Chevroletavtoliga - Автомобильный портал

Нейтроны распадаются и с излучением фотонов. Нейтрон: структурная связь «на приросте масс Взаимодействие обеспечивает распад нейтрона

. Время жизни свободного нейтрона составляет 880,1 ± 1,1 секунды (что соответствует периоду полураспада 611 ± 0,8 с ). Прецизионные измерения параметров бета-распада нейтрона (время жизни, угловые корреляции между импульсами частиц и спином нейтрона) имеют важное значение для определения свойств слабого взаимодействия .

Бета-распад нейтрона был предсказан Фредериком Жолио-Кюри в и открыт в - независимо А. Снеллом, Дж. Робсоном и П. Е. Спиваком.

Редкие каналы распада

Кроме распада нейтрона с образованием протона, электрона и электронного антинейтрино, должен происходить также более редкий процесс с излучением дополнительного гамма-кванта - радиативный (то есть сопровождающийся электромагнитным излучением) бета-распад нейтрона:

0 1 n → 1 1 p + e − + ν ¯ e + γ . {\displaystyle {}_{0}^{1}n\to {}_{1}^{1}p+e^{-}+{\bar {\nu }}_{e}+\gamma .}

Теория предсказывает, что спектр гамма-квантов, излучающихся при радиативном распаде нейтрона, должен лежать в диапазоне от 0 до 782 кэВ и зависеть от энергии (в первом приближении) как E −1 . С физической точки зрения, этот процесс представляет собой тормозное излучение образующегося электрона (и в меньшей степени - протона) .

В 2005 году этот ранее предсказанный процесс был обнаружен экспериментально . Измерения в этой работе показали, что радиативный канал распада реализуется с вероятностью 0,32 ± 0,16 % при энергии гамма-кванта E γ > 35 кэВ . Этот результат впоследствии был подтверждён и значительно уточнён рядом других экспериментальных групп; в частности, коллаборация RDK II установила , что вероятность распада с вылетом гамма-кванта составляет (0,335 ± 0,005 stat ± 0,015 syst) % при E γ > 14 кэВ и (0,582 ± 0,023 stat ± 0,062 syst) % при 0,4 кэВ < E γ < 14 кэВ . Это совпадает в пределах ошибок с теоретическими предсказаниями (соответственно 0,308 % и 0,515 %).

Должен существовать также канал распада свободного нейтрона в связанное состояние - атом водорода (1 1 p + e − = 1 H) : {\displaystyle ({}_{1}^{1}p+e^{-}={}^{1}\mathrm {H}):}

0 1 n → 1 H + ν ¯ e . {\displaystyle {}_{0}^{1}n\to {}^{1}\mathrm {H} +{\bar {\nu }}_{e}.}

Однако из экспериментов известно лишь, что вероятность такого распада меньше 3 % (парциальное время жизни по этому каналу превышает 3⋅10 4 с ) . Теоретически ожидаемая вероятность распада в связанное состояние по отношению к полной вероятности распада равна 3,92⋅10 −6 . Связанный электрон для выполнения закона сохранения углового момента должен возникать в S -состоянии (с нулевым орбитальным моментом), в том числе с вероятностью ≈84 % - в основном состоянии, и 16 % - в одном из возбуждённых S -состояний атома водорода . При распаде в атом водорода почти вся энергия распада, 782,33305 кэВ (за исключением очень малой кинетической энергии атома отдачи) уносится электронным антинейтрино.

См. также

Примечания

  1. J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) http://pdg.lbl.gov/2012/tables/rpp2012-sum-baryons.pdf
  2. Bales M. J. et al. (RDK II Collaboration). Precision Measurement of the Radiative β Decay of the Free Neutron (англ.) // Physical Review Letters . - 2016. - 14 June (vol. 116 , no. 24 ). - P. 242501 . - ISSN 0031-9007 . - DOI :10.1103/PhysRevLett.116.242501 . - arXiv :1603.00243 . [исправить]
  3. Khafizov R. U., Severijns N., Zimmer O., Wirth H.-F., Rich D., Tolokonnikov S. V., Solovei V. A., Kolhidashvili M. R. Observation of the neutron radioactive decay // Journal of Experimental and Theoretical Physics Letters . - 2006. - Vol. 83. - P. 366. - ISSN 0021-3640 . - DOI :10.1134/S0021364006080145 . - arXiv :nucl-ex/0512001 . [исправить]
  4. Green K., Thompson D. The decay of the neutron to a hydrogen atom // Journal of Physics G: Nuclear and Particle Physics. - 1990. - Т. 16 , вып. 4 . - С. L75-L76 . - DOI :10.1088/0954-3899/16/4/001 .
  5. Faber M. , Ivanov A. N. , Ivanova V. A. , Marton J. , Pitschmann M. , Serebrov A. P. , Troitskaya N. I. , Wellenzohn M. Continuum-state and bound-state β − -decay rates of the neutron (англ.) // Physical Review C. - 2009. - 9 September (vol. 80 , no. 3 ). - P. 035503 . - ISSN 0556-2813 . - DOI :10.1103/PhysRevC.80.035503 . - arXiv :0906.0959 . [исправить]
  6. Dubbers D., Schmidt M. G. The neutron and its role in cosmology and particle physics (англ.) // Reviews of Modern Physics. - 2011. - Vol. 83 . - P. 1111-1171 . -

БЕТА-РАСПАД НЕЙТРОНА, превращение свободного нейтрона n в протон р, электрон е и электронное антинейтрино v? e , вызываемое слабым взаимодействием: n → р + е - + v? e . Энергия, высвобождаемая в этом процессе, составляет 783 кэВ; она распределяется в основном между разлетающимися в разные стороны электроном и антинейтрино, а протон уносит от 0 до 751 эВ.

Первые опыты, в которых обнаружено существование бета-распада нейтрона и получены первые оценки времени жизни нейтрона (т. е. времени, в течение которого число нейтронов убывает в е раз), были сделаны А. Снеллом (США), Г. Робсоном (Канада) и П.Е. Спиваком (СССР) в конце 1940-х годов, когда появились ядерные реакторы с интенсивными потоками нейтронов. В этих опытах измерялось число протонов или электронов, вылетающих из выделенной области нейтронного пучка, и число нейтронов в этой области. С тех пор изучение бета-распада нейтрона - процесса, в котором свойства слабого взаимодействия проявляются практически в чистом виде, - интенсивно продолжается.

Современная теория элементарных частиц (так называемая стандартная модель) рассматривает этот процесс как результат превращения одного из двух d-кварков, входящих в состав нейтрона и обладающих отрицательным зарядом, равным 1/3 заряда электрона, в и-кварк с зарядом + 2/3 заряда электрона. При этом возникает частица - переносчик слабого взаимодействия - векторный W - -бозон, который практически мгновенно распадается на электрон и антинейтрино. Т.о., схема процесса распада такая:

Основными величинами, определяющими бета-распад нейтрона, являются время жизни нейтрона τ n и четыре константы (угловые корреляции), характеризующие зависимости вероятности распада от:

1) угла ме-жду направлениями вылета электрона и антинейтрино с импульсами р с и р v ? e ,

2) угла между р е и спином нейтрона σ n

3) угла между р v ? e и σ n и

4) угла между нормалью к плоскости распада и σ n .

Вторая и третья угловые корреляции нарушают незыблемый в классической физике закон сохранения пространственной чётности (независимость законов природы от зеркального отражения координат), а последняя, если бы была обнаружена, означала бы нарушение инвариантности законов при обращении времени.

К началу 21 века осуществлено более 25 измерений времени жизни нейтрона различными методами. В результате установлено, что среднее время жизни нейтрона τ n = 885,7 ±0,7 с. Наиболее точные значения τ n были получены методом хранения ультрахолодных нейтронов, которые могут долго находиться в замкнутых объёмах, ограниченных слабо поглощающими стенками или специальными конфигурациями магнитного поля. При этом непосредственно измерялось убывание числа ультрахолодных нейтронов со временем.

Результаты измерений констант угловых корреляций на современном уровне точности эксперимента не противоречат теории. Тем не менее, попытки обнаружить какие-либо эффекты, которые свидетельствовали бы о необходимости выхода за пределы стандартной модели, продолжаются.

Дальнейшее уточнение времени жизни нейтрона и констант угловых корреляций важно также для астрофизики и космологии: эти данные используются в теории эволюции Вселенной после Большого взрыва и в описании процессов, идущих внутри звёзд и определяющих их энергетику.

Лит.: Ерозолимский Б. Г. Бета-распад свободного нейтрона // Современные методы ядерной спектроскопии. 1986. Л., 1988; Александров Ю. А. Фундаментальные свойства нейтрона. 3-е изд. М., 1992.

Б. Г. Ерозолимский.

В атомном мире существуют, насколько нам известно, три важных закона сохранения, которые выполняются как в повседневной жизни, так и в огромной окружающей нас Вселенной.

К ним относятся законы сохранения импульса, сохранения момента количества движения и сохранения энергии.

Все три закона устанавливают соотношения между массой и скоростью - хорошо знакомыми нам величинами. Но атом и образующие его частицы, оказывается, подчиняются еще и четвертому закону сохранения, касающемуся совершенно незнакомого нам явления. Уже в 600 году до новой эры, благодаря исследованиям греческого философа Фалеса Милетского, было известно, что натертая ископаемая смола - янтарь - обладает свойством притягивать легкие предметы. Теперь принято говорить, что натертый янтарь получает электрический заряд или «электризуется». Слово «электричество» произошло от греческого elektron - янтарь.

В 1773 году французский физик Шарль Франсуа Дюфе продемонстрировал существование двух разных видов электрического заряда, один из которых был обнаружен на натертом янтаре, а другой - на натертом стекле. Разница между двумя этими электрическими зарядами видна из следующего опыта.

Подвесим два маленьких кусочка пробки рядом на шелковых ниточках. К каждому из них прикоснемся куском электрически заряженного янтаря, при этом некоторая часть электрического заряда стечет в каждый из кусочков пробки. Шелковые нити, к которым они подвешены, больше не висят вертикально, а отклоняются под углом. Теперь пробки находятся друг от друга дальше, чем они были до получения заряда. То же самое случится, если обоих кусочков пробки коснуться электрически заряженными кусочками стекла.

Если, однако, одного куска пробки коснуться заряженным янтарем, а другого стеклом, оба кусочка притянутся друг к другу. В этом и заключалась разница, которая привела Дюфе к предположению о существовании двух видов электрического заряда. Возникло обобщение: одноименные электрические заряды отталкиваются, разноименные - притягиваются.

В сороковых годах XVIII века американец Бенджамин Франклин, человек широкого кругозора, начал эксперименты с электричеством. Он заметил, что если тела, несущего один вид заряда, коснуться телом, несущим равный по величине заряд другого знака, заряды нейтрализуют друг друга, и оба тела становятся электрически незаряженными. Как будто электрическая жидкость перелилась оттуда, где она была в избытке, туда, где ее не хватало. В результате в обоих местах установился какой-то средний уровень.

Франклин считал, что тело, содержащее электрическую жидкость в избытке, несет положительный электрический заряд, а тело, испытывающее ее недостаток, несет отрицательный электрический заряд. Он не мог сказать, какое тело содержит избыток, а какое недостаток, поэтому он произвольно принял заряд ненатертого стекла за положительный, а натертого янтаря - за отрицательный. Этих обозначений с того времени и придерживаются.

Последующие поколения физиков, изучавших поведение электрически заряженных тел, пришли к выводу, что суммарный электрический заряд замкнутой системы постоянен.

Действительно, когда натирают янтарь, электрический заряд не возникает из ничего. Если янтарь натирают рукой, отрицательный электрический заряд, полученный янтарем компенсируется точно таким же положительным зарядом, который получает рука. Сумма этих двух зарядов равна нулю. Когда электрический заряд с руки уходит в землю и растекается по всей земной поверхности, кажется, что он исчезает. Создается иллюзия «возникновения» заряда на янтаре. Мы рассмотрели уже аналогичные случаи с положительными и отрицательными импульсами или с моментами количества движения по и против часовой стрелки. Следовательно, можно сформулировать четвертый закон сохранения: сохранение электрического заряда.

Ядерные реакции и электрический заряд

Когда в 90-х годах прошлого века физики стали яснее представлять себе структуру атома, они обнаружили, что, по крайней мере, некоторые его части несут электрический заряд. Например, электроны, заполняющие внешние области атома, заряжены отрицательно, а ядро в центре атома несет положительный электрический заряд. Конечно, сразу же возник вопрос о величине этих зарядов, прежде чем ответить, рассмотрим некоторые единицы заряда.

Общепринятой единицей электрического заряда является кулон (по имени французского физика Шарля Огюстена Кулона, определившего в 1785 году величину электрического заряда по измеренной силе притяжения и отталкивания его другими зарядами). В 60-ваттной лампочке каждые две секунды через любую точку нити накала проходит электрический заряд в один кулон. Гораздо меньше электростатическая единица заряда. Кулон равен 3·10 9 электростатических единиц.

Но даже электростатическая единица чрезвычайно велика для измерения заряда одного электрона. Впервые с достаточной точностью заряд электрона измерил в 1911 году американский физик Роберт Эндрюс Милликен. Он оказался равным примерно половине миллиардной доли электростатической единицы. Согласно последним измерениям, заряд электрона составляет 4,80298·10 -10 электростатических единиц. Чтобы не пользоваться такой неудобной дробью, приняли электрический заряд электрона равным -1, где знак минус означает отрицательный заряд. Любой электрон, участвует ли он в электрическом токе или принадлежит атому какого-либо элемента, имеет заряд, точно равный -1, независимо от точности наших самых чувствительных инструментов.

Простейшее атомное ядро, т. е. ядро атома водорода имеет электрический заряд +1. Насколько позволяют судить наиболее чувствительные приборы, положительный заряд ядра водорода точно равен отрицательному заряду электрона (хотя, конечно, противоположен по знаку). Более тяжелые атомные ядра имеют большие положительные заряды, которые обязательно выражаются целым числом. До сих пор, по крайней мере, не обнаружили какого-либо дробного заряда, положительного или отрицательного.

Атомы каждого элемента имеют характерный ядерный заряд, отличный от заряда атомов других элементов. Например, все атомы водорода имеют ядерный заряд +1, все атомы гелия +2, все атомы углерода +6, все атомы урана +92. Этот ядерный заряд называется атомным номером.

Изотопы отличаются друг от друга массовым числами, но тем не менее они идентичны по атомному номеру и являются атомами одного и того же элемента. Существуют как атомы с ядерным зарядом +1 и массовым числом 1, так и атомы с ядерным зарядом +1 и массовым числом 2. Оба типа относятся к атомам водорода. Их называют водород-1 или водород-2, или 1 Н 1 и 1 H 2 , где индекс вверху справа - массовое число, индекс внизу слева- атомный номер. Таким же образом два изотопа урана записывают 92 U 238 и 92 U 235 .

Оба изотопа урана радиоактивны. Каждый распадается, излучая?-частицу и превращаясь в атом тория. Атомный номер тория 90, а?-частица, являющаяся ядром атома гелия, имеет атомный номер 2. Тогда можно записать:

U +92 > Th +90 + He +2 .

Начальное атомное ядро имело заряд +92, а два конечных ядра +90 и +2, т. е. в общей сложности +92. Это частный случай общего правила. Атом с атом номером х, излучив?-частицу, всегда превращается в другой атом с атомным номером х -2. Исключений никогда не наблюдали. Следовательно, в случае излучения?-частицы закон сохранения электрического заряда выполняется.

Применим ли закон сохранения электрического заряда к излучению атомным ядром?-частицы? Эта частица представляет собой электрон, который обозначается e -1 , так как электрон имеет заряд -1.

Рассмотрим далее поведение изотопов тория, образовавшихся при распаде урана. Они не очень распространены в природе, поскольку, в свою очередь, быстро распадаются. При этом излучается?-частица и образуется изотоп элемента протактиния, который имеет атомный номер 91 и обозначается символом Ра. Сосредоточив внимание на электрическом заряде, можно записать

Th +90 > Pa +91 + e -1 .

Снова наблюдаем сохранение электрических зарядов.

Атом с атомным числом х, излучив?-частицу, всегда превращается в другой атом с атомным числом х+1. Исключений из этого правила также не наблюдали. Значит, закон сохранения электрического заряда справедлив и для излучения?-частицы.

Атом, излучающий?-лучи, не меняет в процессе излучения атомного номера, так как фотон?-лучей не несет заряда.

Короче говоря, оказалось, что закон сохранения электрического заряда выполняется при любой ядерной реакции.

Строение ядра

Хотя вопрос об излучении?-частицы казался окончательно выясненным, поскольку закон сохранения электрического заряда выполнялся, физики продолжали свои исследования. Для них оставалось загадкой, как положительно заряженное ядро способно испускать отрицательно заряженную частицу.

Тот простой факт, что атомное ядро испускает?- и?-частицы, сам по себе свидетельствует о том, что ядро состоит из еще более мелких частей и, по крайней мере, одна из них должна нести положительный электрический заряд.

Почти десять лет после открытия электрона физики подстерегали некую положительно заряженную частицу, аналогичную отрицательно заряженному электрону. Но поиски не увенчались успехом. Самая маленькая положительно заряженная частица, которую удалось обнаружить, оказалась ядром водорода-1, и ее обозначили 1 H 1 . Электрический заряд ее был минимальным, т. е. в точности равнялся заряду электрона, но имел противоположный знак. Однако масса этой частицы была в 1836,11 раз больше массы электрона.

К 1914 году Резерфорд убедился, что ядро водорода является самой легкой положительно заряженной частицей, присутствующей во всех атомных ядрах. Но почему она гораздо тяжелее отрицательно заряженного электрона (хотя обе частицы имеют одинаковые заряды противоположного знака), - он не мог объяснить. И никто не смог, ни тогда, ни теперь. Это остается одной из нерешенных проблем ядерной физики по сей день.

В 1920 году Резерфорд предложил назвать эту положительно заряженную частицу протоном от греческого слова protos - первый, так как из-за своей большой массы он казался первой, т. е. самой важной, среди субатомных частиц. Масса протона по атомной шкале равна 1,00797, и в большинстве случаев без большой погрешности ее принимают за единицу.

Ядро водорода-1 состоит из одного протона. Казалось, все другие ядра должны содержать два или более протонов, но вскоре выяснилось, что атомные ядра (не водорода-1, а другие) не могут состоять только из протонов. Протон имеет электрический заряд +1 и массовое число, примерно равное единице, и если бы ядра состояли только из протонов, их атомный номер должен был равняться атомному числу. Но это верно только для водорода-1. Массовые числа других ядер больше их атомных номеров.

Рассмотрим, например, ядро азота с массовым числом 14. Если бы оно состояло только из протона, его электрический заряд был бы равен +14 и, следовательно, атомный номер был бы тоже 14. В действительности же электрический заряд ядра азота +7 и ядро можно обозначить как 7 N 14 . Что же происходит с остальными семью единицами заряда?

Сначала физики думали, что ответ заключается в наличии в ядре электронов. Если бы ядро азота содержало 14 протонов и 7 электронов, суммарная масса семи электронов была бы достаточно маленькой, чтобы ею пренебречь, зато электроны компенсировали бы половину положительных зарядов. В качестве побочного эффекта наличие ядерных электронов сказалось бы также на способности ядра излучать электроны в виде?-частиц. Эта модель строения ядра потерпела крах в вопросе о спине частицы.

Известно, что при движении заряженных частиц создается магнитное поле. В 1928 году английский физик Поль Дирак пришел к выводу, что заряженные частицы движутся даже тогда, когда кажется, что они находятся в покое. Лучше всего предположить, что такие частицы вращаются вокруг своей оси, т. е. имеют определенный момент количества движения. Если частица вращается, она должна обладать энергией, которая поглощается определенными порциями, или квантами. Это справедливо для всех вращающихся тел (даже для планет вроде Земли). Величина кванта, однако, так мала по сравнению с полной энергией вращения Земли, что если бы Земля получила квант или даже триллион квантов энергии вращения, никто ничего не заметил бы. Но если бы такой квант энергии получила субатомная частица, ее вращение заметно изменилось бы, так как для субатомной частицы квант очень велик. Вращение частицы нельзя обнаружить никакими измерениями, но можно показать, что значения спина частицы соответствуют только целому числу квантов энергии. Величина момента количества движения вращающейся частицы чрезвычайно мала. Поэтому была придумана специальная шкала, по которой спин фотона был принят равным единице, по этой шкале протон и электрон имеют спин 1/2 каждый. Момент количества движения бывает направлен по и против часовой стрелки. Протон или электрон могут вращаться в том или ином направлении и, следовательно, их спин равен либо +1/2, либо -1/2.

Рассмотрим систему, содержащую несколько таких частиц. Если справедлив закон сохранения момента количества движения, суммарный спин системы должен быть равен сумме спинов отдельных частиц. Пусть система состоит из четырех частиц - протонов или электронов, или тех и других вместе. Если каждая частица имеет спин +1/2 или -1/2, суммарный спин равен нулю или целой величине. Суммарный спин любой системы, содержащей четное число частиц, каждая из которых имеет спин + 1/2 или -1/2, всегда равен нулю или целому числу.

Если же система состоит из нечетного числа частиц каждая из которых имеет спин +1/2 или -1/2, суммарный спин никогда не будет равен целому числу или нулю, а будет принимать только полуцелые значения.

Следовательно, если атомное ядро состоит из протонов и электронов, суммарный спин ядра (ядерный спин) зависит от полного числа всех частиц. Тогда, если ядро азота 7 N 14 в самом деле состоит из 14 протонов и 7 электронов, общее число частиц 21, т. е. нечетное, и ядерный спин азота-14 должен быть равен 1/2.

Эксперименты, проведенные в 1929 году, показали, однако, что он равен целому числу.

Такое несоответствие было обнаружено и для некоторых других ядер. Стало совершенно ясно, что, если ядра содержат и протоны, и электроны, некоторые из них нарушают закон сохранения момента количества движения. Физики страшно не любят отказываться от закона, если есть возможность избежать этого, поэтому они бросились на поиски какого-либо другого объяснения строения ядра.

Предположим, что вместо пары протон - электрон в ядре присутствует одна незаряженная частица. Ее существование не влияет на закон сохранения электрического заряда, так как суммарный электрический заряд пары протон - электрон равен нулю, заряд заменяющей их частицы также равен нулю.

Разница заключается в моменте количества движения. Если протон и электрон имеют спины +1/2 или -1/2 каждый, суммарный спин будет равен +1, 0 или -1. Незаряженная же частица может обладать спином +1/2 или -1/2. Ядро азота-14 должно тогда состоять из протонов и незаряженных частиц.

Если масса нейтральной частицы равна массе протона, массовое число должно быть равно 14, а атомный номер (обусловленный одними протонами, так как только они обладают положительным зарядом) - семи, т. е. это был бы изотоп 7 N 14 . Только общее число частиц в ядре было бы 14, т. е. четным, вместо нечетного 21. Но при четном числе частиц, каждая из которых имеет спин 1/2, спин ядра азота должен быть целым числом. Таким образом, закон сохранения момента количества движения был бы спасен.

Трудность заключалась в самом отыскании этой незаряженной частицы.

Методы обнаружения субатомных частиц были основаны на их способности выбивать электроны из атомов, с которыми они сталкиваются, превращая их в ионы. Последние регистрируются разными приборами, используемыми физиками для изучения частиц.

Ионы образуются частицами, несущими любой тип заряда Отрицательно заряженная частица отталкивает отрицательно заряженные электроны и выбивает их из атома, вблизи которого она пролетает. Положительно заряженная частица притягивает электроны, вырывая их из ближайших к ней атомов. Незаряженная частица не взаимодействует с электронами, т. е. не образует ионов, а следовательно, ее нельзя обнаружить непосредственно. Тем не менее, существуют косвенные методы обнаружения невидимых обычно объектов. Если вы посмотрите в окно, вы увидите деревья, но не увидите воздуха. Однако если вы заметите, что листва на деревьях колышется, справедливо предположите, что она получает энергию за счет движения каких-то масс, которые вы не в состоянии видеть. Тщательно изучая поведение движущихся листьев, можно много узнать о свойствах воздуха, совсем не видя его.

Начиная с 1930 года ученые стали замечать, что при бомбардировке некоторых элементов?-частицами возникает излучение, которое нельзя обнаружить обычными методами. Если на пути такого излучения помещался парафин, из него вылетали протоны. Что-то сообщало протонам импульс. Переданный импульс был значительным, следовательно, излучение должно было состоять из очень тяжелых или очень быстрых частиц, а возможно, из тяжелых и одновременно быстрых. Английский физик Джеймс Чедвик сумел правильно истолковать полученные данные и в 1932 году заявил об открытии давно подозреваемой нейтральной частицы. Она была названа нейтроном. Нейтрон имеет массу, которая чуть-чуть больше массы протона; в настоящее время она принята равной 1,008655. У нейтрона нулевой электрический заряд и спин +1/2 или -1/2, т. е. именно те свойства, которые были необходимы, чтобы спасти закон сохранения момента количества движения.

Немецкий физик Вернер Карл Гейзенберг сразу же предположил, что ядро состоит из протонов и нейтронов, т. е. из двух разновидностей нуклонов, которые были упомянуты выше.

Поскольку массовые числа протонов и нейтронов равны примерно единице, массовое число любого ядра равно числу содержащихся в нем нуклонов. Атомный номер, представляющий собой электрический заряд ядра, равен числу протонов, так как только протоны несут электрический заряд. Ядро 2 Не 4 состоит из 2 протонов и 2 нейтронов (т. е. из четырех нуклонов), 8 O 16 состоит из восьми протонов и восьми нейтронов (т. е. из 16 нуклонов), 90 Th 232 состоит из 90 протонов и 142 нейтронов (т. е. из 232 нуклонов).

Все изотопы любого элемента имеют одинаковый атомный номер, следовательно, все они должны иметь одинаковое характерное число протонов в ядрах. Массовые числа у них разные, поэтому они должны иметь разное количество нуклонов. Разница эта возникает только из-за разницы числа нейтронов. Так, ядра двух изотопов углерода, 6 С 12 и 6 С 13 содержат 6 протонов и 6 нейтронов в первом случае и 6 протонов и 7 нейтронов во втором.

Что касается урана, то ядро 92 U 235 состоит из 92 протонов и 143 нейтронов, т. е. всего из 235 нуклонов, ядро 92 U 238 - из 92 протонов и 146 нейтронов, т. е. всего из 238 нуклонов.

Распад нейтрона

Протон-нейтронная модель ядра вполне удовлетворяет физиков и по сей день считается лучшей. Тем не менее, на первый взгляд она вызывает некоторые сомнения. Если атомное ядро состоит только из протонов и нейтронов, снова возникает вопрос о том, как могут вылететь из него отрицательно заряженные электроны в виде?-частиц. А что если электронов в ядре нет и они образуются в момент распада? Применим законы сохранения в поисках правильного решения.

Образование электрона означает возникновение отрицательного электрического заряда. Но по закону сохранения электрического заряда отрицательный заряд не может образоваться, пока одновременно не возникнет положительный. Однако ни одна положительно заряженная частица не вылетает из ядра вместе с?-частицей следовательно, такая частица должна остаться внутри ядра. Известно, что внутри ядра существует одна-единственная положительно заряженная частица - протон. Из всего сказанного следует, что, когда из ядра вылетает электрон, внутри ядра образуется протон. Перейдем к закону сохранения энергии. Протон обладает массой, и если он образуется, где-то в другом месте должна исчезнуть масса. Во всех ядрах, кроме водорода-1 присутствуют нейтроны. Будучи незаряженным, нейтрон появляется или исчезает, не нарушая закон сохранения электрического заряда. Следовательно, при излучении?-частицы внутри ядра исчезает нейтрон и одновременно возникает протон (рис. 4). Другими словами, нейтрон превращается в протон, испуская при этом электрон. Нарушение закона сохранения энергии не наблюдается, так как нейтрон чуть-чуть тяжелее протона. Протон и электрон вместе имеют массу 1,008374 по шкале атомных весов, а масса нейтрона равна 1,008665. При превращении нейтрона в электрон и протон масса 0,00029 «исчезает». В действительности она превращается в кинетическую энергию вылетающей?-частицы, равную примерно 320 кэв.

Рис. 4. Излучение?-частицы.


Такое объяснение кажется удовлетворительным, поэтому подведем итог, используя по возможности простую систему символов. Обозначим нейтрон n, протон p + , электрон е - и запишем уравнение излучения?-частицы:

n > р + + е - .

Наши рассуждения только косвенно отражают то, что происходит внутри ядра. В действительности нельзя заглянуть внутрь ядра и увидеть, как протон превращается в нейтрон, когда вылетает заряженный электрон. По крайней мере, до сих пор нельзя. А можно ли наблюдать отдельные нейтроны в свободном состоянии? Будут ли они, так сказать, на наших глазах превращаться в протоны и испускать быстрые электроны?

В 1950 году физикам удалось, наконец, получить ответ. Свободные нейтроны время от времени распадаются и превращаются в протоны, причем происходит это не часто. Каждый раз, когда нейтрон претерпевает такое изменение, излучается электрон.

Нейтроны существуют в свободном состоянии до тех пор, пока не произойдет распад, и вопрос о том, как долго длится этот период, очень важен. Когда конкретно нейтрон претерпит радиоактивный распад, - сказать невозможно. Процесс этот носит случайный характер. Один нейтрон существует, не распадаясь, одну миллионную долю секунды, другой - пять недель, третий - двадцать семь миллиардов лет. Тем не менее, для большого количества частиц одного типа с достаточной степенью точности можно предсказать, когда распадется определенный процент их. (Аналогичным образом страховой статистик не может предсказать, как долго будет жить отдельный человек, но для большой группы людей определенного возраста, профессии, места жительства т. д. со значительной точностью он может предсказать, через сколько времени половина из них умрет.)

Время, в течение которого распадается половина частиц данного типа, называют обычно периодом полураспада частицы. Этот термин был введен Резерфордом в 1904 году. Каждый вид частиц имеет свой собственный характерный период полураспада. Например, период полураспада урана-238 4,5·10 9 лет, тория-232 гораздо больше - 1,4·10 10 лет. Поэтому уран и торий до сих пор встречаются в значительных количествах в земной коре, несмотря на то что в каждый момент некоторые из их атомов распадаются. В течение всей пятимиллиардной истории Земли распалась только половина запасов урана-238 и гораздо меньше половины запасов тория-232.

Некоторые радиоактивные ядра гораздо менее стабильны. Например, когда уран-238 излучает?-частицу, он превращается в торий-234. Период полураспада тория-234 только 24 дня, поэтому в земной коре имеются лишь следы этого элемента. Он очень медленно образуется из урана-238 и, образовавшись, очень быстро распадается.

Распадаясь, торий-234 излучает?-частицу. Внутри ядра тория нейтрон превращается в протон. Это превращение тория-234 происходит с такой скоростью, что период полураспада равен двадцати четырем дням, В других радиоактивных изотопах нейтроны гораздо медленнее превращаются в протоны. Например, калий-40 излучает?-частицы с периодом полураспада 1,3·10 9 лет. Некоторые изотопы вовсе не подвержены радиоактивному распаду. Так, в ядрах атомов кислорода-16, насколько известно, ни один нейтрон сам по себе не превращается в протон, т. е. период полураспада бесконечен. Однако нас больше всего интересует период полураспада свободного нейтрона. Свободный нейтрон не окружен другими частицами, которые делали бы его более или менее стабильным, удлиняя или укорачивая его период полураспада, т. е. в случае свободного нейтрона мы имеем, так сказать, неискаженный период полураспада. Оказывается, он равен примерно двенадцати минутам, следовательно, половина из триллиона нейтронов превращается в протоны и электроны в конце каждой двенадцатой минуты.

Основные формулы и определения

● В физике известны четыре вида фундаментальных взаимодействий тел:

1) Сильное , или ядерное , взаимодействие обусловливает связь между нуклонами атомного ядра. Нуклоны – общее название протонов и нейтронов, из которых построены все атомные ядра;

2) Электромагнитное взаимодействие существует между частицами, имеющими электрический заряд. Оно осуществляется путем обмена квантами электромагнитного излучения – фотонами ;

3) Слабое взаимодействие осуществляется между элементарными частицами, оно ответственно за их распад и обнаруживается в процессах, связанных с испусканием или поглощением нейтрино;

4) Гравитационное взаимодействие существует между любыми телами и выражается в их взаимном притяжении с силой, зависящей от масс тел и расстояния между ними.

● Атомное ядро состоит из протонов и нейтронов, называемых нуклонами. Протон (p ) имеет положительный заряд, равный заряду электрона, нейтрон (n ) – нейтральная частица. Общее число нуклонов в ядре называют массовым числом

Атомное ядро характеризуется зарядовым числом Z , которое равно числу протонов в ядре и совпадает с порядковым номером элемента в периодической системе элементов Менделеева. Ядро обозначается тем же символом, что и нейтральный атом: A Z X , где X – символ химического элемента; Z – атомный номер (число протонов в ядре); А – массовое число (число нуклонов в ядре). В ядерных реакциях сохраняются общее число нуклонов и электрический заряд.

Притяжение между нуклонами называется сильным (или ядерным) взаимодействием. Сильное взаимодействие является короткодействующим (~10–15 м). Одновременно между протонами, имеющими положительный заряд, действуют кулоновские силы отталкивания, т. е. электромагнитные силы, которые являются дальнодействующими. При нарушении баланса между количеством протонов и нейтронов ядра становятся нестабильными. Для легких

и средних ядер характерен бета-распад, для тяжелых – альфа-распад. При заряде ядра Z >

При радиоактивном распаде испускается излучение трёх видов:

α-излучение – поток ядер атомов гелия (4 2 Не);

β -излучение – поток электронов (–1 0 e);

γ-излучение – поток квантов электромагнитного излучения, испускаемых атомными ядрами при переходе из возбужденного состояния в основное.

При единичном α-распаде массовое число А изотопа уменьшается на 4, а зарядовое число Z уменьшается на 2. При единичном β – -распаде массовое

число А не изменяется, а зарядовое число Z увеличивается на 1. При γ- излучении массовое число А и зарядовое число Z не изменяются.

● Элементарные частицы объединены в три группы: фотоны, лептоны и адроны.

3. u , d , s , c , b , t – и соответствующих им шести антикварков. Кварки имеют полуцелый спин и несут дробный электрический заряд.

Укажите квантовую схему, соответствующую гравитационному взаимодействию.

Варианты ответов:

В физике известно четыре вида фундаментальных взаимодействий тел. Рассмотрим их по мере уменьшения интенсивности.

Сильное , или ядерное , взаимодействие обусловливает связь между нуклонами атомного ядра. Нуклоны – общее название протонов и нейтронов, из которых построены все атомные ядра. Переносчиками сильного взаимодействия являются глюоны – электрически нейтральные частицы со спином, равным единице, и с нулевой массой покоя.

Электромагнитное взаимодействие существует между частицами, имеющими электрический заряд. Оно осуществляется путем обмена квантами электромагнитного излучения – фотонами .

Слабое взаимодействие осуществляется между элементарными частицами, оно ответственно за их распад, например, распад нейтронов и приводит, в частности, к бета-распаду атомных ядер. Переносчиками слабых

взаимодействий являются кванты слабого поля – промежуточные бозоны W + , W

– , Z 0.

Гравитационное взаимодействие существует между любыми телами и выражается в их взаимном притяжении с силой, зависящей от масс тел и расстояния между ними. Гравитационное взаимодействие осуществляется благодаря обмену гравитонами . Теоретическое понятие «гравитон» – это квант гравитационного поля.

Ответу на вопрос теста 8-1 соответствует рисунок варианта 4. Ответ : вариант 4.

Задание С8-1 для самостоятельного решения

Электрослабое взаимодействие соответствует объединению схем…

Варианты ответов:

В процессе электромагнитного взаимодействия принимают участие…

Варианты ответов:

1) нейтрино; 2) нейтроны; 3) фотоны.

Фотоны являются квантами электромагнитного излучения, поэтому они принимают участие в процессе электромагнитного взаимодействия.

Ответ : вариант 3.

Задание С8-2 для самостоятельного решения

В процессе сильного взаимодействия принимают участие...

Варианты ответов:

1) электроны; 2) нуклоны; 3) фотоны.

Задание С8-3 для самостоятельного решения

Распад нейтрона объясняется существованием...

Варианты ответов:

1) слабого взаимодействия; 2) сильного взаимодействия;

3) электромагнитного взаимодействия.

Задание С8-4 для самостоятельного решения

В процессе гравитационного взаимодействия принимают участие...

Варианты ответов:

1) только нуклоны; 2) все элементарные частицы;

3) только частицы, имеющие нулевую массу покоя.

Задание С8-5 для самостоятельного решения

В процессе сильного взаимодействии не принимают участия...

Варианты ответов:

1) фотоны; 2) протоны; 3) нейтроны.

α-излучение представляет собой поток...

Варианты ответов:

1) квантов электромагнитного излучения, испускаемых атомными ядрами при переходе из возбужденного состояния в основное;

2) электронов; 3) протонов; 4) ядер атомов гелия; 5) позитронов.

При радиоактивном распаде испускается излучение трёх видов:

α-излучение – поток ядер атомов гелия;

Излучение – поток электронов;

γ-поток квантов электромагнитного излучения, испускаемых атомными ядрами при переходе из возбужденного состояния в основное.

Таким образом, α-излучение представляет собой поток ядер атомов гелия. Ответ : вариант 4.

Задание С8-6 для самостоятельного решения

β + -излучение – это поток… См. варианты ответов к тесту 8-3.

Задание С8-7 для самостоятельного решения

β – -излучение – это поток… См. варианты ответов к тесту 8-3.

На рис. 138 показана область существования β -активных ядер. Прямая линия соответствует равновесным значениям Z β , соответствующим β -ста-

Рис. 138

бильным ядрам. Здесь Z – порядковый номер элемента, а N – число нейтронов в ядре. В области Z < Z β …

Варианты ответов:

1) β – -активны;

2) β – -активны;

3) Ядра обладают избытком нейтронов и β + -активны;

4) Ядра обладают избытком протонов и β + -активны.

Ядра атомов состоят из нуклонов (общее название протонов и нейтронов). Притяжение между нуклонами называется сильным (или ядерным) взаимодействием.

Сильное взаимодействие является короткодействующим (~10–15 м). Одновременно между протонами, имеющими положительный заряд, действуют кулоновские силы отталкивания, т. е. электромагнитные силы, которые являются дальнодействующими. При нарушении баланса между количеством протонов и нейтронов ядра становятся нестабильными. Для легких и средних ядер характерен β -распад, для тяжелых – α-распад. При заряде ядра Z > 82 стабильных ядер не существует.

На рис. 138 область Z > Z β выше прямой линии, соответствующей равновесным значениям Z β , содержит ядра, в которых число протонов

преобладает над числом нейтронов. У этих ядер силы отталкивания между протонами превышают ядерные силы притяжения и ядра распадаются с испусканием позитрона β + . При этом число протонов уменьшается, а число нейтронов растет.

В области Z < Z β ниже прямой стабильности ядер число нейтронов превышает число протонов, и ядра распадаются с испусканием электрона β – .

Таким образом, в области Z < Z β ядра обладают избытком нейтронов и β – - активны, что соответствует варианту 2.

Ответ : вариант 2.

Задание С8-8 для самостоятельного решения

Для изотопов различных элементов определите β -активность и избыток соответствующих нуклонов, если распад изотопов различных элементов происходит согласно реакции:

11 6 С → β + + 11 5 В; ядра изотопа углерода 11 6 С обладают…

Варианты ответов те же, что в тесте 8-4.

Задание С8-9 для самостоятельного решения

14 6 С → β – + 14 7 N; ядра изотопа углерода 14 6 С обладают…

Варианты ответов те же, что в тесте 8-4.

Задание С8-10 для самостоятельного решения

13 7 N → β + + 13 6 С; ядра изотопа азота 13 7 N обладают…

Варианты ответов те же, что в тесте 8-4.

Задание С8-11 для самостоятельного решения

40 19 К → β – + 40 20 Са; ядра изотопа калия 40 19 К обладают…

Варианты ответов те же, что в тесте 8-4.

На рис. 139 показана кварковая диаграмма β – -распада нуклона.

Варианты ответов:

1) р → р + е– + νHe ;

2) р → n + е– + νHe ;

3) n → n + е– + νRe ;

4) n → p + е– + νRe .

Элементарные частицы объединены в три группы: фотоны, лептоны и адроны.

1. Фотоны – эта группа состоит всего из одной частицы – кванта электромагнитного излучения, обозначаемого буквой γ.

2. Лептоны (от греческого слова «лептос» – легкий). К лептонам

относятся, например, такие частицы, как электрон е – , имеющий заряд Q е = –1 и спин s е = 1/2, а также нейтральная частица нейтрино ν, имеющая нулевой заряд

и спин s ν = 1/2. Этим частицам соответствуют античастицы: позитрон е + и антинейтрино νR.

3. Адроны (от греческого слова «адрос» – крупный, сильный). К адронам относятся р – протон, п – нейтрон, Λ – гиперон, π – пионы и К – каоны. Частицы, входящие в группу адронов, состоят из кварков. В настоящее время установлено существование шести разновидностей кварков: u , d , s , c , b , t – и

соответствующих им шести антикварков. Кварки имеют полуцелый спин и несут дробный электрический заряд. Ниже приведено название кварков, их обозначение, в скобках указан дробный электрический заряд:

Антикварки обозначаются буквой с волной и имеют противоположные по знаку электрические заряды. Из этих кварков и антикварков состоят все адроны.

Из кварковой диаграммы β -распада нуклона, приведенной на рис. 139, следует, что набор кварков (u d d ) в левой части диаграммы соответствует нейтрону (n ), так как его заряд, вычисленный, исходя из заряда кварков, Q n = 2/3 – 1/3 – 1/3 = 0. Набор кварков (d u u ) в правой части диаграммы, вычисленный, исходя из заряда кварков, соответствует протону (p ), так как его

Q p = –1/3 + 2/3 + 2/3 = 1.

Наклонные линии

на кварковой диаграмме

показывают, что в результате реакции испускаются электрон е – , заряд которого Q е

и антинейтрино νRe , с нулевым зарядом Q νR = 0.

образом, суммарный заряд продуктов реакции равен

Q p +

Q е +

Q νR = +1 – 1 + 0 = 0,

т. е. выполняется

закон сохранения

Следовательно, кварковая диаграмма β -распада соответствует реакции: n → p +

е – + νRe .

Ответ : вариант 4.

Рассмотрим другой способ решения теста 8-5.

Проанализируем варианты ответов с точки зрения закона сохранения электрического заряда:

1) р → р + е – + νRe ; Q p = 1, Q е = –1, Q νR = 0, т. е. 1 = 1 – 1 + 0. Понятно, что для этой реакции закон сохранения заряда не выполняется, так как 1 ≠ 0.

Поэтому такая реакция невозможна;

2) р → n + е – + νRe ; Q p = 1, Q n = 0, Q е = –1, Q νR = 0, т. е. 1 = 0 – 1 + 0.

Понятно, что для этой реакции также не выполняется закон сохранения заряда;

3) n → n + е – + νRe ; Q n = 0, Q е = –1, Q νR = 0, т. е. 0 = 0 – 1 + 0. Реакция также невозможна;

4) n → p + е – + νRe . Закон сохранения заряда для этой реакции выполняется, так как 0 = 1 – 1 + 0. Поэтому такая реакция возможна.

Ответ : вариант 4.

На рис. 140 показана кварковая диаграмма распада Λ-гиперона.

Эта диаграмма соответствует реакции...

Варианты ответов:

1) Λº → n + π + ; 2) Λº → n + π – ; 3) Λº → p + π – ; 4) Λº → p + π º.

Элементарные частицы состоят из кварков. Вычислим заряд каждой частицы, участвующей в реакции. Для этого, воспользовавшись решением теста 8-5, запишем название и обозначения кварков, а в скобках укажем соответствующий заряд:

− Верхний u (+2/3) и нижний d (–1/3);

− Очарованный c (+2/3) и странный s (–1/3);

− Истинный t (+2/3) и красивый b (–1/3).

Антикварки обозначаются буквой с волной и имеют противоположные по знаку электрические заряды и некоторые другие характеристики.

Из кварковой диаграммы распада Λ-гиперона, приведенной на рис. 140, следует, что набор кварков (u d s ) в левой части диаграммы соответствует Λ- гиперону. Заряд гиперона, вычисленный исходя из заряда кварков, равен: Q Λ = 2/3 –

1/3 – 1/3 = 0.

Набор кварков (d u u ) в правой части диаграммы соответствует p -протону, т. к. его заряд Q p = –1/3 + 2/3 + 2/3 = 1. Набор кварков (d ũ ) соответствует частице с зарядом Q π = –1/3 – 2/3 = –1, т. е. π – -мезону. Таким образом, кварковая диаграмма распада Λ-гиперона соответствует реакции: Λº → p + π – .

Ответ : вариант 3.

Дополнительное задание

Проверьте самостоятельно, используя закон сохранения электрического заряда, выполнимость реакций, записанных в вариантах ответов в тесте 8-6, и выберите правильный ответ.

Задание С8-12 для самостоятельного решения

На рис. 141 показана кварковая диаграмма захвата нуклоном µ – -мюона.

Эта диаграмма соответствует реакции...

Варианты ответов:

1) µ – + p →

+ ν µ ;

2) µ – + n →

+ ν µ ;

4) µ

3) µ + p → n + ν µ ;

N → n + ν µ .

Задание С8-13 для самостоятельного решения

На рис. 142 показана кварковая диаграмма рождения странных частиц. Эта диаграмма соответствует реакции...

Варианты ответов:

Σ ;

Р → К

2) n + π + → К+ + Σ + ;

3) π + + p → К+

+ Σ + ;

е + + p → К+ + Σ + .

Задание С8-14 для самостоятельного

На рис. 143 показана кварковая

диаграмма распада Кº-мезона. Эта диаграмма

соответствует реакции...

Варианты ответов:

1) Кº→ π º + π º; 2) Кº → π + + π ¯;

3) Кº→ е + + е ¯; 4) Кº → n + n .

Задание С8-15 для самостоятельного

На рис. 144 показана кварковая

диаграмма распада Σ + -гиперона. Эта

диаграмма соответствует реакции...

Варианты ответов:

1) Σ+ → n + π + ;

2) Σ+ → p + π – ;

3) Σ+ → p + π º;

4) Σ+ → n + π º.

Для нуклонов верными являются следующие утверждения:

Варианты ответов:

1) Оба нуклона нейтральны;

2) Масса протона больше массы нейтрона;

3) Спины нуклонов одинаковы;

4) Оба нуклона обладают отличными от нуля магнитными моментами.

Ядра атомов состоят из протонов и нейтронов, называемых нуклонами. Протон имеет массу m p = 1,00759 а.е.м., спин s p = 1/2, положительный электрический заряд, равный одному элементарному заряду Q P = e и магнитный момент µ p = +2,79µ Я , где µ Я = 5,0508 · 10–27 Дж/Тл – ядерный магнетон. Нейтрон имеет массу m n = 1,00879 а.е.м., спин s n = 1/2, электрический заряд, равный нулю, и магнитный момент µ n = –1,91 µ Я .

Следовательно, правильными ответами являются следующие утверждения:

3) спины нуклонов одинаковы;

4) оба нуклона обладают отличными от нуля магнитными моментами. Ответ : варианты 3 и 4.

Задание С8-16 для самостоятельного решения

Для нуклонов верными являются следующие утверждения.

Варианты ответов:

1) Оба нуклона в свободном состоянии стабильны. Массы протона и антипротона одинаковы;

2) Массы нуклонов одинаковы. Оба нуклона имеют античастицы;

3) Спины нуклонов и антинуклонов одинаковы. Заряды нейтрона и антинейтрона равны нулю;

4) Масса нейтрона больше массы антинейтрона. Магнитные моменты антинуклонов равны нулю.

Сколько α- и β – -распадов должно произойти, чтобы уран 238 92 U превратился в стабильный изотоп свинца 206 82 Pb ?

Варианты ответов:

2) 8 α-распадов и 6 β – -распадов; 4) 10 α-распадов и 4 β – -распада.

При распаде изотопа урана 238 92 U происходит ряд радиоактивных превращений. При этом испускаются α-частицы (ядра атома гелия 4 2 He ), β – -

частицы (электроны) и γ-лучи. Массовое число А и зарядовое число Z изменяются за счет α- и β – -распадов.

При единичном α-распаде массовое число А изотопа уменьшается на 4, а

зарядовое число Z уменьшается на 2. При единичном β – -распаде массовое число А не изменяется, а зарядовое число Z увеличивается на 1.

Тогда реакцию распада можно записать в виде:

238 92 U → X · 2 4 α + Y · –1 0 e + 206 82 Pb .

Общее число нуклонов и полный электрический заряд должны сохраняться. Тогда для определения числа распадов X и Y составим систему уравнений.

Для массового числа А : 238 = 4 · X + 206.

Отсюда: X = (238 – 206) / 4 = 8.

Для зарядового числа Z : 92 = 2 · X + (–1) · Y + 82.

Отсюда: Y = (82 – 92 + 2 · 8) = 6.

Следовательно, при превращении урана 238 92 U в стабильный изотоп свинца

206 82 Pb должно произойти 8 α-распадов и 6 β – -распадов. Ответ : вариант 2.

Задание С8-17 для самостоятельного решения

Сколько α- и β – -распадов должно произойти, чтобы торий 232 90 Th

превратился в изотоп свинца 208 82 Pb ?

Варианты ответов:

1) 6 α-распадов и 8 β – -распадов;

2) 8 α-распадов и 6

β–

Распадов;

3) 9 α-распадов и 5 β – -распадов;

4) 6 α-распадов и 4

β–

Распада.

Задание С8-18 для самостоятельного решения

Сколько α- и β – -распадов должно произойти, чтобы уран 235 92 U превратился

в изотоп свинца 207 82 Pb ?

Варианты ответов:

1) 6 α-распадов и 8 β – -распадов;

2) 8 α-распадов и 6

β–

Распадов;

3) 9 α-распадов и 5 β – -распадов;

4) 7 α-распадов и 4

β–

Распада.

Неизвестный радиоактивный химический элемент самопроизвольно распадается по схеме: X → 36 91 Kr + 142 56 Ba + 3 n . Ядро этого элемента содержит…

Варианты ответов:

1) 92 протона и 144 нейтрона;

2) 94 протона и 142 нейтрона;

3) 94 протона и 144 нейтрона;

4) 92 протона и 142 нейтрона.

Атомное ядро состоит из протонов и нейтронов, называемых нуклонами. Протон (p ) имеет положительный заряд, равный заряду электрона, нейтрон (n ) – нейтральная частица. Общее число нуклонов в ядре называют массовым числом

Атомное ядро характеризуется зарядовым числом Z , которое равно числу протонов в ядре и совпадает с порядковым номером элемента в периодической системе элементов Менделеева. Ядро обозначается тем же символом, что и

нейтральный атом: Z A X , где X – символ химического элемента; Z – атомный

номер (число протонов в ядре); А – массовое число (число нуклонов в ядре).

В ядерных реакциях сохраняются общее число нуклонов и электрический заряд. Заряд ядра неизвестного химического элемента равен суммарному заряду ядер элементов продуктов реакции: 36 + 56 = 92, поэтому число протонов в ядре неизвестного химического элемента равно: Z = 92. Аналогично массовое число неизвестного химического элемента равно: А = 91 + 142 + 3 = 236, а число нейтронов в ядре равно: А – Z = 236 – 92 = 144. Следовательно, ядро неизвестного химического элемента содержит 92 протона и 144 нейтрона.

Ответ : вариант 1.

Какая доля радиоактивных атомов распадется через интервал времени, равный двум периодам полураспада?

Варианты ответов:

1) 25 %; 2) 75 %; 3) все атомы распадутся; 4) 90 %; 5) 50 %.

Закон радиоактивного распада имеет вид: N = N 0 · e – λ·t , где N 0 – начальное число нераспавшихся ядер в момент времени t = 0; N – число нераспавшихся ядер в момент времени t ; λ – постоянная радиоактивного распада. Эта формула показывает, что число нераспавшихся ядер со временем убывает. Периодом полураспада Т 1/2 называется время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда N 0 /2 = N 0 · e – λ · Т 1/2 . Откуда λ = ln2/Т 1/2 =

0,693/Т 1/2 .

N 0 . За время t 2 = 2Т 1/2 число нераспавшихся ядер равно:

Следовательно, через интервал времени, равный двум периодам полураспада, доля распавшихся радиоактивных атомов будет равна:

1 – N 2 /N 0 = 1 – 0,25 = 0,75 = 75 %.

Ответ : вариант 2.

Задание С8-19 для самостоятельного решения

Какая доля радиоактивных атомов не распадется через интервал времени, равный трём периодам полураспада?

Варианты ответов:

1) 25 %; 2) 75 %; 3) 6,25 %; 4) 12,5 %; 5) 50 %.

Задание С8-20 для самостоятельного решения

Какая доля свободных нейтронов распадется через 1 час, если период полураспада составляет 10 минут?

Варианты ответов:

1) 98,5 %; 2) 75,5 %; 3) 10,5 %; 4) 1,5 %.

Задание С8-21 для самостоятельного решения

Имеется смесь двух элементов: стабильного изотопа углерода 12 6 С в количестве 2 моля и радиоактивного 11 6 С в количестве 4 моля. Через интервал времени, равный периоду полураспада углерода 11 6 С , останется…

Варианты ответов:

12 6 С , чем

116 С ;

11 6 С , чем

126 С ;

3) одинаковое количество

116 С и

126 С .

Задание С8-22 для самостоятельного решения

Радиоактивный изотоп

11 6 С распадается по реакции

11 6 С → β + +

115 В .

Каким будет процентное содержание атомов через промежуток времени, равный периоду полураспада изотопа 11 6 С ?

Варианты ответов:

11 6 С и 80 %

115 В ;

11 6 С и 75 %

115 В ;

11 6 С и 50 %

115 В ;

11 6 С и 25 %

115 В .

Реакция распада нейтрона происходит по схеме: п → р + е – + v ɶ . Присутствие в этой реакции антинейтрино обусловлено требованиями

закона сохранения...

Варианты ответов:

1) электрического заряда; 2) лептонного заряда; 3) энергии.

Закон сохранения электрического заряда не требует присутствия антинейтрино, т. к. это нейтральная частица и её наличие или отсутствие не влияет на суммарный заряд. Закон сохранения энергии также не требует

присутствия какой-то конкретной частицы, т. к. масса покоя нейтрона превышает суммарную массу покоя электрона и протона. Данной разности масс (∆m ≈ 1,5 m e ) соответствует определенная энергия, т. е. реакция распада свободного нейтрона энергетически разрешена. При распаде элементарных частиц должны также выполняться законы сохранения барионного и лептонного заряда.

Барионный заряд сохраняется: B n = 1, B p = 1, B e = 0, т. е. 1 = 1 + 0.

Для сохранения лептонного заряда (L n = 0, L p = 0, L e = 1) в результате

распада должна

возникнуть

с L = –1.

Такой частицей является

антинейтрино:

L n = L p + L е + L νH или

0 = 0 + 1 – 1 = 0,

т. е. лептонный заряд

сохраняется.

Таким образом, присутствие в этой реакции антинейтрино обусловлено

требованиями закона сохранения лептонного заряда.

Ответ: вариант 2.

Задание С8-23 для самостоятельного решения

Реакция распада электрона по схеме:

e−

→ γ + γ + v

невозможна

вследствие невыполнения закона сохранения…

Варианты ответов:

1) электрического заряда;

2) лептонного заряда;

3) энергии.

Реакция распада протона по схеме: р → е + + ν + v ɶ невозможна. Это является следствием невыполнения закона сохранения...

Варианты ответов:

1) лептонного заряда; 2) спинового момента импульса;

3) электрического заряда.

Протон является барионом (от греческого слова «барис» – тяжелый), а позитрон, нейтрино и антинейтрино являются лептонами (легкими элементарными частицами).

Приведём значения некоторых характеристик элементарных частиц.

Обозначение частицы

Электрический заряд Q

Спин, в ед. ħ S

Лептонный заряд L

Барионный заряд B

Поверим выполнимость закона сохранения лептонного заряда: L p = 0, L е - =

1, L ν = 1, L νR = –1. Тогда получим: 0 = 1 + 1 – 1 = 1, т. е. лептонный заряд не сохраняется. Реакция невозможна вследствие невыполнения закона сохранения

лептонного заряда.

Ответ : вариант 1.

Задание С8-24 для самостоятельного решения

Реакция распада протона по схеме р → е + + ν + невозможна. Это является следствием невыполнения закона сохранения...

Варианты ответов:

1) спинового момента импульса; 2) электрического заряда;

3) барионного заряда.

Взаимодействие неизвестной частицы Х с протоном в водородной пузырьковой камере идет по схеме:

Λº → p + π –

X + p

Kº → π + + π –

Если спин π -мезона S = 0, то заряд и спин налетающей частицы будут равны...

Варианты ответов:

1) q < 0; S = ; 2) q > 0; S = ; 3) q > 0; S = 0; 4) q < 0; S = 0.

При взаимодействии неизвестной частицы X с протоном p , наряду с другими законами сохранения, должны выполняться законы сохранения заряда и момента импульса. Согласно закону сохранения заряда, суммарный заряд частиц должен быть равен суммарному заряду продуктов реакции после взаимодействия. После взаимодействия получаются две положительно заряженные частицы: q p = +1 и q π + = 1, а также две одинаковые отрицательно заряженные частицы с зарядом q π – = –1.

X будет…

Варианты ответов:

1) S x = ; 2) S x = 1; 3) S x = 1.

Согласно закону сохранения спина, суммарный спин частиц до взаимодействия должен быть равен суммарному спину частиц после

взаимодействия: S P + S π – = S X + S π – + S π – +S π + .

Так как спин протона S p = 1 , а спин π -мезона равен нулю, то после

подстановки этих значений получим: 1 + 0 = S X + 0 + 0 + 0. Следовательно, спин

неизвестной частицы будет равен S X = 1 2

Ответ : вариант 1.

Задание С8-25 для самостоятельного решения

На рис. 146 показана фотография взаимодействия π -мезона с протоном в водородной пузырьковой камере, которое идет по схеме:

Kº → + π – + X

π– + p

Λº → p + π –

Если спин π -мезона S = 0, то спин частицы X будет...

Варианты ответов:

1) S x = 1 ; 2) S x = 1 ; 3) S x = 0 . 2

Получим q X + 1 = +1 – 1 + 1 – 1 = 0,

q X = –1, т. е. q X < 0. Согласно закону

сохранения момента импульса, S p + S X = S P + S π – + S π + + S π – .

Так как собственный момент импульса, т. е. спин протона равен S p =

спин π -мезона равен нулю, то

S X =

Похожие публикации