Chevroletavtoliga - Автомобильный портал

Схему электронного регулятора отработавших газов на оу. Элементы и устройства замкнутых систем управления электроприводами. Регуляторы. Неинвертирующие операционные усилители

Дорога в десять тысяч ли начинается с первого шага.
(китайская пословица)

Дело было вечером, делать было нечего… И так вдруг захотелось спаять что-нибудь. Этакое… Электронное!.. Спаять - так спаять. Компьютер имеется, Интернет подключен. Выбираем схему. И вдруг оказывается, что схем для задуманного сабжа - вагон и маленькая тележка. И все разные. Опыта нет, знаний маловато. Какую выбрать? Некоторые из них содержат какие-то прямоугольнички, треугольнички. Усилители, да еще и операционные… Как они работают - непонятно. Стра-а-ашно!.. А вдруг сгорит? Выбираем, что попроще, на знакомых транзисторах! Выбрали, спаяли, включили… HELP!!! Не работает!!! Почему?

Да потому, что «Простота - хуже воровства»! Это как компьютер: самый быстрый и навороченный - игровой! А для офисной работы достаточно и самого простого. Так же и с транзисторами. Спаять на них схему мало. Надо еще уметь её настроить. Слишком много «подводных камней» и «граблей». А для этого зачастую требуется опыт отнюдь не начального уровня. Так что же, бросать увлекательное занятие? Отнюдь! Просто не надо бояться этих «треугольничков-прямоугольничков». С ними работать, оказывается, во многих случаях намного проще, чем с отдельными транзисторами. ЕСЛИ ЗНАТЬ - КАК!

Вот этим: пониманием, как работает операционный усилитель (ОУ, или по-английски OpAmp) мы сейчас и займемся. При этом будем рассматривать его работу буквально «на пальцах», практически не пользуясь никакими формулами, разве что кроме закона дедушки Ома: «Ток через участок цепи (I ) прямо пропорционален напряжению на нем (U ) и обратно пропорционален его сопротивлению (R )»:
I = U / R . (1)

Для начала, в принципе, не так уж и важно, как именно ОУ устроен внутри. Просто примем в качестве допущения, что он представляет собой «черный ящик» с какой-то там начинкой. На данном этапе не будем рассматривать и такие параметры ОУ, как «напряжение смещения», «напряжение сдвига», «температурный дрейф», «шумовые характеристики», «коэффициент подавления синфазной составляющей», «коэффициент подавления пульсаций напряжений питания», «полоса пропускания» и т.п. Все эти параметры будут важны на следующем этапе его изучения, когда в голове «улягутся» основные принципы его работы ибо «гладко было на бумаге, да забыли про овраги»…

Пока что просто допустим, что параметры ОУ близки к идеальным и рассмотрим, только то, какой сигнал будет на его выходе, если какие-то сигналы подавать на его входы.

Итак, операционный усилитель (ОУ) является дифференциальным усилителем постоянного тока с двумя входами (инвертирующим и неинвертирующим) и одним выходом. Кроме них ОУ имеет выводы питания: положительного и отрицательного. Эти пять выводов имеются в почти любом ОУ и принципиально необходимы для его работы.

ОУ имеет огромный коэффициент усиления, как минимум, 50000…100000, а реально - намного больше. Поэтому, в первом приближении, можно даже допустить, что он равен бесконечности.

Термин «дифференциальный» («different» переводится с английского как «разница», «различие», «разность») означает, что на выходной потенциал ОУ влияет исключительно разность потенциалов между его входами, независимо от их абсолютного значения и полярности.

Термин «постоянного тока» означает, что усиливает ОУ входные сигналы начиная от 0 Гц. Верхний диапазон частот (частотный диапазон), усиливаемых ОУ сигналов зависит от многих причин, таких, как частотные характеристики транзисторов, из которых он состоит, коэффициента усиления схемы, построенной с применением ОУ и т.п. Но этот вопрос уже выходит за рамки первичного ознакомления с его работой и рассматриваться здесь не будет.

Входы ОУ имеют очень большое входное сопротивление, равное десяткам/сотням МегаОм, а то и ГигаОм (и только в приснопамятных К140УД1, да еще в К140УД5 оно составляло всего 30…50 кОм). Столь большое сопротивление входов означает, что на входной сигнал они практически не влияют.

Поэтому с большой степенью приближения к теоретическому идеалу можно считать, что ток во входы ОУ не течет . Это - первое важное правило, которое применяется при анализе работы ОУ. Прошу хорошо запомнить, что оно касается только самого ОУ , а не схем с его применением!

Что же означают термины «инвертирующий» и «неинвертирующий»? По отношению к чему определяется инверсия и вообще, что это за «зверек» такой - инверсия сигнала?

В переводе с латинского одним из значений слова «inversio» является «оборачивание», «переворот». Иными словами, инверсия - это зеркальное отражение (отзеркаливание ) сигнала относительно горизонтальной оси Х (оси времени). На Рис. 1 показаны несколько из множества возможных вариантов инверсии сигнала, где красным цветом обозначен прямой (входной) сигнал и синим - проинвертированный (выходной).

Рис. 1 Понятие инверсии сигнала

Особо следует отметить, что к нулевой линии (как на Рис. 1, А, Б) инверсия сигнала не привязана ! Сигналы могут быть инверсными и асимметрично. Например, оба только в области положительных значений (Рис. 1, В), что характерно для цифровых сигналов или при однополярном питании (об этом речь идти будет дальше), или оба частично в положительной и частично - в отрицательной областях (Рис. 1, Б, Д). Возможны и другие варианты. Главным условием является их взаимная зеркальность относительно какого-то произвольным образом выбранного уровня (например, искусственной средней точки, о которой речь также будет вестись дальше). Иными словами, полярность сигнала тоже не является определяющим фактором.

Изображают ОУ на принципиальных схемах по-разному. За рубежом ОУ раньше изображались, да и сейчас очень часто изображаются в виде равнобедренного треугольника (Рис. 2, А). Инвертирующий вход - символом «минус», а неинвер­тирующий - символом «плюс» внутри треугольника. Эти символы совершенно не означают, что на соответствующих входах потенциал должен быть более положительным или более отрицательным, чем на другом. Они просто-напросто указывают, как реагирует потенциал выхода на потенциалы, подаваемые на входы. В итоге их легко спутать с выводами питания, что может оказаться неожиданными «граблями», особенно для начинающих.


Рис. 2 Варианты условных графических изображений (УГО)
операционных усилителей

В системе отечественных условных графических изображений (УГО) до вступления в силу ГОСТ 2.759-82 (СТ СЭВ 3336-81) ОУ также изображались в виде треугольника, только инвертирующий вход - символом инверсии - кружочком в месте пересе­чения вывода с треугольником (Рис.2, Б), а сейчас - в виде прямоугольника (Рис.2, В).

При обозначении ОУ на схемах инвертирующий и неинвертирующий входы можно менять местами, если так удобнее, однако, традиционно инвертирующий вход изображается вверху, а неинвертирующий - внизу. Выводы питания, как правило, всегда располагают единственным способом (положительный вверху, отрицательный - внизу).

ОУ почти всегда используются в схемах с отрицательной обратной связью (ООС).

Обратной связью называется эффект подачи части выходного напряжения усилителя на его вход, где оно алгебраически (с учетом знака) суммируется с входным напряжением. О принципе суммирования сигналов речь пойдет ниже. В зависимости от того, на какой вход ОУ, инвертирующий или неинвертирующий, подается ОС, различают отрицательную обратную связь (ООС), когда часть выходного сигнала подается на инвертирующий вход (Рис. 3, А) или положительную обратную связь (ПОС), когда часть выходного сигнала подается, соответственно, на неинвертирующий вход (Рис. 3, Б).


Рис. 3 Принцип формирования обратной связи (ОС)

В первом случае, поскольку выходной сигнал является инверсным по отношению ко входному, он вычитается из входного. В результате общее усиление каскада снижается. Во втором случае - суммируется со входным, общее усиление каскада повышается.

На первый взгляд может показаться, что ПОС имеет положительный эффект, а ООС - совершенно бесполезная затея: зачем же снижать усиление? Именно так и посчитали патентные эксперты США, когда в 1928 г. Гарольд С. Блэк попытался запатентовать ООС. Однако, жертвуя усилением, мы существенно улучшаем другие важные параметры схемы, как, например, её линейность, частотный диапазон и пр. Чем глубже ООС, тем меньше характеристики всей схемы зависят от характеристик ОУ.

А вот ПОС (учитывая собственное огромное усиление ОУ), имеет обратное влияние на характеристики схемы и самое неприятное - вызывает ее самовозбуждение. Она, конечно, тоже используется осознанно, например, в генераторах, компараторах с гистерезисом (подробно об этом - далее) и т.п., но в общем виде её влияние на работу усилительных схем с ОУ скорее негативное и требует очень тщательного и обоснованного анализа её применения.

Поскольку ОУ имеет два входа, то возможны такие основные виды его включения с использованием ООС (Рис. 4):


Рис. 4 Основные схемы включения ОУ

а) инвертирующее (Рис. 4, А) - сигнал подается на инвертирующий вход, а неинвертирующий подключается непосредственно к опорному потенциалу (не используется);

б) неинвертирующее (Рис. 4, Б) - сигнал подается на неинвертирующий вход, а инвертирующий подключается непосредственно к опорному потенциалу (не используется);

в) дифференциальное (Рис. 4, В) - сигналы подаются на оба входа, инвертирующий и неинвертирующий.

Для анализа работы этих схем следует учесть второе важнейшее правило , которому подчиняется работа ОУ: Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю .

Вместе с тем, любая формулировка должна быть необходимой и достаточной , чтобы ограничить всё подмножество подчиняющихся ей случаев. Приведенная выше формулировка, при всей её «классичности», не дает никакой информации о том, на какой же из входов «стремится повлиять» выход. Исходя из неё, получается, что вроде бы ОУ выравнивает напряжения на своих входах, подавая напряжение на них откуда-то «изнутри».

Если внимательно рассмотреть схемы на Рис. 4, можно заметить, что ООС (через Rоос) во всех случаях заведена с выхода только на инвертирующий вход, что дает нам основание переформулировать это правило следующим образом: Напряжение на выходе ОУ, охваченном ООС, стремится к тому, чтобы потенциал на инвертирующем входе уравнялся с потенциалом на неинвертирующем входе .

Исходя из этого определения, «ведущим» при любом включении ОУ с ООС является неинвертирующий вход, а «ведомым» - инвертирующий.

При описании работы ОУ потенциал на его инвертирующем входе часто называют «виртуальным нулем» или «виртуальной средней точкой». Перевод латинского слова «virtus» означает «воображаемый», «мнимый». Виртуальный объект ведет себя близко к поведению аналогичных объектов материальной реальности, т.е., для входных сигналов (за счет действия ООС) инвертирующий вход можно считать подключенным непосредственно к такому же потенциалу, к какому подключен и неинвертирующий вход. Однако, «виртуальный ноль» является всего лишь частным случаем, имеющим место только при двуполярном питании ОУ. При использовании однополярного питания (о чем будет вестись речь ниже), да и во многих других схемах включения, ни на неинвертирующем, ни на инвертирующем входах ноля не будет. Поэтому давайте договоримся, что этот термин мы применять не будем, поскольку он мешает начальному пониманию принципов работы ОУ.

Вот с этой точки зрения и разберем схемы, приведенные на Рис. 4. При этом, для упрощения анализа, примем, что напряжения питания всё-таки двуполярные, равные друг другу по величине (скажем, ± 15 В), со средней точкой (общая шина или «земля»), относительно которой и будем отсчитывать входные и выходные напряжения. Кроме того, анализ будет проводить по постоянному току, т.к. изменяющийся переменный сигнал в каждый момент времени тоже можно представить как выборку значений постоянного тока. Во всех случаях обратная связь через Rоос заведена с выхода ОУ на его инвертирующий вход. Различие заключается только в том, на какие из входов подается входное напряжение.

А) Инвертирующее включение (Рис. 5).


Рис. 5 Принцип работы ОУ в инвертирующем включении

Потенциал на неинвертирующем входе равен нулю, т.к. он подключен к средней точке («земле»). Входной сигнал, равный +1 В относительно средней точки (от GB) подан на левый вывод входного резистора Rвх. Допустим, что сопротивления Rоос и Rвх равны друг другу и составляют 1 кОм (в сумме их сопротивление равно 2 кОм).

Согласно Правилу 2, на инвертирующем входе должно быть такой же потенциал, как и на зануленном неинвертирующем, т.е., 0 В. Следовательно, к Rвх приложено напряжение +1 В. Согласно закону Ома по нему будет протекать ток I вх. = 1 В / 1000 Ом = 0,001 А (1 мА). Направление протекания этого тока показано стрелкой.

Поскольку Rоос и Rвх включены делителем, а согласно Правилу 1 входы ОУ тока не потребляют, то для того, чтобы в средней точке этого делителя напряжение составляло 0 В, к правому выводу Rоос должно быть приложено напряжение минус 1 В, а протекающий по нему ток I оос также должен быть равен 1 мА. Иными словами, между левым выводом Rвх и правым выводом Rоос приложено напряжение 2 В, а ток, протекающий по этому делителю равен 1 мА (2 В / (1 кОм + 1 кОм) = 1 мА), т.е. I вх. = I оос .

Если на вход подать напряжение отрицательной полярности, на выходе ОУ будет напряжение положительной полярности. Всё то же самое, только стрелки, показывающие протекание тока через Rоос и Rвх будут направлены в противоположную сторону.

Таким образом, при равенстве номиналов Rоос и Rвх, напряжение на выходе ОУ будет равно напряжению на его входе по величине, но инверсное по полярности. И мы получили инвертирующий повторитель . Эта схема нередко применяется, если нужно проинвертировать сигнал, полученный с помощью схем, принципиально являющихся инверторами. Например, логарифмических усилителей.

Теперь давайте, сохранив номинал Rвх, равным 1 кОм, увеличим сопротивление Rоос до 2 кОм при том же входном сигнале +1 В. Общее сопротивление делителя Rоос+Rвх увеличилось до 3 кОм. Чтобы в его средней точке остался потенциал 0 В (равный потенциалу неинвертирующего входа), через Rоос должен протекать тот же ток (1 мА), что и через Rвх. Следовательно, падение напряжения на Rоос (напряжение на выходе ОУ) должно составлять уже 2 В. На выходе ОУ напряжение равно минус 2 В.

Увеличим номинал Rоос до 10 кОм. Теперь напряжение на выходе ОУ при тех же остальных условиях составит уже 10 В. Во-о-от! Наконец-то мы получили инвертирующий усилитель ! Его выходное напряжение больше входного (иными словами, коэффициент усиления Ку) во столько раз, во сколько раз сопротивление Rоос больше, чем сопротивление Rвх. Как я ни зарекался не применять формулы, давайте всё-таки отобразим это в виде уравнения:
Ку = – Uвых / Uвх = – Rоос / Rвх. (2)

Знак минус перед дробью правой части уравнения означает только то, что выходной сигнал инверсен по отношению ко входному. И ничего более!

А теперь давайте увеличим сопротивление Rоос до 20 кОм и проанализируем, что получится. Согласно формулы (2) при Ку = 20 и входном сигнале 1 В на выходе должно было бы быть напряжение 20 В. Ан не тут-то было! Мы же ранее приняли допущение, что напряжение питания нашего ОУ составляет всего ± 15 В. Но даже 15 В получить не удастся (почему так - чуть ниже). «Выше головы (напряжения питания) не прыгнешь»! В итоге такого надругательства над номиналами схемы выходное напряжение ОУ «упирается» в напряжение питания (выход ОУ входит в насыщение). Баланс равенства токов через делитель RоосRвх (I вх. = I оос ) нарушается, на инвертирующем входе появляется потенциал, отличный от потенциала на неинвертирующем входе. Правило 2 перестает действовать.

Входное сопротивление инвертирующего усилителя равно сопротивлению Rвх, поскольку через него протекает весь ток от источника входного сигнала (GB).

Теперь давайте заменим постоянный Rоос на переменный, с номиналом, скажем 10 кОм (Рис. 6).


Рис. 6 Схема инвертирующего усилителя с переменным усилением

При правом (по схеме) положении его движка усиление будет составлять Rоос / Rвх = 10 кОм / 1 кОм = 10. Перемещая движок Rоос влево (уменьшая его сопротивление) усиление схемы будет снижаться и, наконец, при крайнем левом его положении станет равным нулю, поскольку числитель в приведенной выше формуле станет равным нулю при любом значении знаменателя. На выходе будет ноль также при любом значении и полярности входного сигнала. Такая схема часто применяется в схемах усиления звуковых сигналов, например, в микшерах, где приходится регулировать усиление от нуля.

Б) Неинвертирующее включение (Рис. 7).


Рис. 7 Принцип работы ОУ в неинвертирующем включении

Левый вывод Rвх подключен к средней точке («земле»), а входной сигнал, равный +1 В подан прямо на неинвертирующий вход. Поскольку нюансы анализа «разжеваны» выше, здесь будем уделять внимание только существенным отличиям.

На первом этапе анализа также примем сопротивления Rоос и Rвх равными друг другу и составляющими 1 кОм. Т.к. на неинвертирующем входе потенциал составляет +1 В, то по Правилу 2 такой же потенциал (+1 В) должен быть и на инвертирующем входе (показано на рисунке). Для этого на правом выводе резистора Rоос (выходе ОУ) должно быть напряжение +2 В. Токи I вх. и I оос , равные 1 мА, текут теперь через резисторы Rоос и Rвх в обратном направлении (показаны стрелками). У нас получился неинвертирующий усилитель с усилением, равным 2, поскольку входной сигнал, равный +1 В формирует выходной сигнал, равный +2 В.

Странно, не так ли? Номиналы те же, что и в инвертирующем включении (различие только в том, что сигнал подан на другой вход), а усиление налицо. Разберемся в этом чуть позже.

Теперь увеличиваем номинал Rоос до 2 кОм. Чтобы сохранить баланс токов I вх. = I оос и потенциал инвертирующего входа +1 В, на выходе ОУ должно быть уже +3 В. Ку = 3 В / 1 В = 3!

Если сравнить значения Ку при неинвертирующем включении с инвертирующим, при тех же номиналах Rоос и Rвх, то получается что коэффициент усиления во всех случаях больше на единицу. Выводим формулу:
Ку = Uвых / Uвх + 1 = (Rоос / Rвх) + 1 (3)

Почему же так происходит? Да очень просто! ООС действует точно так же, как и при инвертирующем включении, но согласно Правилу 2, к потенциалу инвертирующего входа в неинвертирующем включении всегда прибавляется потенциал неинвертирующего входа.

Так что же, при неинвертирующем включении нельзя получить усиление, равное 1? Почему же нельзя - можно. Давайте уменьшать номинал Rоос, аналогично тому, как мы анализировали Рис. 6. При его нулевом значении - перемыкании выхода с инвертирующем входом накоротко (Рис. 8, А), согласно Правилу 2, на выходе будет такое напряжение, чтобы потенциал инвертирующего входа был равен потенциалу неинвертирующего входа, т.е., +1 В. Получаем: Ку = 1 В / 1 В = 1 (!) Ну, а поскольку инвертирующий вход тока не потребляет и разности потенциалов между ним и выходом нет, то и никакой ток в этой цепи не протекает.


Рис. 8 Схема включения ОУ, как повторителя напряжения

Rвх становится вообще лишним, т.к. он подключается параллельно нагрузке, на которую должен работать выход ОУ и через него совершенно зря будет протекать его выходной ток. А что будет, если оставить Rоос, но убрать Rвх (Рис. 8, Б)? Тогда в формуле усиления Ку = Rоос / Rвх + 1 сопротивление Rвх теоретически становится близким к бесконечности (в реальности, конечно же, нет, т.к. существуют утечки по плате, да и входной ток ОУ хоть и пренебрежимо мал, но нулю всё-таки не равен), при чем соотношение Rоос / Rвх приравнивается к нулю. В формуле остается только единица: Ку = + 1. А усиление меньше единицы для этой схемы можно получить? Нет, меньше не получится ни при каких обстоятельствах. «Лишнюю» единицу в формуле усиления на кривой козе не объедешь…

После того, как мы убрали все «лишние» резисторы, получается схема неинвертирующего повторителя , показанная на Рис. 8, В.

На первый взгляд, такая схема не имеет практического смысла: зачем нужно единичное да еще и неинверсное «усиление» - что, нельзя просто подать сигнал дальше??? Однако, такие схемы применяются довольно часто и вот почему. Согласно Правилу 1 ток во входы ОУ не течет, т.е., входное сопротивление неинвертирующего повторителя очень большое - те самые десятки, сотни и даже тысячи МОм (это же относится и к схеме по Рис. 7)! А вот выходное сопротивление очень малое (доли Ома!). Выход ОУ «пыхтит изо всех сил», стараясь, согласно Правилу 2, поддержать на инвертирующем входе такой же потенциал, как и на неинвертирующем. Ограничением является только допустимый выходной ток ОУ.

А вот с этого места мы немного вильнем в сторону и рассмотрим вопрос выходных токов ОУ чуть подробнее.

Для большинства ОУ широкого применения в технических параметрах указано, что сопротивление нагрузки, подключенной к их выходу, не должно быть меньше 2 кОм. Больше - сколько угодно. Для намного меньшего числа оно составляет 1 кОм (К140УД…). Это значит, что при наихудших условиях: максимальном напряжении питания (например, ±16 В или суммарно 32 В), нагрузкой, подключенной между выходом и одной из шин питания и максимальном выходном напряжении противоположной полярности, к нагрузке будет приложено напряжение около 30 В. При этом ток через нее составит: 30 В / 2000 Ом = 0,015 А (15 мА). Не так, чтобы мало, но и не особо много. К счастью, большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока - типичное значение максимального выходного тока составляет 25 мА. Защита предотвращает перегрев и выход ОУ из строя.

Если напряжения питания не максимально допустимые, то минимальное сопротивление нагрузки можно пропорционально уменьшать. Скажем, при питании 7,5…8 В (суммарно 15…16 В) оно может составлять 1 кОм.

В) Дифференциальное включение (Рис. 9).


Рис. 9 Принцип работы ОУ в дифференциальном включении

Итак, допустим, что при одинаковых номиналах Rвх и Rоос, равных 1 кОм, на оба входа схемы поданы одинаковые напряжения, равные +1 В (Рис. 9, А). Поскольку потенциалы с обеих сторон резистора Rвх равны друг другу (напряжения на резисторе равно 0), ток через него не протекает. А значит, равен нулю и ток через резистор Rоос. Т.е., эти два резистора никакой функции не выполняют. По сути, мы фактически получили неинвертирующий повторитель (сравните с Рис. 8). Соответственно, на выходе получим такое же напряжение, как и на неинвертирующем входе, т.е., +1 В. Поменяем полярность входного сигнала на инвертирующем входе схемы (перевернем GB1) и подадим минус 1 В (Рис. 9, Б). Теперь между выводами Rвх приложено напряжение 2 В и через него течет ток I вх = 2 мА (надеюсь, что подробно расписывать, почему так - уже не нужно?). Для того, чтобы скомпенсировать этот ток, через Rоос тоже должен протекать ток, равный 2 мА. А для этого на выходе ОУ должно быть напряжение +3 В.

Вот где проявился ехидный «оскал» дополнительной единички в формуле коэффициента усиления неинвертирующего усилителя. Получается, что при таком упрощенном дифференциальном включении разница в коэффициентах усиления постоянно сдвигает выходной сигнал на величину потенциала на неинвертирующем входе. Проблема-с! Однако, «Даже если вас съели - у вас всё равно остаётся как минимум два выхода». Значит, нам каким-то образом надо уравнять коэффициенты усиления инвертирующего и неинвертирующего включений, чтобы «нейтрализовать» эту лишнюю единичку.

Для этого подадим входной сигнал на неинвертирующий вход не напрямую, а через делитель Rвх2, R1 (Рис. 9, В). Примем их номиналы также по 1 кОм. Теперь на неинвертирующем (а значит, и на инвертирующем тоже) входе ОУ будет потенциал +0,5 В, через него (и Rоос) будет протекать ток I вх = I оос = 0,5 мА, для обеспечения которого на выходе ОУ должно быть напряжение, равное 0 В. Фу-у-ух! Мы добились, чего хотели! При равных по величине и полярности сигналах на обеих входах схемы (в данном случае +1 В, но то же самое будет справедливо и для минус 1 В и для любых иных цифровых значений), на выходе ОУ будет сохраняться нулевое напряжение, равное разнице входных сигналов.

Проверим это рассуждение, подав на инвертирующий вход сигнал отрицательной полярности минус 1 В (Рис. 9, Г). При этом I вх = I оос = 2 мА, для чего на выходе должно быть +2 В. Всё подтвердилось! Уровень выходного сигнала соответствует разнице между входными.

Конечно, при равенстве Rвх1 и Rоос (соответственно, Rвх2 и R1) усиления мы не получим. Для этого нужно увеличить номиналы Rоос и R1, как это делали при анализе предыдущих включений ОУ (не буду повторяться), причем должно строго соблюдаться соотношение:

Rоос / Rвх1 = R1 / Rвх2. (4)

Что же полезного мы получаем от такого включения практически? А получаем мы замечательное свойство: выходное напряжение не зависит от абсолютных значений входных сигналов, если они равны друг другу по величине и полярности. На выход поступает только разностный (дифференциальный) сигнал. Это позволяет усиливать очень малые сигналы на фоне помехи, одинаково действующей на оба входа. Например, сигнал с динамического микрофона на фоне наводки сети промышленной частоты 50 Гц.

Однако, в этой бочке меда, к сожалению, присутствует ложка дегтя. Во-первых, равенство (4) должно соблюдаться очень строго (вплоть до десятых а иногда и сотых процента!). Иначе возникнет разбаланс токов, действующих в схеме, а следовательно, кроме разностных («противофазных») сигналов будут усиливаться и сочетанные («синфазные») сигналы.

Давайте, разберемся с сущностью этих терминов (Рис. 10).


Рис. 10 Сдвиг фазы сигнала

Фаза сигнала - это величина, характеризующая смещение начала отсчета периода сигнала относительно начала отсчета времени. Поскольку и начало отсчета времени, и начало отсчета периода выбираются произвольно, фаза одного периодического сигнала физическим смыслом не обладает. Однако разность фаз двух периодических сигналов - это величина, имеющая физический смысл, она отражает запаздывание одного из сигналов относительно другого. Что считать началом периода, не имеет никакого значения. За точку начала периода можно взять нулевое значение с положительным наклоном. Можно - максимум. Всё в нашей власти.

На Рис. 9 красным обозначен исходный сигнал, зеленым - сдвинутый на ¼ периода относительно исходного и синим - на ½ периода. Если сравнить красную и синюю кривые с кривыми на Рис. 2, Б, то можно заметить, что они взаимно инверсны . Т.о., «синфазные сигналы» - это сигналы, совпадающие друг с другом в каждой своей точке, а «противофазные сигналы» - инверсные друг относительно друга.

В то же время, понятие инверсии более широкое, чем понятие фазы , т.к. последнее применимо только к регулярно повторяющимся, периодическим сигналам. А понятие инверсии применимо к любым сигналам, в том числе и непериодическим, как, например, звуковой сигнал, цифровая последовательность, либо постоянное напряжение. Чтобы фаза была состоятельной величиной, сигнал должен быть периодическим хотя бы на некотором интервале. В противном случае, и фаза и период превращаются в математические абстракции.

Во-вторых, инвертирующий и неинвертирующий входы в дифференциальном включении при равенстве номиналов Rоос = R1 и Rвх1 = Rвх2 будут иметь различные входные сопротивления. Если входное сопротивление инвертирующего входа определяется только номиналом Rвх1, то неинвертирующего - номиналами последовательно включенных Rвх2 и R1 (ещё не забыли, что входы ОУ тока не потребляют?). В приведенном выше примере они будут составлять, соответственно, 1 и 2 кОм. А если мы увеличим Rоос и R1 для получения полноценного усилительного каскада, то разница возрастет еще существеннее: при Ку = 10 - до, соответственно, всё того же 1 кОм и целых 11 кОм!

К сожалению, на практике обычно ставят номиналы Rвх1 = Rвх2 и Rоос = R1. Однако, это приемлемо, только если источники сигнала для обоих входов имеют очень низкое выходное сопротивление . Иначе оно образует делитель с входным сопротивлением данного усилительного каскада, а поскольку коэффициент деления таких «делителей» будет разным, то и результат очевиден: дифференциальный усилитель с такими номиналами резисторов не будет выполнять своей функции подавления синфазных (сочетанных) сигналов, либо выполнять эту функцию плохо.

Одним из путей решения данной проблемы может быть неравенство номиналов резисторов, подключенных к инвертирующему и неинвертирующему входам ОУ. А именно, чтобы Rвх2 + R1 = Rвх1. Ещё одним важным моментом является достижение точного соблюдения равенства (4). Как правило, этого добиваются путем разбиения R1 на два резистора - постоянный, обычно составляющий 90% от нужного номинала и переменный (R2), сопротивление которого составляет 20% от нужного номинала (Рис. 11, А).


Рис. 11 Варианты балансировки дифференциального усилителя

Путь общепринятый, но опять же, при таком способе балансировки пусть и немного, но изменяется входное сопротивление неинвертирующего входа. Намного стабильнее вариант с включением подстроечного резистора (R5) последовательно с Rоос (Рис. 11, Б), поскольку Rоос в формировании входного сопротивления инвертирующего входа участия не принимает. Главное - сохранить соотношения их номиналов, аналогично варианту «А» (Rоос / Rвх1 = R1 / Rвх2).

Коль скоро мы повели речь о дифференциальном включении и упомянули повторители, хотелось бы описать одну интересную схемку (Рис. 12).


Рис. 12 Схема переключаемого инвертирующего/неинвертирующего повторителя

Входной сигнал подается одновременно на оба входа схемы (инвертирующий и неинвертирующий). Номиналы всех резисторов (Rвх1, Rвх2 и Rоос) равны друг другу (в данном случае возьмем их реальные значения: 10…100 кОм). Неинвертирующий вход ОУ ключом SA может замыкаться на общую шину.

В замкнутом положении ключа (Рис. 12, А) резистор Rвх2 в работе схемы не участвует (через него только «бесполезно» течет ток I вх2 от источника сигнала на общую шину). Получаем инвертирующий повторитель с усилением равным минус 1 (см. Рис. 6). А вот при разомкнутом положении ключа SA (Рис. 12, Б) получаем неинвертирующий повторитель с усилением равным +1.

Принцип работы этой схемы можно выразить и несколько по-другому. При замкнутом ключе SA она работает как инвертирующий усилитель с усилением, равным минус 1, а при разомкнутом - одновременно (!) и как инвертирующий усилитель с усилением, минус 1, и как неинвертирующий усилитель с усилением +2, откуда: Ку = +2 + (–1) = +1.

В таком виде эту схему можно использовать, если, например, на этапе проектирования неизвестна полярность входного сигнала (скажем, от датчика, к которому нет доступа до начала наладки устройства). Если же в качестве ключа использовать транзистор (например, полевой), управляемый от входного сигнала с помощью компаратора (о нем речь будет вестись ниже), то получим синхронный детектор (синхронный выпрямитель). Конкретная реализация такой схемы, конечно же, выходит за рамки начального ознакомления с работой ОУ и мы её здесь опять же подробно рассматривать не будем.

А теперь давайте рассмотрим принцип суммирования входных сигналов (Рис. 13, А), а заодно разберемся, какие же номиналы резисторов Rвх и Rоос должны быть в реальности.


Рис. 13 Принцип работы инвертирующего сумматора

Берем за основу уже рассмотренный выше инвертирующий усилитель (Рис. 5), только ко входу ОУ подключаем не один, а два входных резистора Rвх1 и Rвх2. Пока что, в «учебных» целях, принимаем сопротивления всех резисторов, включая Rоос, равными 1 кОм. На левые выводы Rвх1 и Rвх2 подаем входные сигналы, равные +1 В. Через эти резисторы протекают токи, равные 1 мА (показаны стрелками, направленными слева направо). Для поддержания на инвертирующем входе такого же потенциала, как и на неинвертирующем (0 В), через резистор Rоос должен протекать ток, равный сумме входных токов (1 мА +1 мА = 2 мА), показанный стрелкой, направленной в противоположном направлении (справа налево), для чего на выходе ОУ должно быть напряжение минус 2 В.

Тот же самый результат (выходное напряжение минус 2 В) можно получить, если на вход инвертирующего усилителя (Рис. 5) подать напряжение +2 В, либо номинал Rвх уменьшить вдвое, т.е. до 500 Ом. Увеличим напряжение, приложенное к резистору Rвх2 до +2 В (Рис. 13, Б). На выходе получим напряжение минус 3 В, что равно сумме входных напряжений.

Входов может быть не два, а сколь угодно много. Принцип работы данной схемы от этого не изменится: выходное напряжение в любом случае будет прямо пропорционально алгебраической сумме (с учетом знака!) токов, проходящих через резисторы, подключенные к инвертирующему входу ОУ (обратно пропорционально их номиналам), независимо от их количества.

Если же, на входы инвертирующего сумматора подать сигналы, равные +1 В и минус 1 В (Рис. 13, В), то протекающие через них токи будут разнонаправлены, они взаимно скомпенсируются и на выходе будет 0 В. Через резистор Rоос в таком случае ток протекать не будет. Иными словами, ток, протекающий по Rоос, алгебраически суммируется со входными токами.

Отсюда также проистекает важный момент: пока мы оперировали небольшими входными напряжениями (1…3 В), выход ОУ широкого применения вполне мог обеспечить такой ток (1…3 мА) для Rоос и что-то ещё оставалось для нагрузки, подключенной к выходу ОУ. Но если напряжения входных сигналов увеличить до максимально допустимых (близких к напряжениям питания), то получается, что весь выходной ток уйдет в Rоос. Для нагрузки ничего не останется. А кому нужен усилительный каскад, который работает «сам на себя»? Кроме того, номиналы входных резисторов, равные всего 1 кОм (соответственно, определяющие входное сопротивление инвертирующего усилительного каскада), требуют протекания по ним чрезмерно больших токов, сильно нагружающих источник сигнала. Поэтому в реальных схемах сопротивление Rвх выбирается не менее 10 кОм, но и желательно не более 100 кОм, чтобы при заданном коэффициенте усиления не ставить Rоос слишком большого номинала. Хотя эти величины и не являются абсолютными, а только прикидочными, как говорится, «в первом приближении» - всё зависит от конкретной схемы. В любом случае нежелательно, чтобы через Rоос протекал ток, превышающий 5…10% максимального выходного тока данного конкретного ОУ.

Суммируемые сигналы можно подавать и на неинвертирующий вход. Получается неинвертирующий сумматор . Принципиально такая схема будет работать точно так же, как и инвертирующий сумматор, на выходе которого будет сигнал, прямо пропорциональный входным напряжениям и обратно пропорциональный номиналам входных резисторов. Однако практически она используется намного реже, т.к. содержит «грабли», которые следует учитывать.

Поскольку Правило 2 действует только для инвертирующего входа, на котором действует «виртуальный потенциал нуля», то на неинвертирующем будет потенциал, равный алгебраической сумме входных напряжений. Следовательно, входное напряжение, имеющееся на одном из входов, будет влиять на напряжение, поступающее на другие входы. «Виртуального потенциала» ведь на неинвертирующем входе нет! В итоге приходится применять дополнительные схемотехнические ухищрения.

До сих пор мы рассматривали схемы на ОУ с ООС. А что будет, если обратную связь убрать вообще? В таком случае мы получаем компаратор (Рис. 14), т.е., устройство, сравнивающее по абсолютному значению два потенциала на своих входах (от английского слова compare - сравнивать). На его выходе будет напряжение, приближающееся к одному из напряжений питания в зависимости от того, какой из сигналов больше другого. Обычно входной сигнал подается на один из входов, а на другой - постоянное напряжение, с которым он сравнивается (т.н. «опорное напряжение»). Оно может быть любым, в том числе и равным нулевому потенциалу (Рис. 14, Б).


Рис. 14 Схема включения ОУ как компаратора

Однако, не всё так хорошо «в королевстве Датском»… А что произойдет, если напряжение между входами будет равно нулю? По идее, на выходе тоже должен быть ноль, но в реальности - никогда . Если потенциал на одном из входов хоть на чуть-чуть перевесит потенциал другого, то уже этого будет достаточно, чтобы на выходе возникли хаотические скачки напряжения из-за случайных возмущений, наводящихся на входы компаратора.

В реальности любой сигнал является «зашумленным», т.к. идеала не может быть по определению. И в области, близкой к точке равенства потенциалов входов, на выходе компаратора появится пачка выходных сигналов вместо одного четкого переключения. Для борьбы с этим явлением в схему компаратора часто вводят гистерезис путем создания слабой положительной ПОС с выхода на неинвертирующий вход (Рис. 15).


Рис. 15 Принцип действия гистерезиса в компараторе за счет ПОС

Проанализируем работу этой схемы. Напряжения её питания составляют ±10 В (для ровного счета). Сопротивление Rвх равно 1 кОм, а Rпос - 10 кОм. В качестве опорного напряжения, поступающего на инвертирующий вход, выбран потенциал средней точки. Красной кривой показан входной сигнал, поступающий на левый вывод Rвх (вход схемы компаратора), синей - потенциал на неинвертирующем входе ОУ и зеленой - выходной сигнал.

Пока входной сигнал имеет отрицательную полярность, на выходе - отрицательное напряжение, которое через Rпос суммируется с входным напряжением обратно пропорционально номиналам соответствующих резисторов. В результате потенциал неинвертирующего входа во всем диапазоне отрицательных значений на 1 В (по абсолютному значению) превышает уровень входного сигнала. Как только потенциал неинвертирующего входа уравняется с потенциалом инвертирующего (для входного сигнала это будет составлять + 1 В), напряжение на выходе ОУ начнет переключаться с отрицательной полярности в положительную. Суммарный потенциал на неинвертирующем входе начнет лавинообразно становиться ещё более положительным, поддерживая процесс такого переключения. В итоге незначительные шумовые колебания входного и опорного сигналов компаратор просто «не заметит», поскольку они будут на много порядков меньшими по амплитуде, чем описанная «ступенька» потенциала на неинвертирующем входе при переключении.

При снижении входного сигнала обратное переключение выходного сигнала компаратора произойдет при входном напряжении минус 1 В. Вот эта разница между уровнями входного сигнала, ведущими к переключению выхода компаратора, равная в нашем случае суммарно 2 В, и называется гистерезисом . Чем больше сопротивление Rпос по отношению к Rвх (меньше глубина ПОС), тем меньший гистерезис переключения. Так, при Rпос = 100 кОм он будет составлять всего 0,2 В, а при Rпос = 1 Мом - 0,02 В (20 мВ). Выбирается гистерезис (глубина ПОС), исходя из реальных условий функционирования компаратора в конкретной схеме. В какой и 10 мВ будет много, а в какой - и 2 В мало.

К сожалению, не каждый ОУ и не во всех случаях можно использовать в качестве компаратора . Выпускаются специализированные микросхемы компараторов, предназначенные для согласования между аналоговыми и цифровыми сигналами. Часть из них специализирована для подключения к цифровым ТТЛ-микросхемам (597СА2), часть - цифровым ЭСЛ-микросхемам (597СА1), однако большинство является т.н. «компараторами широкого применения» (LM393/LM339/К554СА3/К597СА3). Их основное отличие от ОУ заключается в особом устройстве выходного каскада, который выполнен на транзисторе с открытым коллектором (Рис. 16).


Рис. 16 Выходной каскад компараторов широкого применения
и его подключение к нагрузочному резистору

Это требует обязательного применения внешнего нагрузочного резистора (R1), без которого выходной сигнал просто физически не способен сформировать высокий (положительный) выходной уровень. Напряжение +U2, к которому подключается нагрузочный резистор, может быть иным, чем напряжение питания +U1 самой микросхемы компаратора. Это позволяет простыми средствами обеспечить выходной сигнал нужного уровня - будь он ТТЛ или КМОП.

Примечание

В большинстве компараторов, примером которых могут быть сдвоенные LM393 (LM193/LM293) или точно такие же по схемотехнике, но счетверенные LM339 (LM139/LM239), эмиттер транзистора выходного каскада соединен с минусовым выводом питания, что несколько ограничивает область их применения. В этой связи хотел бы обратить внимание на компаратор LM31 (LM111/LM211), аналогом которого является отечественный 521/554СА3, в котором отдельно выведены как коллектор, так и эмиттер выходного транзистора, которые можно подключать к иным напряжениям, чем напряжения питания самого компаратора. Единственным и относительным его недостатком является только то, что в 8-выводном (иногда в 14 выводном) корпусе он всего лишь один.

До сих пор мы рассматривали схемы, в которых входной сигнал поступал на вход(ы) через Rвх, т.е. все они являлись преобразователями входного напряжения в выходное напряжение же. При этом входной ток протекал через Rвх. А что будет, если его сопротивление принять равным нулю? Работать схема будет точно так же, как и рассмотренный выше инвертирующий усилитель, только в качестве Rвх будет служить выходное сопротивление источника сигнала (Rвых), а мы получим преобразователь входного тока в выходное напряжение (Рис. 17).


Рис. 17 Схема преобразователя тока в напряжение на ОУ

Поскольку на инвертирующем входе потенциал такой же, как и на неинвертирующем (в данном случае равен «виртуальному нулю»), весь входной ток (I вх ) будет протекать через Rоос между выходом источника сигнала (G) и выходом ОУ. Входное сопротивление такой схемы близко к нулевому, что позволяет строить на ее основе микро/миллиамперметры, практически не влияющие на ток, протекающий по измеряемой цепи. Пожалуй, единственным ограничением является допустимый диапазон входных напряжений ОУ, который не следует превышать. С её помощью можно построить также, например, линейный преобразователь тока фотодиода в напряжение и множество других схем.

Мы рассмотрели основные принципы функционирования ОУ в различных схемах его включения. Остался один важный вопрос: их питание .

Как было сказано выше, ОУ типично имеет всего 5 выводов: два входа, выход и два вывода питания, положительного и отрицательного. В общем случае используется двуполярное питание, то есть источник питания имеет три вывода с потенциалами: +U; 0; –U.

Еще раз внимательно рассмотрим все приведенные выше рисунки и увидим, что отдельного вывода средней точки в ОУ НЕТ ! Для работы их внутренней схемы она просто не нужна. На некоторых схемах со средней точкой соединялся неинвертирующий вход, однако, это не является правилом.

Следовательно, подавляющее большинство современных ОУ предназначены для питания ОДНОПОЛЯРНЫМ напряжением! Возникает закономерный вопрос: «А зачем же тогда нужно двуполярное питание», если мы так упорно и с завидным постоянством изображали его на рисунках?

Оказывается, оно просто очень удобно для практических целей по следующим причинам:

А) Для обеспечения достаточного тока и размаха выходного напряжения через нагрузку (Рис. 18).


Рис. 18 Протекание выходного тока через нагрузку при различных вариантах питании ОУ

Пока что не будем рассматривать входные (и ООС) цепи схем, изображенных на рисунке («чёрный ящик»). Примем, как данность, что на вход подается какой-то входной синусоидальный сигнал (черная синусоида на графиках) и на выходе получается такой же синусоидальный сигнал, усиленный по отношению ко входному цветная синусоида на графиках).

При подключении нагрузки Rнагр. между выходом ОУ и средней точки соединения источников питания (GB1 и GB2) - Рис. 18, А, ток через нагрузку протекает симметрично относительно средней точки (соответственно, красная и синяя полуволны), а его амплитуда максимальна и амплитуда напряжения на Rнагр. также максимально возможна - она может достигать почти напряжений питания. Ток от источника питания соответствующей полярности замыкается через ОУ, Rнагр. и источник питания (красная и синяя линии, показывающие протекание тока в соответствующем направлении).

Поскольку внутреннее сопротивление источников питания ОУ весьма мало, ток, проходящий через нагрузку, ограничен только её сопротивлением и максимальным выходным током ОУ, которое типично составляет 25 мА.

При питании ОУ однополярным напряжением в качестве общей шины выбирается обычно отрицательный (минусовый) полюс источника питания, к которому и подключается второй вывод нагрузки (Рис. 18, Б). Теперь ток через нагрузку может протекать только в одном направлении (показано красной линией), второму направлению просто неоткуда взяться. Иными словами, ток через нагрузку становится асимметричным (пульсирующим).

Однозначно утверждать, что такой вариант плох, нельзя. Если нагрузкой является, скажем, динамическая головка, то для неё это плохо однозначно. Однако, существует множество применений, когда подключение нагрузки между выходом ОУ и одной из шин питания (как правило, отрицательной полярности), не только допустимо, но и единственно возможно.

Если же всё-таки нужно обеспечить симметрию протекания тока через нагрузку при однополярном питании, то приходится гальванически развязывать её от выхода ОУ гальванически конденсатором С1 (Рис. 18, В).

Б) Для обеспечения нужного тока инвертирующего входа, а также привязки входных сигналов к какому-то произвольно выбранному уровню, принимаемому за опорный (нулевой) - задания режима работы ОУ по постоянному току (Рис. 19).


Рис. 19 Подключение источника входного сигнала при различных вариантах питания ОУ

Теперь рассмотрим варианты подключения источников входных сигналов, исключив из рассмотрения подключение нагрузки.

Подключение инвертирующего и неинвертирующего входов к средней точке соединения источников питания (Рис. 19, А) было рассмотрено при анализе приведенных ранее схем. Если неинвертирующий вход тока не потребляет и просто принимает потенциал средней точки, то через источник сигнала (G) и Rвх, включенные последовательно, ток-то протекает, замыкаясь через соответствующий источник питания! А поскольку их внутренние сопротивления пренебрежимо малы по сравнению со входным током (на много порядков меньше, чем Rвх), то и влияния на напряжения питания он практически не оказывает.

Таким образом, при однополярном питании ОУ, можно совершенно спокойно сформировать потенциал, подаваемый на его неинвертирующий вход, с помощью делителя R1R2 (Рис. 19, Б, В). Типичные номиналы резисторов этого делителя составляют 10…100 кОм, причем нижний (подключенный к общей минусовой шине) крайне желательно зашунтировать конденсатором на 10…22 мкф, чтобы существенно снизить влияние пульсаций напряжения питания на потенциал такой искусственной средней точки .

А вот источник сигнала (G) к этой искусственной средней точке подключать крайне нежелательно всё из-за того же входного тока. Давайте прикинем. Даже при номиналах делителя R1R2 = 10 кОм и Rвх = 10…100 кОм, входной ток I вх составит в лучшем случае 1/10, а в худшем - до 100% тока, проходящего через делитель. Следовательно, на столько же будет «плавать» потенциал на неинвертирующем входе в сочетании (синфазно) с входным сигналом.

Чтобы устранить взаимовлияние входов друг на друга при усилении сигналов постоянного тока при таком включении, для источника сигнала следует организовать отдельный потенциал искусственной средней точки, формируемый резисторами R3R4 (Рис. 19, Б), либо, если усиливается сигнал переменного тока, гальванически развязать источник сигнала от инвертирующего входа конденсатором С2 (Рис. 19, В).

Следует отметить, что в приведенных выше схемах (Рис. 18, 19) мы по умолчанию приняли допущение, что выходной сигнал должен быть симметричным относительно либо средней точки источников питания, либо искусственной средней точки. В реальности это нужно не всегда. Довольно часто нужно, чтобы выходной сигнал имел преимущественно либо положительную, либо отрицательную полярность. Поэтому совершенно не обязательно, чтобы положительная и отрицательная полярности источника питания были равны по абсолютному значению. Одно из них может быть значительно меньше по абсолютному значению, чем другое - только таким, чтобы обеспечить нормальное функционирование ОУ.

Возникает закономерный вопрос: «А каким именно»? Чтобы ответить на него, коротко рассмотрим допустимые диапазоны напряжений входных и выходного сигналов ОУ.

У любого ОУ потенциал на выходе не может быть выше, чем потенциал положительной шины питания и ниже, чем потенциал отрицательной шины питания. Иными словами, выходное напряжение не может выйти за пределы питающих напряжений. Например, для ОУ OPA277 выходное напряжение при сопротивлении нагрузки 10 кОм меньше напряжения положительной шины питания на 2 В и отрицательной шины питания - на 0,5 В. Ширина этих «мертвых зон» выходного напряжения, которых не может достичь выход ОУ, зависит от ряда факторов, таких, как схемотехника выходного каскада, сопротивление нагрузки и др.). Существуют ОУ, у которых мертвые зоны минимальны, например, по 50 мВ до напряжения шин питания при нагрузке 10 кОм (для OPA340), эта особенность ОУ называется «rail-to-rail» (R2R).

С другой стороны, для ОУ широкого применения входные сигналы также не должны превышать напряжения питания, а для некоторых - быть меньше их на 1,5…2 В. Однако, существуют ОУ со специфической схемотехникой входного каскада (например, те же LM358/LM324), которые могут работать не только от уровня отрицательного питания, но даже «минусовее» его на 0,3 В, что существенно облегчает их использование при однополярном питании с общей отрицательной шиной.

Давайте, наконец, рассмотрим и пощупаем этих «жучков-паучков». Можно даже обнюхать и облизать. Разрешаю. Рассмотрим их наиболее частые варианты, доступные начинающим радиолюбителям. Тем более, если приходится выпаивать ОУ из старой аппаратуры.

Для ОУ старых разработок, в обязательном порядке требующих внешних цепей для частотной коррекции, чтобы предотвратить самовозбуждение, было характерно наличие дополнительных выводов. Некоторые ОУ из-за этого даже не «влезали» в 8-выводный корпус (рис. 20, А) и изготавливались в 12-выводных круглых металло-стеклянных, например, К140УД1, К140УД2, К140УД5 (Рис. 20, Б) или в 14-выводных DIP-корпусах, например, К140УД20, К157УД2 (Рис. 20, В). Аббревиатура DIP является сокращением английского выражения «Dual In line Package» и переводится как «корпус с двусторонним расположением выводов».

Круглый металло-стеклянный корпус (Рис. 20, А, Б) применялся, как основной, для импортных ОУ примерно до середины 70-х годов, а для отечественных ОУ - до середины 80-х и применяется сейчас для т.н. «военных» применений («5-я приемка»).

Иногда отечественные ОУ размещались в довольно «экзотических» в настоящее время корпусах: 15-выводный прямоугольный метало-стеклянный для гибридного К284УД1 (Рис. 20, Г), в котором ключом является дополнительный 15-й вывод от корпуса, и других. Правда, планарные 14-выводные корпуса (Рис. 20, Д) для размещения в них ОУ мне лично не встречались. Они применялись для цифровых микросхем.


Рис. 20 Корпуса отечественных операционных усилителей

Современные же ОУ в большинстве своем содержат корректирующие цепи прямо на кристалле, что позволило обходиться минимальным количе­ством выводов (как пример - 5-выводный SOT23-5 для одиночного ОУ - Рис. 23). Это позволило в одном корпусе размещать по два-четыре полностью независимых (кроме общих выводов питания) ОУ, изготовленных на одном кристалле.


Рис. 21 Двухрядные пластиковые корпуса современных ОУ для выводного монтажа (DIP)

Иногда можно встретить ОУ, размещенные в однорядных 8-выводных (Рис. 22) либо 9-выводных корпусах (SIP) - К1005УД1. Аббревиатура SIP является сокращением английского выражения «Single In line Package» и переводится как «корпус с односторонним расположением выводов».


Рис. 22 Однорядный пластиковый корпус сдвоенных ОУ для выводного монтажа (SIP-8)

Они были разработаны для минимизации места, занимаемого на плате, но, к сожалению, «опоздали»: к этому времени широкое распространение заняли корпуса для поверхностного монтажа (SMD - Surface Mounting Device) путем подпайки прямо к дорожкам платы (Рис. 23). Однако, для начинающих их использование представляет существенные сложности.


Рис. 23 Корпуса современных импортных ОУ для поверхностного монтажа (SMD)

Очень часто одна и та же микросхема может «упаковываться» производителем в различные корпуса (Рис. 24).


Рис. 24 Варианты размещения одной и той же микросхемы в разных корпусах

Выводы всех микросхем имеют последовательную нумерацию, отсчитываемую от т.н. «ключа», указывающего на расположение вывода под номером 1. (Рис. 25). В любом случае, если расположить корпус выводами от себя , их нумерация по возрастающей идет против часовой стрелки !


Рис. 25 Расположение выводов операционных усилителей
в различных корпусах (цоколевка), вид сверху;
направление нумерации показано стрелками

В круглых металло-стеклянных корпусах ключ имеет вид бокового выступа (Рис. 25, А, Б). Вот с расположения этого ключа возможны огроменных размеров «грабли»! В отечественных 8-выводных корпусах (302.8) ключ располагается напротив первого вывода (Рис. 25, А), а в импортных ТО-5 - напротив восьмого вывода (Рис. 25, Б). В 12-выводных корпусах, как отечественных (302.12), так и импортных, ключ расположен между первым и 12-м выводами.

Обычно инвертирующий вход как в круглых металло-стеклянных, так и в DIP-корпусах, соединен со 2-м выводом, неинвертирующий - с 3-м, выход - с 6-м, минус питания - с 4-м и плюс питания - с 7-м. Однако, есть и исключения (ещё одни возможные «грабли»!) в цоколевке ОУ К140УД8, К574УД1. В них нумерация выводов сдвинута на один против часовой стрелки по сравнению с общепринятой для большинства других типов, т.е. с выводами они соединены, как в импортных корпусах (Рис. 25, Б), а нумерация соответствует отечественным (Рис. 25, А).

В последние годы большинство ОУ «бытового назначения» стали размещать в пластмассовых корпусах (Рис. 21, 25, В-Д). В этих корпусах ключом является либо углубление (точка) напротив первого вывода, либо вырез в торце корпуса между первым и 8-м (DIP-8) или 14-м (DIP-14) выводами, либо фаска вдоль первой половины выводов (Рис. 21, посередине). Нумерация выводов в этих корпусах также идет против часовой стрелки при виде сверху (выводами от себя).

Как было сказано выше, ОУ с внутренней коррекцией имеют всего пять выводов, из которых только три (два входа и выход) принадлежат каждому отдельному ОУ. Это позволило в одном 8-выводном корпусе разместить на одном кристалле по два полностью независимых (за исключением плюса и минуса питания, требующих еще двух выводов) ОУ (Рис. 25, Г), а в 14-выводном корпусе - даже четыре (Рис. 25, Д). В итоге в настоящее время большинство ОУ выпускаются как минимум сдвоенными, например, TL062, TL072, TL082, дешевые и простые LM358 и др. Точно такие же по внутренней структуре, но счетверенные - соответственно, TL064, TL074, TL084 и LM324.

В отношении отечественного аналога LM324 (К1401УД2) существуют еще одни «грабли»: если в LM324 плюс питания выведен на 4-й вывод, а минус - на 11-й, то в К1401УД2 наоборот: плюс питания выведен на 11-й вывод, а минус - на 4-й. Однако, никаких сложностей с разводкой это отличие не вызывает. Поскольку цоколевка выводов ОУ полностью симметрична (Рис. 25, Д), нужно просто перевернуть корпус на 180 градусов, чтобы 1-й вывод занял место 8-го. Да и всё.

Пара слов относительно маркировки импортных ОУ (да и не только ОУ). Для ряда разработок первых 300 цифровых обозначений было принято обозначать группу качества первой цифрой цифрового кода. Например, ОУ LM158/LM258/LM358, компараторы LM193/LM293/LM393, регулируемые трехвыводные стабилизаторы TL117/TL217/TL317 и пр. совершенно идентичны по внутренней структуре, но различаются по температурному рабочему диапазону. Для LM158 (TL117) диапазон рабочих температур составляет от минус 55 до +125…150 градусов по Цельсию (т.н. «боевой» или военный диапазон), для LM258 (TL217) - от минус 40 до +85 градусов («промышленный» диапазон) и для LM358 (TL317) - от 0 до +70 градусов («бытовой» диапазон). При этом цена на них может быть совершенно не соответствующей такой градации, либо отличаться очень незначительно (неисповедимы пути ценообразования !). Так что покупать их можно с любой маркировкой, доступной «для кармана» начинающего, особо не гоняясь за первой «тройкой».

После исчерпания первых трех сотен цифровой маркировки группы надежности стали отмечать буквами, значение которых расшифровываются в даташитах (Datasheet дословно переводится как «таблица данных») на данные компоненты.

Заключение

Вот мы и изучили «азбуку» работы ОУ, немного захватив и компараторы. Дальше надо учиться складывать из этих «букв» слова, предложения и целые осмысленные «сочинения» (работоспособные схемы).

К сожалению, «Невозможно объять необъятное». Если изложенный в данной статье материал помог понять, как работают эти «черные ящики», то дальнейшее углубление в разбор их «начинки», влияния входных, выходных и переходных характеристик, является задачей более продвинутого изучения. Информация об этом подробно и досконально изложена во множестве существующей литературы. Как говаривал дедушка Вильям Оккам: «Не следует умножать сущности сверх необходимого». Незачем повторять уже хорошо описанное. Нужно только не лениться и прочитать её.


11. http://www.texnic.ru/tools/lekcii/electronika/l6/lek_6.html

Засим позвольте откланяться, с уважением и проч., автор Алексей Соколюк ()

Для упрощения процесса построения регулятора тока на операционных усилителях, преобразуем его ПФ (8) следующим образом:

(8")

Первое слагаемое в (8") представляет собой произведение изодромного и апериодического звеньев, второе - это апериодическое звено, третье - инерционное дифференцирующее звено. Из курса "Электроники" известно, как собрать на операционных усилителях эти звенья.

Рисунок 10 - Регулятор тока на операционных усилителях

Схема, как видно, состоит из трех параллельных ветвей, замыкающихся выходами на инвертирующий сумматор на операционном усилителе, поэтому выходной сигнал u 2 будет инвертирован относительно входногоu 1 . В случае необходимости согласованияu 1 иu 2 потребуется поставить дополнительно на выходе сумматора инвертор. Этот прием был применен в средней ветви схемы, поскольку апериодическое звено построено на инвертирующем операционном усилиителе. Верхняя ветвь отвечает за ПФ
. Произведение изодромного и апериодического звеньев сделано путем последовательного соединения их схем на инвертирующих операционных усилителях, и так как каждое звено инвертирует сигнал, то согласования входа и выхода верхней ветви не требуется. Нижняя ветвь, реализующая инерционное динамическое звено, входной сигнал не инвертирует.

Рассчитаем параметры схемы. Известно, что

Задав R 1 =R 3 =R 5 = R 8 =R 12 =R 17 = R 18 = 500 Ом,R 13 = 300 Ом,R 14 = 50 Ом получим, чтоС 1 ==
= 240 мкФ,С 2 =С 3 ==
= 10 мкФ, С 4 =
=
= 40 мкФ,R 2 = =
= 380 Ом,R 4 =R 6 =R 9 =R 10 =R 11 =R 16 = 500 Ом,R 7 = 110 Ом,R 15 =
= =
= 310 Ом.

2.3AmLahx- программа построения асимптотических лачх и синтеза регуляторов методом желаемых лачх

2.3.1 Общие сведения о программе

Программа AmLAHXпредназначена для выполнения в средеMatLab6.0 или выше и предоставляет пользователю следующие возможности:

    имеет GUI-интерфейс;

    строит асимптотические ЛАЧХ динамических объектов, заданных в виде передаточных функций;

    строит в диалоговом режиме желаемую ЛАЧХ разомкнутой системы по задаваемым критериям качества, в том числе, программа позволяет выбирать пользователю сопрягающие участки (их наклоны) в зависимости от вида ЛАЧХ объекта управления;

    обеспечивает автоматическое вычитание из ЛАЧХ разомкнутой системы ЛАЧХ объекта управления и построение таким образом ЛАЧХ регулятора, возвращает сопрягающие частоты и наклоны асимптот, что позволяет достаточно легко по ЛАЧХ регулятора записать его передаточную функцию (в последующих версиях программа будет делать это автоматически);

    все ЛАЧХ строятся с указанием наклонов асимптот, пользователь может сам определять цвета каждой ЛАЧХ в отдельности, а также формат надписей на графиках (толщина, высота).

2.3.2 Командная строка программы

Полная командная строка для запуска программы имеет вид

yy = amlahx(num ,den,flag,param ),

где num иden - соответственно числитель и знаменатель ПФ объекта управления,num иden должны быть векторами, записанными в форматеMatLab(смотрите пример ниже);

flag - режим работы (1 (по умолчанию) или 2);

param - вектор из 6 элементов (чисел), 1, 2 и 3 элементы соответственно толщина ЛАЧХ ОУ, РС и УУ, 4, 5 и 6 - цвета этих ЛАЧХ (по умолчанию толщина всех ЛАЧХ равна 1, цвета соответственно красный, голубой и зеленый).

AmLAHX без параметров работает вdemo-режиме, в этом случае

num = ,den = ,flag = 2.

Регулятор выполняет вычисление рассогласования и его преобразование в управляющее воздействие в соответствии с определенной математической операцией. ВСАУ используются в основном следующие типы регуляторов: пропорциональный (П), интегральный (И), пропорционально-интегральный (ПИ), пропорционально-интегрально-дифференциальный (ПИД). В зависимости от вида преобразуемых сигналов различают аналоговые и цифровые регуляторы. Аналоговые регуляторы (АР) реализуются на основе операционных усилителей, цифровые - на основе специализированных вычислительных устройств или микропроцессоров. Аналоговые регуляторы преобразуют только аналоговые сигналы, являющиеся непрерывными функциями времени. При прохождении через АР преобразуется каждое мгновенное значение непрерывного сигнала.

Для реализации АР операционный усилитель (ОУ) включается по схеме суммирующего усилителя с отрицательной обратной связью. Тип регулятора и его передаточная функция определяются схемой включения резисторов и конденсаторов в цепях на входе и в обратной связи ОУ.

При анализе регуляторов воспользуемся двумя основными допущениями, которые с высокой степенью точности выполняются для ОУ с отрицательной обратной связью в линейном режиме работы:

Дифференциальное входное напряжение U вх ОУ равно нулю;

Инвертирующий и неинвертирующий входы ОУ тока не потребляют, т.е. входные токи (рис. 2.2). Так как неинвертирующий вход подключен к шине «нуль», то, согласно первому допущению, потенциал φ а инвертирующего входа также равен нулю.

Рис. 2.2. Функциональная схема пропорционального регулятора

Перейдя к приращению переменных в уравнении (2.1) и использовав преобразование Лапласа, получим передаточную функцию П-регулятора:

где - коэффициент пропорционального усиления.

Таким образом, в П-регуляторе осуществляется пропорциональноеусиление (умножение на постоянную )сигнала рассогласования u рас.

Коэффициент может быть как больше, так и меньше единицы. На рис. 2.3 представлена зависимость u у = f(t) П-регулятора при изменении сигнала рассогласования u рас.

Интегральный регулятор (И-регулятор) реализуется при включении в цепь обратной связи ОУ конденсатора С ОУ (рис. 2.4). Передаточная функция И-регулятора

где - постоянная интегрирования, с.

Рис. 2.4. Функциональная схема интегрального регулятора

В И-регуляторе осуществляется интегрирование сигнала рассогласования u рас.

Пропорционально-интегральный регулятор (ПИ-регулятор) реализуется включением в обратную связь резистора R оу и конденсатора С ОУ (рис. 2.6).

Рис. 2.6. Функциональная схема ПИ-регулятора

Передаточная функция ПИ-регулятора

является суммой передаточных функций пропорционального и интегрального регуляторов. Так как ПИ-регулятор обладает свойствами П- и И-регуляторов, то он осуществляет одновременно пропорциональное усиление и интегрирование сигнала рассогласования u рас.

Пропорционально-интегрально-дифференциальный регулятор (ПИД-регулятор) реализуется в простейшем случае включением в ПИ-регуляторе параллельно резисторам R 3 и R OC конденсаторов С 3 и С ОС (рис. 2.8).

Рис. 2.8. Функциональная схема ПИД-регулятора

Передаточная функция ПИД-регулятора

где – коэффициент пропорционального усиления ПИД-регулятора; - постоянная дифференцирования; - постоянная интегрирования; ; .

Передаточная функция ПИД-регулятора является суммой передаточных функций пропорционального, интегрального и дифференциального регуляторов. ПИД-регулятор осуществляет одновременно пропорциональное усиление, дифференцирование и интегрирование сигнала рассогласования u рас.

17 Вопрос Датчики координат АЭП.

Структурная схема датчика. В АЭП (автоматизированный электропривод) для получения сигналов обратной связи по управляемым координатам используются датчики.Датчик представляет собой устройство, информирующее о состоянии управляемой координаты АЭП путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрический сигнал.

Управляемыми в АЭП являются электрические и механические координаты: ток, напряжение, ЭДС, момент, скорость, перемещение и т.д. Для их измерения используют соответствую­щие датчики.

Датчик координат АЭП структурно может быть представлен в виде последовательного соединения измерительного преобразователя (ИП) и согласующего устройства (СУ) (рис. 2.9). Измерительный преобразователь преобразует координату х в электрический сигнал напряжения и (или тока i ), пропорциональный х. Согласующее устройство осуществляет преобразование выходного сигнала и ИП в сигнал обратной связи u ОС , который по величине и форме удовлетворяет САУ.

Рис. 2.9. Структурная схема датчика координат АЭП

Датчики тока. Датчики тока (ДТ) предназначены для получе­ния информации о силе и направлении тока двигателя. К ним предъявляют следующие требования:

Линейность характеристики управления в диапазоне от 0,1I ном до 5 I ном не менее 0,9;

Наличие гальванической развязки силовой цепи и системы управления;

Высокое быстродействие.

В качестве измерительных преобразователей в ДТ используются трансформаторы тока, дополнительные (компенсационные) обмотки сглаживающих дросселей, элементы Холла, шунты.

Широкое распространение для измерения тока двигателей получили датчики тока на основе шунтов. Шунт представляет собой четырехзажимный резистор с чисто активным сопротивлением R ш (безындуктивный шунт), к токовым зажимам которого подключается силовая цепь, а к потенциальным - измерительная.

По закону Ома падение напряжения на активном сопротивлении и=R ш i.

Для ослабления влияния шунта на прохождение тока в цепи двигателя его сопротивление должно быть минимальным. Номинальное падение напряжения на шунте составляет обычно 75 мВ, поэтому его необходимо усилить до требуемых значений (3,0...3,5 В). Так как шунт имеет потенциальную связь с силовой цепью, датчик тока должен содержать устройство гальванической развязки. В качестве таких устройств применяются трансформаторные и оптоэлектронные устройства. Структурная схема датчика тока на основе шунта приведена на рис. 2.13.

Рис. 2.13. Структурная схема датчика тока на основе шунта

В настоящее время все большее распространение получают датчики тока на основе элементов Холла, которые выполняются из полупроводникового материала в виде тонкой пластинки или пленки (рис. 2.14). При прохождении электрического тока I Х по пластинке, расположенной перпендикулярно к магнитному полю с индукцией В, в пластинке наводится ЭДС Холла e Х:

где - коэффициент, зависящий от свойств материала и размеров пластинки.

Датчики напряжения. В качестве измерительного преобразователя напряжения в электроприводе используются резистивные делители напряжения (рис. 2.16).

Рис. 2.16. Функциональная схема датчика напряжения

Выходное напряжение делителя.

Датчики ЭДС. При невысоких требованиях к диапазону регулированияскорости (до 50) в качестве главной обратной связи в электроприводе применяется обратная связь по ЭДС.

Рис. 2.17. Функциональная схема датчика ЭДС якоря

Датчики скорости. Для получения электрического сигнала, пропорционального угловой скорости ротора двигателя, используются тахогенераторы и импульсные датчики скорости. Тахогенераторы применяются в аналоговых САУ, импульсные - в цифровых.

К датчикам скорости предъявляются жесткие требования по линейности характеристики управления, стабильности выходного напряжения и уровню его пульсаций, так как они определяют статические и динамические параметры привода в целом.

Широкое распространение в электроприводе получили тахогенераторы постоянного тока с постоянными магнитами. Для уменьшения уровня оборотных пульсаций тахогенераторы встраиваются в электродвигатель.

В импульсных датчиках скорости в качестве первичного измерительного преобразователя используются импульсные преобразователи перемещения, у которых количество импульсов про­порционально углу поворота вала.

Датчики положения. В настоящее время в электроприводе для измерения пермещения подвижных частей машин и механизмов применяются индукционные и фотоэлектронные пре­образователи.

К индукционным относятся вращающиеся трансформаторы, сельсины и индуктосины. Индуктосины могут быть круговыми и линейными.

Вращающимися трансформаторами (ВТ) называются электрические микромашины переменного тока, преобразующие угол поворота α в синусоидальное напряжение, пропорциональное этому углу. В системе автоматического регулирования вращающиеся трансформаторы используются в качестве измерителей рассогласования, фиксирующих отклонение системы от некоторого заданного положения.

Вращающийся трансформатор имеет на статоре и роторе по две одинаковые однофазные распределенные обмотки, сдвинутые между собой на 90°. Напряжение с обмотки ротора снимается с помощью контактных колец и щеток или с помощью коль­цевых трансформаторов.

Принцип действия ВТ в синусном режиме основан на зависимости напряжения, наведенного в обмотке ротора пульсирую­щим магнитным потоком статора, от углового положения осей обмоток статора и ротора.

Сельсин представляет собой электрическую микромашину переменного тока, имеющую две обмотки: возбуждения и синхронизации. В зависимости от числа фаз обмотки возбуждения различают одно- и трехфазные сельсины. Обмотка синхронизации всегда трехфазная. В САУ широкое распространение получили бесконтактные сельсины с кольцевым трансформатором.

Обмотка синхронизации бесконтактного сельсина с кольце­вым трансформатором размещается в пазах статора, обмотка возбуждения - в пазах или на явно выраженных полюсах ротора сельсина. Особенность кольцевого трансформатора состоит в том, что его первичная обмотка располагается на статоре, а вторичная - на роторе. Обмотки имеют вид колец, размещенных в магнитной системе, состоящей из кольцевых магнитопроводов статора и ротора, которые на роторе соединяются внутренним магнитопроводом, а на статоре - внешним. В САУ сельсины используются в амплитудном и фазовращательном режимах.

Схема включения обмоток сельсина в амплитудном режиме представлена на рис. 2.19. Входной координатой сельсина в этом режиме является угол поворота ротора τ. За начало отсчета принята осевая линия обмотки фазы А.

Рис. 2.19. Функциональная схема включения обмоток сельсина в амплитудном режиме

Схема включения обмоток сельсина в фазовращательном режиме представлена на рис. 2,20. Входной координатой сельсина в этом режиме является угол поворота τ, а выходной - фаза φ выходной ЭДС е вых по отношению к переменному питающему напряжению.

Рис. 2.20. Функциональная схема включения обмоток сельсина в фазовращательном режиме

18 Вопрос Системы импульсно-фазового управления. Принципы управления тиристорами.

В выпрямителях в качестве управляемых ключей используются тиристоры. Для открывания тиристора необходимо выполнение двух условий:

Потенциал анода должен превышать потенциал катода;

На управляющий электрод необходимо подать открывающий (управляющий) импульс.

Момент появления положительного напряжения между анодом и катодом тиристора называется моментом естественного открывания. Подача открывающего импульса может быть задержана относительно момента естественного открывания на угол открывания. Вследствие этого задерживается начало прохожде­ния тока через вступающий в работу тиристор и регулируется напряжение выпрямителя.

Для управления тиристорами выпрямителя используется система импульсно-фазового управления (СИФУ), выполняющая следующие функции:

Определение моментов времени, в которые должны откры­ваться те или иные конкретные тиристоры; эти моменты време­ни задаются сигналом управления, который поступает с выхода САУ на вход СИФУ;

Формирование открывающих импульсов, передаваемых I в нужные моменты времени на управляющие электроды тиристоров и имеющих требуемые амплитуду, мощность и длительность.

По способу получения сдвига открывающих импульсов относительно точки естественного открывания различают горизонтальный, вертикальный и интегрирующий принципы управления.

При горизонтальном управлении (рис. 2.28) управляющее переменное синусоидальное напряжение u y сдвигается по фазе (по горизонтали) по отношению к напряжению u 1 , питающему выпрямитель. В момент времени ωt=α из управляющего напряжения формируются прямоугольные отпирающие импульсы U gt . Горизонтальное управление в электроприводах практически не применяется, что обусловлено ограниченным диапазоном регулирования угла α (около 120°).

При вертикальном управлении (рис. 2.29) момент подачи открывающихся импульсов определяется при равенстве управляющего напряжения u y (постоянного по форме) с переменным опорным напряжением (по вертикали). В момент равенства напряжений формируются прямоугольные импульсы U gt .

При интегрирующем управлении (рис. 2.30) момент подачи открывающих импульсов определяется при равенстве переменного управляющего напряжения и у с постоянным опорным напряжением U o п.В момент равенства напряжений формируются прямоугольные импульсы U gt .

Рис. 2.28. Горизонтальный принцип управления

Рис. 2.29. Вертикальный принцип управления

Рис. 2.30. Интегрирующий принцип управления

По способу отсчета угла открывания а СИФУ делят на многоканальные и одноканальные. В многоканальных СИФУ отсчет угла а для каждого тиристора выпрямителя производится в собственном канале, в одноканальных - в одном канале для всех тиристоров. В промышленном электроприводе преимущественное применение получили многоканальные СИФУ с вертикальным принципом управления.

Тема 11. Регуляторы координат в электроприводе

Важной функцией современных систем управления АЭП является регулирование его координат, т. е. поддержание с необходимой точностью требуемых значений тока, момента, ускорения, скорости. Основным элементом позволяющим выполнить указанную функцию, является регулятор.

р егулятор – это устройство, осуществляющее преобразование управляющего сигнала в соответствии с математической операцией, требуемой по условиям работы системы автоматического управления или регулирования. К типовым видам преобразования относятся: пропорциональное – П; пропорционально-интегральное – ПИ, пропорционально-интегро-дифференциальное – ПИД и ряд других.

Основу аналогового регулятора составляет операционный усилитель (ОУ) – усилитель постоянного тока с высоким коэффициентом усиления в разомкнутом состоянии. Наибольшее применение находят операционные усилители интегрального исполнения с корпусом круглой или прямоугольной формы. Операционный усилитель представляет собой многокаскадную структуру, в которой можно выделить входной дифференциальный усилитель ДУ с инвертирующим и прямым входами, усилитель напряжения УН, реализующий высокий коэффициент усиления, и усилитель мощности УМ, обеспечивающий необходимую нагрузочную способность операционного усилителя. Однокристальное малогабаритное исполнение операционного усилителя обусловливает высокую стабильность параметров, что позволяет получить высокий коэффициент усиления на постоянном токе. Интегральные ОУ, применяемые в промышленной электронике, обладают следующими характеристиками:

Дифференциальный коэффициент усиления в разомкнутом состоянии
k уо = 10 3 ¸ 10 5 ;

Входное сопротивление R вх > 100 кОм;

Выходное сопротивление R вых = 0,2 ¸1 кОм;

Сопротивление нагрузки R н > 2 кОм;

Полоса пропускания f п < 1 МГц;

Напряжение питания U п = ±15 В.

Для построения регуляторов обычно используют схему включения ОУ с инвертирующем входом, представленную на рис.11.1, которая имеет передаточную функцию

Используя активные и комплексные сопротивления во входной цепи (Z вх) и в обратной связи (Z ос) можно получать регуляторы с различными передаточными функциями.

Рассмотрим схемы, передаточные функции, логарифмические частотные характеристики (ЛАЧХ) и фазочастотные характеристики (ФЧХ) типовых регуляторов.



1. Пропорциональный (П-) регулятор – усилитель с жесткой отрицательной обратной связью.

Рис. 11.2. Схема П-регулятора и его характеристики

передаточная функция П-регулятора

– коэффициент усиления П–регулятора.

2. Интегральный регулятор (И-регулятор)

Рис. 11.3. Схема И-регулятора и его характеристики

передаточная функция И-регулятора

– постоянная интегрирования.

3.Пропорционально – интегральный регулятор (ПИ – регулятор) представляет собой параллельное соединение П- и И- регуляторов.

Рис. 11.4. Схема ПИ-регулятора и его характеристики

передаточная функция ПИ-регулятора

где

4. Пропорционально-дифференцирующий регулятор (ПД - регулятор).

Объединяет функции П- и Д- регуляторов. Получают параллельным подключением С вх к входному резистору R вх

Рис. 11.5. Схема ПД-регулятора и его характеристики

передаточная функция ПД-регулятора

где

Работа данной схемы сопровождается значительными высокочастотными помехами, для которых С вх представляет собой сопротивление, близкое к нулю. Для повышения устойчивости работы последовательно с конденсатором включают дополнительный резистор с небольшим сопротивлением ΔR вх, которое ограничивает токи высокочастотных помех. Передаточной функцией с ΔR вх:

где ΔТ R вх С вх, при ΔТ << Т 1 частотная характеристика практически не отличается от характеристики без ΔR вх.

5. Апериодический регулятор (инерционный первого порядка).

Рис. 11.6. Схема А-регулятора и его характеристики

передаточная функция А-регулятора

– постоянная времени апериодического звена.

Аналогичную передаточную функцию имеет схема (рис. 11.7).

Рис. 11.7. Схема А-регулятора (II вариант)

6. Пропорционально интегрально-дифференцирующий регулятор (ПИД). Выполняет функции одновременно трёх регуляторов.

Рис. 11.8. Схема ПИД- регулятора и его характеристики

передаточная функция ПИД-регулятора

где

Для снижения уровня помех на выходе регулятора и повышения устойчивости его работы последовательно с конденсатором С вх может быть включен резистор с небольшим сопротивлением ΔR вх (как для ПД регулятора).

Большими функциональными возможностями, по сравнению со стандартной схемой, имеет схема регулятора с функциональным потенциометром Z 1 , Z 2 . Для ослабления влияния помех на входе конденсаторы не используются, а включаются только активное сопротивление R вх.

  • 10. Частотное управление асинхронными двигателями.
  • Законы частотного регулирования
  • Статические механические характеристики ад при частотном управлении.
  • 12. Система генератор – двигатель (гд).
  • 13. Система тиристорный преобразователь – двигатель (тп – д).
  • 14. Регулируемый электропривод переменного тока с вентильным д-ем (вд).
  • 15. Энергетические ресурсы.
  • Доказанные запасы первичных энергоресурсов (пэр) в мире
  • 16. Теплоэлектропроизводящие установки.
  • 17. Паровые котельные установки.
  • 18. Водогрейные котельные установки.
  • 19. Тепловые сети и теплообменники.
  • 20. Теплопотребление.
  • 21. Холодильные машины, тепловые насосы.
  • 22. Нагнетательные машины.
  • 1. Центробежные венти­ляторы.
  • 3. Центробежные компрессоры.
  • 23. Водоснабжение и очистка.
  • 4) Термические и биологические способы обработки сточных вод.
  • 25 Основные принципы энергосбережения в с-мах эс(повышение эф-ти тп, лэп, электро-двигателей, с-м освещения, технолог.Установок). С-мы учета энергоресурсов.Рп и тр-ры
  • 26. Назначение, классификация исполнительных механизмов и систем управления, обобщенная функциональная схема суим.
  • 1. По виду рабочего органа исполнительного механизма:
  • 2. По степени автоматизации функций управления:
  • 3. По режимам работы:
  • 5. По виду силового преобразователя энергии:
  • 6. По месту суим в структуре асутп:
  • 27. Общий подход к проектированию суим. Основные этапы исследования и проектирования суим.
  • 28. Регуляторы суим.
  • 1. Аналоговые регуляторы класса “вход-выход” на основе операционных усилителей
  • 4. Дискретные передаточные функции и разностные уравнения
  • 36 Математическое моделирование энергосистем и задач оптимизации.
  • 37. Определение критериев подобия
  • 42Микропроцессорные устройства защиты и автоматики.
  • 3.4.7 Сетевая архитектура бмрз
  • 43Микроконтроллеры.
  • 44Программируемые контроллеры
  • 48. Системы возбуждения и автоматического регулирования.
  • 49 . Гашение магнитного поля
  • Параметры электрической системы обратной и нулевой последовательностей
  • 51. Средства и методы ограничения токов короткого замыкания в системах промышленного электроснабжения.
  • 1. Оптимизация структуры и параметров сети (схемные решения).
  • 2. Стационарное или автоматическое деление сети.
  • 3. Токоограничивающие устройства
  • 4. Оптимизация режима заземления нейтралей в электрических сетях.
  • 55. Электрические нагрузки. Показатели графиков электрических нагрузок. Методы расчёта.
  • Классификация графиков электрических нагрузок
  • Показатели графиков электрических нагрузок
  • Коэффициент спроса ().Относится к групповым графикам.
  • Коэффициент заполнения графика нагрузки ().
  • Коэффициент равномерности графика нагрузки ().
  • Определение расчётной нагрузки по установленной мощности и коэффициенту спроса. Расчётная нагрузка для группы однородных по режиму работы приёмников определяется из выражений:
  • 57. Выбор силовых трансформаторов и месторасположения питающих и цеховых трансформаторных подстанций
  • Выбор мощности силовых трансформаторов
  • Картограмма нагрузок
  • Определение центра электрических нагрузок(цэн)
  • 58. Компенсация реактивной мощности (виды и методы компенсации, выбор мощности и места установки компенсирующих устройств).
  • 59 Защита элементов системы электроснабжения в сетях до 1000 в предохранителями и автоматическими выключателями.
  • 62. Качество электрической энергии.
  • 63 Измерительные трансформаторы тока и напряжения в системах релейной защиты и противоаварийной автоматики.
  • 66. Дистанционные защиты.
  • 75. Проектирование механической части воздушных лэп.
  • 76.Выбор эл.Аппаратов.
  • 77. Регулирование напряжения в эл.Сетях.
  • 78. Единая энергетическая система (еэс) рф
  • 2. Электрические станции
  • 3. Электрические и тепловые сети
  • 4. Потребители электроэнергии
  • 79 Тепловые и атомные электростанции.
  • 1.Классификация типов эл.Станций по ряду осн.Признаков.
  • 2.Тепловые схемы (понятия принципиальных и полных схем).
  • 3.Технологическая схема тэс
  • Компоновочные схемы тэс
  • 4. Основное и вспомогательное оборудование тэс
  • Турбины и генераторы
  • Атомные электростанции
  • 80 Гидроэлектростанции
  • 28. Регуляторы суим.

    1. Аналоговые регуляторы класса “вход-выход” на основе операционных усилителей

    Независимо от технологического назначения регуляторов все они подразделяются на 2 больших класса:

    Параметрические регуляторы класса «вход/выход» (П- , ПИ-, ПИД- и т. п. регуляторы);

    Регуляторы состояния САУ (апериодические, модальные и т.п.).

    Первый класс регуляторов на функциональных схемах СУ ЭП обозначается в виде переходной функции.

    1. Пропорциональный регулятор (П-регулятор).

    Принципиальная схема регулятора приведена на рис. 4.19.

    Будем полагать, что на входе регулятора - сигнал ошибки регулирования Х вх, причемХ вх =Х з -Х ос. При этом вместо двух резисторовR З иR ос используется один -R вх.

    У вых (t )=К рег Х вх (t ).

    2. Интегральный регулятор (И-регулятор).

    Принципиальная схема регулятора приведена на рис. 4.22.

    Рис. 4.22. Принципиальная электрическая схема интегрального регулятора

    Передаточная функция регулятора

    где T T И =R ВХ С 0 .

    Временная характеристика регулятора:

    У вых (t )= У вых (0)+1/ ( R ВХ С 0)Х вх (t )t .

    Переходный процесс в регуляторе при нулевых начальных условиях (У вых (0)=0) будет иметь вид, изображенный на рис. 4.23.

    Функциональная схема интегрального регулятора приведена на рис. 4.24.

    3. Дифференциальный регулятор (Д-регулятор).

    Принципиальная схема регулятора приведена на рис. 4.25.

    Передаточная функция регулятора

    где T Д - постоянная времени интегратора,T Д =R 0 С ВХ.

    Временная характеристика регулятора:

    У вых (t )=T Д (t ),

    где (t ) - дельта-функция Дирака.

    Переходный процесс в регуляторе будет иметь вид, изображенный на рис. 4.26.

    Следует отметить, что ограниченная полоса пропускания частот самих операционных усилителей не позволяет реализовать чистое (идеальное) дифференцирование. Кроме того, в силу низкой помехозащищенности дифференциальных регуляторов сложилась практика применения реальных дифференцирующих звеньев и принципиальные схемы таких регуляторов несколько отличаются от приведенной на рис. 4. 25.

    Функциональная схема дифференциального регулятора приведена на рис. 4.27.

    4. Пропорционально-интегральный регулятор (ПИ-регулятор).

    Принципиальная схема регулятора приведена на рис. 4.28.

    Передаточная функция регулятора

    где K РЕГ - коэффициент передачи регулятора,K РЕГ =R 0 /R ВХ;

    T И - постоянная времени интегратора,T И =R ВХ С 0 .

    Временная характеристика регулятора:

    У вых (t )= У вых (0) + ( K РЕГ + t / ( R ВХ С 0))Х вх (t ).

    Переходный процесс в регуляторе при нулевых начальных условиях будет иметь вид, изображенный на рис. 4.29.

    Передаточную функцию пропорционально-интегрального регулятора часто представляют не в виде суммы двух слагаемых, а в виде так называемого изодромного звена

    , (4.53)

    где T ИЗ - постоянная времени изодромного звена,T ИЗ =R 0 C 0 ,

    T И - постоянная времени интегрирования регулятора,T И =R ВХ C 0 .

    ПИ-регулятор, включенный в структуру САУ, обеспечивает компенсацию одной большой постоянной времени объекта управления (см. раздел 8.1).

      Пропорционально-дифференциальный регулятор (ПД-регулятор) Принципиальная схема регулятора приведена на рис. 4.31.

    где K K РЕГ =R 0 /R ВХ;

    T Д - постоянная времени интегратора,T Д =R 0 С ВХ.

    Временная характеристика регулятора:

    У вых (t )= K РЕГ X вх (t ) +T Д (t ),

    где (t ) - дельта-функция Дирака.

    Переходный процесс в ПД- регуляторе будет иметь вид, изображенный на рис. 4.32, функциональная схема регулятора приведена на рис. 4.33.

    Рис. 4.32. Переходный процесс в ПД- регуляторе

    6. Пропорционально-интегрально-дифференциальный регулятор (ПИД-

    регулятор)

    Принципиальная схема регулятора приведена на рис. 4.34.

    Передаточная функция регулятора

    где K РЕГ - коэффициент передачи регулятора,K РЕГ =R 0 /R ВХ +C ВХ /С 0 ;

    T И - постоянная времени интегрирования,T И =R ВХ С 0 ;

    T Д - постоянная времени дифференцирования,T Д =R 0 С ВХ.

    Временная характеристика регулятора:

    У вых (t )= У вых (0) +K РЕГ X вх (t ) + (1/T И P ) X вх (t ) + T Д (t ),

    где (t ) - дельта-функция Дирака.

    Переходный процесс в регуляторе будет иметь вид, изображенный на рис. 4.35, функциональная схема приведена на рис. 4.36.

    По аналогии с ПИ-регулятором ММ ПИД-регулятора часто представляют в виде изодромного звена второго порядка

    , (4.56)

    где Т ИЗ,1 , Т ИЗ,2 - постоянные времени изодромного звена;Т ИЗ,1 = R 0 С 0 , Т ИЗ,2 = =R вх С вх.

    ПИД-регулятор обеспечивает компенсацию двух больших постоянных времени объекта управления, обеспечивая интенсивность динамических процессов в САУ.

    Похожие публикации