - рассказал Джеймс Тур.

Похожие публикации