Chevroletavtoliga - Автомобильный портал

Формула для определения вязкости методом стокса. Определение вязкости жидкости методом стокса. Тема: Определение коэффициента вязкости жидкости

В ЖИДКОСТЯХ

Методические указания к лабораторной работе № 9

по дисциплине «Общая физика»

раздел «Механика. Молекулярная физика»

Минск 2011 г.

Указание по мерам безопасности

При выполнении лабораторной работы

Внутри используемых в работе электроизмерительных приборов имеется переменное сетевое напряжение 220 В, 50 Гц, представляющее опасность для жизни.

Наиболее опасными местами являются сетевой выключатель, гнезда предохранителей, шнур сетевого питания приборов, соединительные провода, находящиеся под напряжением.

К выполнению лабораторных работ в учебной лаборатории допускаются обучающиеся прошедшие обучение по мерам безопасности при проведении лабораторных работ с обязательным оформлением в журнале протоколов проверки знаний по мерам безопасности при проведении лабораторных работ.

Перед выполнением лабораторной работы обучающимся
необходимо:

Усвоить методику выполнения лабораторной работы, правила ее безопасного выполнения;

Ознакомиться с экспериментальной установкой; знать безопасные методы и приемы обращения с приборами и оборудованием при выполнении данной лабораторной работы;

Проверить качество сетевых шнуров; убедиться, что все токоведущие части приборов закрыты и недоступны для прикосновения;

Проверить надежность соединения клемм на корпусе прибора с шиной заземления;

В случае обнаружения неисправности немедленно доложить преподавателю или инженеру;

Получить у преподавателя допуск к ее выполнению, подтверждая этим усвоение теоретического материала. Обучающийся не получивший допуск к выполнению лабораторной работы не допускается.

Включение приборов производит преподаватель или инженер. Только после того, как он убедится в исправности приборов и правильности их сборки можно приступать к выполнению лабораторной работы.

При выполнении лабораторной работы обучающиеся должны:

Не оставлять без присмотра включенные приборы;

Не наклоняться к ним близко, не передавать через них какие-либо предметы и не опираться на них;

При работе с грузиками надежно закреплять их крепежными винтами на осях.

замену любого элемента установки, присоединение или разъединение разъемных соединений производить только при отключенном электропитании под четким наблюдением преподавателя или инженера.

Обо всех недостатках, обнаруженных во время выполнения лабораторной работы, сообщить преподавателю или инженеру

По окончании работы отключение аппаратуры и приборов от электросети производит преподаватель или инженер.

ИЗУЧЕНИЕ ЯВЛЕНИЯ ВНУТРЕННЕГО ТРЕНИЯ

В ЖИДКОСТЯХ

Цель и задачи работы

1. Изучить явление внутреннего трения в жидкостях.

2. Изучить закономерности течения реальной жидкости в цилиндрической трубе и движения тел в жидкости.

3. Определить коэффициент вязкости жидкости методом Стокса.

4. Измерить объемы жидкости, вытекающие из цилиндрической трубы за единицу времени при различных разностях давлений на концах трубы, определить момент перехода от ламинарного течения жидкости к турбулентному и рассчитать соответствующее переходу число Рейнольдса.

Основные положения теории внутреннего трения в жидкостях

Основные определения

Жидкостями называются вещества, имеющие определённый объем, но не обладающие упругостью формы (то есть, не обладающие модулем сдвига). В отличие от твердых тел в жидкостях наблюдается ближний порядок (упорядоченное расположение соседних атомов или молекул на расстояниях порядка их нескольких межмолекулярных расстояний); дальний же порядок, присущий твердым телам (кристаллическая решетка) и вовсе отсутствует.

Временем “оседлой жизни” называется время, в течение которого молекулы жидкости сохраняют свое местоположение. По истечении данного времени, молекулы жидкости перемещаются на расстояния порядка 10 -8 см. Молекулы жидкости, подобно молекулам твердых тел, совершают тепловые колебания около положений равновесия.

Текучесть – это способность молекул жидкости менять свое положение относительно других молекул. Вместе с тем, силы межмолекулярного взаимодействия достаточно велики и средние расстояния между молекулами остаются неизменными. По этой причине жидкости сохраняют свой объем.

Явление внутреннего трения (вязкости) состоит во взаимодействии соседних слоев реальной жидкости, движущихся с разными скоростями, которое приводит к появлению сил вязкости (внутреннего трения), касательных поверхности слоев. При этом, молекулы более быстрого слоя стремятся увлечь за собой молекулы более медленного, и наоборот, молекулы более медленного слоя тормозят движение более быстрого. Следовательно, силы вязкости направлены вдоль поверхности соприкасающихся слоев в сторону, противоположную их относительной скорости подобно силам трения скольжения (внешнего трения) при движении одного тела по поверхности другого. По своей природе силы трения в жидкости являются силами межмолекулярного взаимодействия, то есть, электромагнитными силами, как и силы трения между твердыми телами. Явление вязкости, таким образом, связано с передачей импульса из слоя в слой, т.е. относится к явлениям переноса. Так как молекулы жидкости основную часть времени находятся около положения равновесия, то движущаяся масса жидкости увлекает соседние слои в основном за счет сцепления (межмолекулярного взаимодействия). С ростом температуры текучесть жидкости возрастает, а вязкость падает. Это связано с тем, что при нагревании жидкость “разрыхляется” (т.е. незначительно увеличивается ее объем) и силы межмолекулярного взаимодействия ослабевают. Механизм вязкости в газе является иным, так как осуществляется из-за перехода молекул из слоя в слой. Поэтому с возрастанием температуры вязкость газов, возрастает, в отличие от жидкостей.

Ламинарным называется такое течение, когда жидкие частицы движутся вдоль устойчивых траекторий. Жидкость движется параллельными слоями. Скорости всех частиц жидкости параллельны течению. Если в ламинарный поток ввести подкрашенную струйку, то она сохраняется, не размываясь по всему потоку.

Турбулентным течение становится при больших скоростях – это неустойчивое, хаотичное (вихреобразное) движение частиц жидкости.

Установившимся или стационарным называется течение, если величины и направления скоростей частиц в каждой точке движущейся жидкости не изменяются со временем.

2.2. Закономерности движения реальной жидкости в цилиндрической трубе

Пусть имеется жидкость, различные слои которой движутся с различными скоростями (рисунок 1), причем скорости слоев, отстоящих на расстоянии Δy , отличаются на величину Δv . Тогда отношение Δv/ Δy показывает, насколько быстро меняется скорость жидкости от одного слоя к другому. Для двух бесконечно близких слоев (Δy ®0) эта величина записывается в виде dv/dy и представляет собой градиент скорости grad (v ) в направлении перпендикулярном скорости движения слоев.

Рис.1. Схематическое изображение слоев.

Ньютон впервые предположил, что сила вязкости или сила внутреннего трения dF в между двумя слоями жидкости прямо пропорциональна площади их соприкосновения dS τ , а также градиенту скорости:

. (1)

Коэффициент пропорциональности зависящий от природы жидкости и ее температуры, называется коэффициентом вязкости или просто вязкостью . Коэффициент вязкости h измеряется в Па·с (кг /(м с)).

Рассмотрим более подробно ламинарное течение жидкости по трубе круглого сечения радиуса R длиной l . Если разность давлений ΔP = P 1 – P 2 (P 1 > P 2) на концах трубы поддерживается постоянной, то установится стационарный режим течения, при котором за равные промежутки времени t через любое поперечное сечение трубы S будут протекать равные объемы жидкости V . Особенность течения вязкой жидкости по цилиндрической трубе состоит в том, что внешний слой жидкости, примыкающий к внутренней поверхности трубы, прилипает к ней и остается неподвижным, а скорость каждого из последующих слоев увеличивается по мере приближения к центру трубы. Течение жидкости можно представить в виде движения цилиндрических слоев, параллельных оси трубы. Мысленно выделим произвольную цилиндрическую область жидкости радиуса r и длины l (рисунок 2).

Рис.2. Схематическое изображение цилиндрической области жидкости.

На ее боковую поверхность S t =2prl со стороны внешнего слоя, текущего с другой скоростью, действует, согласно (1), сила вязкости:

Кроме того, на основания цилиндра действует сила, связанная с разностью давлений:

. (3)

При стационарном течении жидкости скорость движения жидкости постоянна, поэтому силы, действующие на цилиндрический слой, должны быть равны и противоположны по направлению F B =F P , следовательно

Выразим из этого уравнения dv и проинтегрируем получившееся выражение для того, чтобы найти скорость:

Пределы определенного интеграла выбраны из условия, что на стенке трубы (т.е. при r = R ), скорость v должна обращаться в нуль. В результате получим

. (5)

Таким образом, скорость частиц движущейся жидкости изменяется от максимального значения (на оси трубы) до нуля (на стенках трубы) по параболическому закону (рисунок 3).

Рис.3. Распределение скоростей слоев жидкости в трубе.

Подсчитаем объем жидкости, протекающей через поперечное сечение трубы за время t . Для этого рассмотрим тонкий цилиндрический слой радиуса r , толщиной dr , текущий с постоянной скоростью v . За время t через кольцевую площадку площадью dS = 2πrdr , которая представляет собой поперечное сечение этого тонкого слоя, протечет объем жидкости: dV =dS vt = 2πrdr vt или, используя формулу (5),

(6)

Объем жидкости V , протекающей за время t через все поперечное сечение трубы S , находится путем интегрирования выражения (6) по r от 0 до R .

Разделив данное выражение на время t , получим объем жидкости, вытекающий из трубы за единицу времени или расход жидкости Q=V/t , а формула (7) будет иметь вид:

(8)

Формула (8) является количественным выражением закона Пуазейля . Из нее, в частности, следует, что расход жидкости обратно пропорционален длине трубы l , и прямо пропорционален разности давлений ∆P на концах трубы и четвертой степени ее радиуса, то есть, чрезвычайно сильно возрастает с увеличением радиуса трубы.

Если предположить, что все частицы жидкости движутся не с различными скоростями, а с некоторой средней скоростью v ср, то расход жидкости Q , то

Эксперименты показали, что закон Пуазейля оказывается справедливым лишь при относительно небольших скоростях движения жидкости. Осборн Ре΄йнольдс впервые заметил, что при достижении некоторой критической скорости движение жидкости теряет ламинарной характер и становится турбулентным (вихревым), то есть, струйка подкрашенной жидкости быстро расходится по всему сечению трубы в виде вихревых образований. Кроме того, было замечено, что значение критической скорости зависит также от размеров трубки и свойств самой жидкости. Так, например, если одна и та же жидкость течет по трубам различного диаметра, то в более широкой трубе переход от ламинарного течения к турбулентному будет происходить при меньших скоростях движения, чем в узкой. Таким образом, узкая труба оказывает более сильное, упорядочивающее влияние на характер движения жидкости. С другой стороны оказалось, что более вязкая жидкость сохраняет ламинарность течения при относительно более высоких скоростях движения.

Рейнольдс предложил характеризовать течение жидкости безразмерной величиной, названной числом Рейнольдса :

Здесь - плотность и вязкость жидкости, v ср - средняя скорость ее течения, R – радиус трубы.

Экспериментальные исследования показали, что ламинарный режим наблюдается при течениях, которым соответствуют значения чисел Рейнольдса не более ~1000. Переход от ламинарного к турбулентному течению происходит в области значений от 1000 до 2000, а при значениях Re > 2000 течение становится турбулентным.

Движение тел в жидкостях

Силы вязкости проявляются и при движении различных тел в жидкости, которые действуют на боковую поверхность тела в направлении, противоположном скорости тела относительно жидкости. Силы вязкости пропорциональны первой степени скорости, коэффициенту вязкости h и линейным размерам тела l :

, (11)

где k 1 – коэффициент пропорциональности.

Если в жидкости движется шарик небольшого радиуса r с малой скоростью v , то сила сопротивления равна:

Эта формула впервые была получена Стоксом и носит его имя.

Кроме того на тело, движущееся в жидкости, действуют силы лобового сопротивления. Действительно, тела, находящиеся в жидкости, действуют на частицы жидкости, изменяют характер потока, перераспределяют в нем скорости и давления до и после движущихся тел. Однако, эти же тела, согласно третьему закону Ньютона, испытывают такие же по величине, но противоположно направленные силы. Результирующая этих сил отлична от нуля и направлена в сторону, противоположную скорости тела относительно жидкости. Расчет показывает, что силы лобового сопротивления пропорциональны плотности жидкости ρ , площади поперечного сечения тела S и квадрату скорости v :

где k 2 – коэффициент, зависящий от формы тела, состояния его поверхности и от вязкости жидкости.

Таким образом, и силы лобового сопротивления, и силы вязкости препятствуют движению тела в жидкости. При малых скоростях преобладают силы вязкости, пропорциональные первой степени скорости; при больших скоростях – силы лобового сопротивления, изменяющиеся по параболическому закону (рисунок 4).

Рис.4. Зависимость сил лобового сопротивления и вязкости от скорости движения тела в жидкости.

Число Рейнольдса Re при движении тел в жидкости, как видно из формул (11) и (13), прямо пропорционально отношению F Л /F B и показывает, какой вид сопротивления преобладает. При Re≤1 преобладают силы вязкости, при Re>1 – силы лобового сопротивления. При создании моделей тел, движущихся в жидкости, число Рейнольдса является критерием подобия. Характер движения модели будет такой же, как и моделируемого тела при условии совпадения их чисел Рейнольдса.

Методика выполнения работы

3.1. Определение вязкости жидкости методом Стокса

Этот метод основан на исследовании условий движения шарика в вязкой жидкости. Размеры и плотность шарика выбираются такими, чтобы скорость его движения была невелика. В этом случае сила сопротивления определяется практически только вязкостью. Кроме силы вязкости f , на шарик, падающий в жидкости, действуют сила тяжести F T и сила Архимеда или выталкивающая сила F A (рисунок 5).

Рис.5. Схематическое изображение шарика в жидкости

В начале движения F T > F A +f и шарик движется ускоренно. При этом сила f , пропорциональная скорости шарика, увеличивается, пока равнодействующая всех этих сил не становится равной нулю и, далее, шарик движется в жидкости с постоянной скоростью v . Для этого случая запишем равенство F T = F A +f . Перепишем его, используя формулу Стокса

где m ш – масса шарика; m ж – масса жидкости, вытесненной шариком; r – радиус шарика. Записав массу шарика и массу вытесненной им жидкости через плотности и объем, получим:

3.2. Определение числа Рейнольдса, соответствующего переходу от ламинарного течения жидкости к турбулентному

Зависимость расхода жидкости от разности давлений ΔP = P 1 – P 2 на концах трубы вначале выражается линейной функцией в соответствии с формулой Пуазейля (пунктирная прямая на рисунке 6). При значениях ΔP , соответствующих числу Рейнольдса Re ~ 1000, происходит переход от ламинарного течения к турбулентному и отклонение зависимости Q = f P ) от закона Пуазейля (точка “a” на кривой рисунка 6). При дальнейшем увеличении разности давлений наблюдается чисто турбулентный режим течения жидкости (отрезок “ab” на кривой рисунка 6).

Рис.6. Зависимость объема жидкости, вытекающей из трубы в единицу времени и числа Рейнольдса от разности давлений на концах трубы.

3.3. Описание лабораторной установки

Определение вязкости жидкости методом Стокса

Для определения вязкости жидкости используется цилиндрический сосуд C , наполненный исследуемой жидкостью (рисунок 7).

Рис.7. Лабораторная установка для определения вязкости жидкости методом Стокса.

Шарик бросают в отверстие крышки сосуда. Первоначально шарик падает в жидкости с некоторым ускорением, и когда сумма силы вязкости и выталкивающей силы становится равной по величине силе тяжести шарика, он начинает двигаться равномерно с постоянной скоростью v . Определяется время прохождения шарика между двумя метками и рассчитывается скорость движения шарика по формуле v=l/t , где l – расстояние между метками на сосуде C . Подставив значение скорости в формулу (16), получим:

Время t падения шарика между метками на сосуде определяется с помощью прибора для измерения времени Ч , диаметр шарика (и, соответственно, радиус r ) – с помощью микроскопа M с известной ценой деления шкалы окуляра.

Страница 1

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Юго-Западный государственный университет»

(ЮЗГУ)
Кафедра физики

УТВЕРЖДАЮ

Первый проректор –

проректор по учебной работе

Е.А.Кудряшов

«_____» __________ 2012г.

ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ

ПО МЕТОДУ СТОКСА

Методические указания к выполнению лабораторной

работы № 21 по разделу "Механика и молекулярная физика".

Курск 2012 г.


УДК 534.2

Составители: В.М. Полунин, Л.И. Рослякова


Рецензент

Кандидат техн. наук, профессор Г.Т. Сычев

: методические указания к лабораторной работе № 21 по разделу „Механика и молекулярная физика” / Юго-Зап. гос. ун-т; сост.: В.М. Полунин, Л.И. Рослякова Курск, 2012. 8 с.: ил. 2, табл. 1. Библиогр.: 3 назв.
Содержат краткие теоретические сведения о механизме вязкого трения и определения вязкости жидкости методом Стокса. Указывается порядок выполнения работы, приводятся контрольные вопросы и список рекомендуемой литературы.

Методические указания соответствуют требованиям Государственных образовательных стандартов высшего профессионального образования (2010 год) и рабочих учебных планов технических специальностей ЮЗГУ.

Предназначены для студентов технических специальностей.


Подписано в печать. Формат 60 x 84 1/16.

Усл. печ. л. . Уч.-изд. л. . Тираж экз. Заказ. Бесплатно.

Юго-Западный государственный университет.

Лабораторная работа № 21

Определение вязкости жидкости по методу Стокса

Цель работы : определение коэффициента вязкости жидкости.

Приборы и принадлежности : стеклянный цилиндр с исследуемой жидкостью, мелкие стальные шарики, микрометр, секундомер.

ВВЕДЕНИЕ

1. Природа сил вязкого трения

На всякое тело, движущееся в жидкости (газе) действует сила вязкого трения (внутреннего трения). Сила вязкого трения возникает между соседними слоями жидкости или газа, движущимися по какой-либо причине с разными скоростями. При этом слои, движущиеся относительно друг друга, обмениваются молекулами. Молекулы из быстрого слоя переносят в медленный слой некоторый импульс, и медленный слой стремится двигаться быстрее. В свою очередь, молекулы из медленного слоя, перескакивая в быстрый слой, тормозят его.

Однако рассмотренный механизм вязкого трения более свойственен газам, в которых молекулы перескакивают из слоя в слой за счет хаотического теплового движения. В жидкости внутреннее трение в значительной мере определяется действием межмолекулярных сил. Расстояние между молекулами в жидкости невелики, а сила взаимодействия значительны. Молекулы жидкости, подобно частицам твердого тела, колеблются около положений равновесия. По истечении времени "оседлой жизни" молекулы жидкости скачком переходят в новое положение.

При движении в жидкости какого-либо тела со скоростью , молекулы жидкости частично "прилипают" к нему  адсорбируются. Слой жидкости, ближайший к прилипшему слою, увлекается силами межмолекулярного взаимодействия. Жидкость при этом будет ускоряться на границе с твердым телом. На нее будет действовать суммарная средняя сила F в направлении движения тела. По третьему закону Ньютона на тело со стороны жидкости будет действовать такая же по величине, но противоположно направленная сила. Это и есть сила вязкого трения. Появление данной силы приводит к торможению движущего тела.

Опытным путем была определена формула силы внутреннего трения:

где
- градиент скорости, показывающий быстроту изменения скорости в направлении x, перпендикулярном движению слоев;

S - площадь, на которую действует сила.

Знак «» в формуле (1) показывает, что сила F направлена в сторону уменьшения скорости. Коэффициент пропорциональности η носит название коэффициента внутреннего трения или просто вязкости (динамической вязкости).

Если в формуле (1) положить
, ΔS = 1м 2 , то F будет численно равна η, т.е. коэффициент динамической вязкости численно равен силе внутреннего трения, возникающей на каждой единице поверхности соприкосновения двух слоев, движущихся относительно друг друга с градиентом скорости, равным единице.

Коэффициент динамической вязкости зависит от природы жидкости и для жидкости с повышением температуры уменьшается. Вязкость играет существенную роль при движении жидкостей.

2. Формула Стокса

Рассмотрим равномерное движение маленького шарика радиуса r в жидкости (газе). Обозначим скорость шарика относительно жидкости через 0 . Распределение скоростей в соседних слоях жидкости, увлекаемых шариком, имеет вид, изображенный на рис. 1. В непосредственной близости к поверхности шара эта скорость равна 0 , а по мере удаления уменьшается и практически становиться равной нулю, на некотором расстоянии L от поверхности шара.

Очевидно, что чем больше радиус шара, тем большая масса жидкости (газа) вовлекается им в движение, и L должно быть пропорционально r:

L = α · r .
Под  будем понимать среднее значение коэффициента пропорциональности. Тогда среднее значение скорости по поверхности шара равно

.

Поверхность шара S = 4πr 2 и сила трения, испытываемая движущимся шаром, равна

Стоксом было получено, что для шара α =. Следовательно, сила вязкого трения, испытываемая шаром, движущимся в жидкости (газе):

F тр =
, (2)

где d - диаметр шарика.

Формула Стокса применяется лишь в случае шарообразных тел малых размеров и малых скоростей их движения.

По формуле Стокса можно, например, определять скорости оседания частиц тумана и дыма. Ею можно пользоваться и для решения обратной задачи  измеряя скорость падения шарика в жидкости, можно определить ее вязкость.

3. Определение коэффициента вязкости жидкости методом Стокса

На шарик, падающий в жидкости вертикально вниз, действует три силы (рис. 2): сила тяжести mg , сила Архимеда F a и сила вязкого трения F тр.

По второму закону Ньютона:

ma = mg - F a -F тр

Сила тяжести и сила Архимеда постоянны по модулю, а сила вязкого трения, согласно формуле (2) увеличивается с увеличением скорости шарика, и наступает момент, когда сила тяжести уравновесится суммой сил трения и Архимеда. С этого момента ускорение шарика равно нулю, т. е. его движение становиться равномерным.

mg = F a + F тр, (3)

причем


F a = ρ ж · g · V =
, (4)

где V - объем шарика; ρ ж - плотность жидкости; ρ ш - плотность шарика.

Подставляя уравнения (2), (4) в уравнение (3), получаем

(ρ ш -ρ ж) = 3·π·η· 0 ·d.

Откуда получаем

.

Скорость движения шарика

= ,

где - расстояние между метками на сосуде с жидкостью, соответствующее месту уравновешивания сил; τ - время прохождения шариком расстояния .

Окончательно получаем

. (5)
Если учесть влияние стенок сосуда на движение шарика, то формула (5) примет вид

, (6)

где D - диаметр сосуда.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Измерить внутренний диаметр стеклянного цилиндра и расстояние между метками, используя штангенциркуль и масштабную линейку.

2. Измерить микрометром диаметр шарика.

3. Опустить шарик в сосуд, так чтобы он двигался по оси цилиндра, и измерить секундомером время его прохождения между метками.

4. Вычислить коэффициент вязкости исследуемой жидкости по формуле (6).

5. Такие же измерения и расчеты выполнить еще для четырех шариков.

7. Результаты измерений и расчетов занести в таблицу 1.


Таблица 1

№ п/п

D,

,

d,

,

,

,

Пас


1

2

3

4

5

КОНТРОЛЬНЫЕ ВОПРОСЫ


  1. Объяснить механизм возникновения сил вязкого трения.

  2. Вывести формулу Стокса.

  3. В чем состоит метод определения вязкости жидкости по Стоксу и где он применяется на практике?

  1. Бордовский, Г.А. Курс физики в 3 кн. Кн. 1. Физические основы механики: Учебник / Г.А.Бордовский, С.В.Борисенок, Ю.А.Гороховский. – М.: Высш. шк., 2004. – 423 с.

  2. Савельев, И.В. Курс физики: Учебное пособие в 3-х тт. Т.1 Механика. Молекулярная физика / И.В.Савельев. – СПб: Из-во «Лань», 2007. – 352 с.

  3. Федосеев В.Б. Физика: Учебник / В.Б.Федосеев. – Ростов н/Д: Феникс, 2009. – 669 с.


страница 1

Цель работы:ознакомление с методом Стокса и определение коэффициента вязкости различных жидкостей.

Теоретическое введение

Во всех реальных жидкостях и газах при перемещении одного слоя относительно другого возникают силы трения. Со стороны слоя, движущегося более быстро, на слой, движущийся медленнее, действует ускоряющая сила. Наоборот, со стороны слоя, движущегося медленнее, на более быстрый слой действует тормозящая сила. Эти силы, носящие название сил внутреннего трения , направлены по касательной к поверхности слоёв.

Пусть два слоя (рис.15.1) площади , отстоящих друг от друга на расстояние , движутся со скоростями v 1 и v 2 соответственно, Δv=v 2 –v 1 . Направление, в котором отсчитывается расстояние между слоями (ось z ), перпендикулярно вектору скорости движения слоев. Величина

,

которая показывает, как быстро меняется скорость при переходе от слоя к слою, называется градиентом скорости . Величина силы внутреннего трения , действующей между слоями, пропорциональна площади соприкосновения движущихся слоёв и градиенту скорости (закон Ньютона):

где – коэффициент вязкости (динамическая вязкость ). Знак «–» показывает, что сила направлена противоположно градиенту скорости, то есть что быстрый слой тормозится, а медленный – ускоряется.

Единицей измерения коэффициента вязкости в СИ служит такая вязкость, при которой градиент скорости, равный 1 м/с на 1м, приводит к силе внутреннего трения в 1 Н на 1 м 2 площади слоев. Эта единица называется паскаль-секундой (Па. с). В некоторые формулы (например, число Рейнольдса, формула Пуазейля) входит отношение коэффициента вязкости к плотности жидкости ρ . Это отношение получило название коэффициента кинематической вязкости :

Для жидкостей, течение которых подчиняется уравнению Ньютона (15.1), вязкость не зависит от градиента скорости. Такие жидкости называются ньютоновскими . К неньютоновским (то есть не подчиняющимся уравнению (15.1)) жидкостям относятся жидкости, состоящие из сложных и крупных молекул, например, растворы полимеров.

Вязкость данной жидкости сильно зависит от температуры: при изменениях температуры, которые сравнительно нетрудно осуществить на опыте, вязкость некоторых жидкостей может изменяться в миллионы раз. При понижении температуры вязкость некоторых жидкостей настолько возрастает, что жидкость теряет текучесть, превращаясь в аморфное твердое тело.

Я.И. Френкель вывел формулу, связывающую коэффициент вязкости жидкости с температурой:

, (15.3)

где А – множитель, который зависит от расстояния между соседними положениями равновесия молекул в жидкости и от частоты колебаний молекул, ΔЕ – энергия, которую надо сообщить молекуле жидкости, чтобы она могла перескочить из одного положения равновесия в другое, соседнее (энергия активации). Величина ΔЕ обычно имеет порядок (2÷3) . 10 -20 Дж, поэтому, согласно формуле (15.3), при нагревании жидкости на 10 0 С вязкость её уменьшается на 20÷30%.

Значения коэффициентов вязкости газов существенно меньше, чем жидкостей. С повышением температуры вязкость газа увеличивается (рис.15.2) и при критической температуре становится равной вязкости жидкости.

Отличие в характере поведения вязкости при изменении температуры указывает на различие механизма внутреннего трения в жидкостях и газах. Молекулярно-кинетическая теория объясняет вязкость газов переносом импульса из одного слоя в другой слой, происходящим за счет переноса вещества при хаотическом движении молекул газа. В результате в слое газа, движущемся медленно, увеличивается доля быстрых молекул, и его скорость (средняя скорость направленного движения молекул) возрастает. Слой газа, движущийся медленно, увлекается более быстрым слоем, а слой газа, движущийся с большей скоростью, замедляется. С повышением температуры интенсивность хаотического движения молекул газа возрастает, и вязкость газа увеличивается.

Вязкость жидкости имеет другую природу. В силу малой подвижности молекул жидкости перенос импульса из слоя в слой происходит из-за взаимодействия молекул. Вязкость жидкости в основном определяется силами взаимодействия молекул между собой (силами сцепления). С повышением температуры взаимодействие молекул жидкости уменьшается, и вязкость также уменьшается.

Несмотря на различную природу, вязкость жидкостей и газов с макроскопической точки зрения описывается одинаковым уравнением (15.1). Величину импульса , перенесенного из одного слоя газа или жидкости в другой слой за время Δt , можно найти из второго закона Ньютона:

Из (15.1) и (15.4) получим:

. (15.5)

Тогда физический смысл коэффициента динамической вязкости можно сформулировать так: коэффициент вязкости численно равен импульсу, перенесенному между слоями жидкости или газа единичной площади за единицу времени при единичном градиенте скорости. Знак «минус» показывает, что импульс переносится из более быстрого слоя в более медленный.

При движении тела в вязкой среде возникают силы сопротивления. Происхождение этого сопротивления двояко.

При небольших скоростях, когда за телом нет вихрей (то есть обтекание тела ламинарное ), сила сопротивления обуславливается вязкостью среды. Между движущимся телом и средой существуют силы сцепления, так что непосредственно вблизи поверхности тела слой газа (жидкости) полностью задерживается, как бы прилипая к телу. Он трется о следующий слой, который слегка отстает от тела. Тот, в свою очередь, испытывает силу трения со стороны еще более удаленного слоя и т.д. Совсем далекие от тела слои можно считать покоящимися. Для ламинарного потока сила трения пропорциональна скорости тела: . Теоретический расчет внутреннего трения для движения шарикав вязкой среде с небольшой скоростью, когда нет вихрей, приводит к формуле Стокса :

, (15.6)

где – радиус шарика, – скорость его движения, – коэффициент динамической вязкости среды.

Второй механизм сил сопротивления включается при больших скоростях движения тела, когда поток становится турбулентным. При увеличении скорости тела вокруг него возникают вихри. Часть работы, совершаемой при движении тела в жидкости или газе, идет на образование вихрей, энергия которых переходит во внутреннюю энергию. При турбулентном потоке в некотором интервале скоростей сила сопротивления пропорциональна квадрату скорости тела: .

Экспериментальная часть

Приборы и оборудование: лабораторная установка, микрометр, линейка, штангенциркуль, секундомер, шарики.

Метод определения

Этот метод основан на измерении скорости установившегося движения твердого шарика в вязкой среде под действием постоянной внешней силы, в простейшем случае – силы тяжести.

Выведем рабочую формулу для определения коэффициента вязкости методом Стокса. Если взять шарик большей плотности, чем плотность жидкости, то он будет тонуть, опускаясь на дно сосуда. На падающий шарик действуют три силы (рис.15.3):

1. сила вязкого трения F С по закону Стокса (15.6), направленная вверх, навстречу скорости: F С = 6πηr v;

2. сила тяжести, направленная вниз:

, (15.7)

где – масса шарика; – плотность шарика; – ускорение свободного падения; – объем шарика, равный:

; (15.8)

3. выталкивающая сила F Арх, согласно закону Архимеда, равная весу вытесненной жидкости:

F Арх = ж g , (15.9)

где – плотность жидкости.

Запишем уравнение движения (второй закон Ньютона) для падающего шарика в проекциях на вертикальную ось:

ma=F тяж –F Арх –F С. (15.10)

Сила тяжести и выталкивающая сила не зависят от скорости движения шарика. Сила трения в законе Стокса прямо пропорциональна скорости. Поэтому на некотором начальном участке l 0 (рис.15.3) падения шарика в жидкости, пока скорость мала, сила трения меньше разности сил тяжести и выталкивающей, и шарик в результате движется с ускорением. Величину участка l 0 можно оценить из уравнения движения (см. дальше).

По мере нарастания скорости падения шарика растет сила вязкого трения. С момента достижения равенства

F С = F тяж – F Арх (15.11)

сумма сил, действующих на шарик, становится равной нулю, и шарик, в соответствии с первым законом Ньютона, движется по инерции равномерно, с набранной им к этому моменту скоростью.

По измеренной скорости установившегося падения шарика можно найти коэффициент вязкости жидкости η .

После подстановки в (15.11) выражений (15.6-15.9) получим:

после сокращения и замены радиуса шарика через его диаметр , :

. (15.12)

Из (15.12) выразим коэффициент динамической вязкости:

. (15.13)

Наконец, скорость v шарика выражаем через пройденный путь и время падения : :

. (15.14)

Выведенная формула (15.14) для расчета коэффициента вязкости, как и формула Стокса (15.6), получены в предположении, что шарик движется в сосуде неограниченного объема. При движении шарика по оси цилиндрического сосуда конечного диаметра D в формуле (14) необходимо учесть влияние стенок сосуда. Уточненная рабочая формула имеет вид:

. (15.15)

где – диаметр цилиндрического сосуда установки.

Описание установки .

Установка состоит из высокого цилиндрического прозрачного сосуда 1 (рис.15.3), по высоте которого на стенке нанесены на определенном расстоянии друг от друга метки 2. В сосуд налита исследуемая жидкость 3 с известной плотностью. Для определения ее вязкости в верхней части сосуда вблизи центра в жидкость опускают маленькие шарики 4, плотность которых несколько больше плотности жидкости.

Порядок выполнения работы

Упражнение 1. Определение коэффициента вязкости жидкости без учета влияния стенок сосуда .

1. Штангенциркулем измерить диаметр d шарика.

2. Пинцетом или смоченной палочкой опустить шарик по центру сосуда.

3. Определить при помощи секундомера время прохождения шарика между метками.

4. Измерить линейкой расстояние между метками . Повторить пункты 1-3 еще для четырех шариков.

6. Найти среднее значение коэффициента вязкости и рассчитать погрешность .

Упражнение 2. Определение коэффициента вязкости жидкости по уточненной формуле с учетом влияния стенок сосуда .

1. Измерить линейкой внутренний диаметр сосуда 1.

3. Сравнить результаты, полученные по формулам (15.14) и (15.15) и сделать выводы.

4. Все результаты занести в таблицу по форме 15.1.

Форма 15.1.

d, м Δd, м t, c Δt, c h, м Δh, м η, Па.с Δη i , Па.с Δη по (15.17) D , м η’, Па.с l 0 , м
Средние

Замечание . Погрешность коэффициента вязкости Δη рассчитывается двумя способами:

а) по стандартной методике расчета погрешностей случайной величины:

, (15.16)

где коэффициент Стьюдента для числа опытов и доверительной вероятности α=0.95 равен: t n, α =2.57; Δη i =|η ср.– η i |.

б) исходя из формулы (15.14) по стандартной методике расчета погрешностей при косвенных измерениях:

, (15.17)

где , , .

Расчет по (15.17) производится для одного какого-либо опыта, при этом в качестве , и нужно взять приборные погрешности.

Упражнение 3. Оценка участка неравномерного падения шарика l 0 .

Выведем формулу для оценки l 0 .

Запишем формулу (15.10):

ma=F тяж –F Арх –F С. (15.10)

после подстановки выражений (15.6-15.9) получим:

ρ ш a= (ρ ш – ρ ж) g –6πηr v,

или после почленного деления на ρ ш :

,

. (15.18)

Решением дифференциального уравнения (15.18) будет функция:

где v р – скорость равномерного (установившегося) движения, v 0 – начальная скорость шарика, которую можно принять равной нулю, коэффициент b в показателе степени экспоненты равен:

Убедиться в том, что (15.19) является решением уравнения (15.18), можно путем подстановки (15.19) в (15.18), рассчитав предварительно производную скорости v по времени; при этом будут получены также и выражение для b (15.20), и формула для установившейся скорости движения (см.(15.13)):

. (15.21)

Заметим, что (15.19) удовлетворяет начальным условиям: при t= 0 скорость равна v 0 , при t →∞ скорость v→v р. Движение можно считать практически равномерным, если экспонента мала:

Это реализуется при (bt )→∞, то есть если t >>b -1 . Достаточно потребовать (bt )=4; в этом случае отличие скорости от установившейся составит не более 2% (при v 0 =0): . Таким образом, оценим l 0 , проинтегрировав (15.19) по времени на промежутке , где :

откуда с учетом (15.20) и (15.21):

,

и окончательно:

. (15.22)

1. Оценить участок неравномерного движения шарика по формуле (15.22).

2. Записать результат в таблицу 15.1.

3. Сравнить полученное значение с величиной l0, реально используемой в установке.

4. Сделать вывод.

Контрольные вопросы .

1. Запишите формулу Ньютона для коэффициента динамической вязкости. Сделайте поясняющий рисунок.

2. Что называется коэффициентом динамической вязкости? Поясните его физический смысл и выведите его размерность.

3. Объяснить механизм внутреннего трения для газов и жидкостей. Как зависит от температуры вязкость газов и жидкостей? Почему?

4. Какие силы действуют на шарик, падающий в жидкости? Сделайте рисунок, запишите второй закон Ньютона для шарика, падающего в вязкой жидкости.

5. Почему, начиная с некоторого момента, шарик движется равномерно?

6. Как зависит скорость падения шарика от его диаметра?

7. Имеет ли смысл использование уточненной формулы (15.15) при выполнении работы на данной установке?

8. Выведите приближенную расчетную формулу (15.14) для коэффициента вязкости.

9. Докажите (15.19) и (15.20).

Используемая литература

§9.4; §10.7, 10.8; §75, 76, 78, 130; §5.6, 5.7; §31, 33, 48.

Лабораторная работа 1-16 “Определение модуля Юнга методом прогиба”

Цель работы: определение модуля Юнга материала путем измерения прогиба стержня при нагрузке.

Теоретическое введение

Прочность, долговечность и надежность металлических изделий (твердых тел), работающих в различных условиях, во многом зависит от характеристик, определяющих упругие свойства материалов.

Твердые тела при этом будем рассматривать как сплошную среду с определенной плотностью . Под воздействием внешних сил твердые тела в той или иной степени деформируются, то есть изменяют свою форму и объем. При всем разнообразии деформаций тел возможно любую деформацию свести к двум основным (элементарным): растяжению (сжатию) и сдвигу. Деформация растяжения характеризуется величиной относительного удлинения :

где – длина тела до растяжения; – после растяжения; – абсолютное удлинение.

Деформация называется упругой, если после снятия нагрузки полностью восстанавливаются размеры и форма тела, т.е. это обратимая деформация.

Сдвигом называется такая деформация твердого тела, при которой все его плоские слои, параллельные некоторой неподвижной плоскости, называемой плоскостью сдвига, не искривляясь и не изменяясь в размерах, смещаются параллельно друг другу. Деформация сдвига характеризуется величиной относительного сдвига. При малых деформациях сдвига относительный сдвиг есть просто измеренный в радианах угол .

При деформации однородного сдвига величина во всех точках тела одна и та же.

Растяжение тела всегда сопровождается соответствующим сокращением его поперечного сечения и, наоборот, сжатие – соответствующим увеличением поперечного сечения. Характеристикой этого изменения поперечных размеров при растяжении и сжатии является относительное поперечное расширение или сжатие:

, (16.2)

где – поперечный размер тела до деформации, а – после деформации..

Ясно, что знак продольной деформации противоположен знаку поперечной . Отношение

называют коэффициентом Пуассона. Он не зависит от размеров тел и для всех тел, сделанных из данного материала, является константой, характеризующей его свойства. Для всех известных в природе тел коэффициент Пуассона имеет значение в пределах от 0 до 0,5.

Деформацию реальных твердых тел представляют в виде диаграммы. При этом удобно растяжение задавать не силой как таковой, а отношением силы к площади сечения:



(16.4)

Величина в механике деформируемых твердых тел называется напряжением и измеряется в Н/м 2 . Диаграмма растяжения схематически представлена на рис.16.1 в виде зависимости . Как видно из рис.16.1, при малых деформациях (напряжение пропорционально деформациям). Это есть известный из школы закон Гука. Точка А соответствует максимальному напряжению, при котором еще сохраняется пропорциональность между и , то есть еще справедлив закон Гука.

где – модуль упругости (модуль Юнга для данного материала).

Напряжение, соответствующее точке А, называется пределом пропорциональности . Выше т.А удлинение растет быстрее, чем напряжение . В этой области (т.А’) находится предел упругости тела . Точного определения предела упругости тела дать вообще невозможно, так как малые остаточные деформации наблюдаются всегда.

Далее (за т.А’) начинается область текучести материала (пластическая деформация) – наибольшие деформации, которым подвергся материал, почти целиком сохраняются как остаточные, но целость материала еще не нарушается. При еще больших нагрузках наступает разрушение.

Область упругих деформаций обычно очень незначительна (например, для стали пределу упругости соответствует значение порядка 0,001).

В отличие от растяжения и сжатия деформация сдвига вызывается касательными напряжениями

где – сила, параллельная поверхности твердого тела, которая вызывает сдвиг.

При малых деформациях закон Гука в этом случае имеет вид, аналогичный (16.5):

где – коэффициент пропорциональности между напряжением сдвига и углом сдвига - называется модулем сдвига.

Итак, упругие свойства деформируемого упругого тела характеризуются двумя основными модулями упругости – модулем Юнга и модулем сдвига . Еще одна упругая константа – коэффициент Пуассона . В изотропных твердых телах (у таких тел свойства одинаковы во всех направлениях) эти три константы , и не являются независимыми, а связаны между собой соотношением

Из (16.8), кстати, следует, что в твердых телах.

Экспериментальная часть

В работе определяется модуль упругости предложенных образцов и проверяется зависимость деформации от нагрузки.

Используется установка, которая показана на рис. 16.2.

Изгиб представляет собой более сложный вид деформации, чем деформация растяжения или сжатия, так как заключает в себе одновременно и растяжение, и сжатие. Различные слои образца при изгибе несут неодинаковую нагрузку. В большинстве случаев испытания на изгиб проводятся сосредоточенной нагрузкой на образец, лежащий на двух опорах. Образцы изготовляют обычно в виде стержней прямоугольного сечения. Длина образца на 40-60 мм больше, чем расстояние между опорами. Ширина образца должна быть вдвое больше его толщины.

На исследуемый образец надевается подвеска для грузов, а образец кладется на острые металлические опоры. Подвеска с грузами находится на одинаковом расстоянии от точек опоры стержня. Стрела прогиба h образца измеряется индикатором часового типа.

Если к середине стержня (рис. 16.2), опирающегося концами на неподвижные опоры, приложить вертикальную силу, направленную перпендикулярно оси стержня, то будет наблюдаться деформация изгиба (на рис. 16.2 деформации представлены не в масштабе). Нижние слои стержня при этом испытывают деформацию растяжения, верхние - деформацию сжатия, а средний слой, длина которого не изменяется, нагрузок не несет и называется нейтральным. При так называемом чистом изгибе напряжения, которые испытывают слои материала при деформации, имеют прямую зависимость от их деформации: сжатию соответствуют отрицательные напряжения, растяжению - положительные.

Величина прогиба при этом оказывается обратно пропорциональной модулю Юнга . Вывод формулы для модуля Юнга по этому методу относительно сложен. Окночательно формула имеет вид:

, (16.9)

где: F – приложенная к образцу сила, ;

– длина образца между опорами;

– стрела прогиба образца;

– ширина образца;

– толщина образца.

Лабораторная установка

Схема установки для определения модуля Юнга по прогибу представлена на рис. 16.3.


На основании 1 закреплена массивная направляющая 2. По ней могут перемещаться стойки 3 и кронштейн 4, зажимаемые в необходимом положении винтами 5 (вручную). Стойки вверху оканчиваются призмами 6, на параллельные острия которых устанавливается измеряемый образец 7. В гнезде 8 кронштейна зажимается вручную винтом 9 индикатор перемещения 10. На образце напротив индикатора подвешена серьга 11 с платформой для специальных (с прорезью) гирь 12. При нагружении платформы гирями образец прогибается. Стрела прогиба 13 регистрируется перемещением стрелки индикатора.

Методика измерений

1. Ослабив винты 5, установите призмы 6 на заданное (преподавателем) расстояние. Закрепите винты.

2. Установите кронштейн 4 на одинаковом расстоянии от стоек. Закрепите винты.

3. Расположите образец на призмах так, чтобы гнездо индикатора находилось над средней частью по ширине образца.

4. Вставьте индикатор в гнездо, осторожно утопив его так, чтобы стрелка малой шкалы оказалась около метки 5 мм. Аккуратно зажмите индикатор винтом 9.

5. Измерьте штангенциркулем толщину b и ширину a образца. Измерьте линейкой расстояние между ребрами призм l . Установите поворотом кольца нуль на индикаторе.

6. Аккуратно поставьте на платформу гирю. Запишите (по красной шкале) показания индикатора.

7. Снимите с платформы гирю. Если стрелка сместилась с нулевой отметки, установить нуль. Повторите для контроля несколько раз измерения с тем же грузом.

8. Проведите аналогично п.7 измерение прогиба с гирями большей массы (массы брать около 1,2,3,4,5 кг).

9. Результаты занести в таблицу предложенной формы 16.1.

Форма 16.1.

10. Рассчитайте модуль Юнга при каждом измерении и усредните результат.

11. Рассчитайте ошибку определения модуля Юнга DE (достаточно рассчитать для одного опыта).

12. Значения модуля Юнга, совпадающие с учетом ошибки DE друг с другом, т.е. не выходящие за границы значений (E cp + DE )и (E cp - DE ), позволяют определить истинное (среднее) значение модуля Юнга.

13. С учетом п.12 определить среднее значение модуля Юнга.

14. Ошибка модуля Юнга DE определяется из рабочей формулы (16.9) как сумма частных ошибок всех величин, входящих в выражение:

Контрольные вопросы.

1. Что такое модуль Юнга?

2. Что такое абсолютное и относительное удлинение образца?

3. Что такое механическое напряжение?

4. Что такое коэффициент Пуассона?

5. Что такое абсолютное и относительное поперечное сжатие?

6. Какие из перечисленных характеристик относятся к материалу?

7. Какие из перечисленных характеристик относятся к образцу?

8. Закон Гука и его физический смысл.

9. Кривая зависимости s (e ) и ее характерные точки и участки.

10. Деформация сдвига, иллюстрация пластических деформаций.

11. В чем состоит суть данного метода измерения Е?

12. Зависит ли модуль Юнга от нагрузки и стрелы прогиба?

13. Чем отличается деформация прогиба от деформации растяжения?

14. Напишите формулу для модуля Юнга по прогибу.

Используемая литература

§14; §21; §48.

Лабораторная работа 1-17 “Изучение упругой деформации растяжения”

Цель работы: определить коэффициент упругости, модуль Юнга и коэффициент Пуассона для образца резины и проверить применимость для этого образца закона Гука .

Теоретическое введение

Жидкости сопротивляются изменению их объема, но не сопротивляются изменению формы. С этим свойством связан характерный для жидкостей закон Паскаля: передаваемое жидкостью во все стороны давление одинаково.

Твердые же тела сопротивляются как изменению объема, так и изменению формы; они сопротивляются, как говорят, любому деформированию. Для твердых тел не справедлив закон Паскаля. Передаваемое твердым телом давление различно в разных направлениях. Давления, возникающие в твердом теле при его деформировании, называются напряжениями . В отличие от давления в жидкости, упругие напряжения в твердом теле могут иметь любые направления по отношению к площадке, на которую действуют силы. Но при всем разнообразии деформации твердых тел оказывается возможным любую деформацию тела свести к двум основным типам, которые поэтому называют

где – коэффициент пропорциональности, зависящий от свойств материала цилиндра, но не зависящей от его размеров. Он называется модулем упругости или модулем Юнга данного материала.

Если деформации тела достаточны малы, то по прекращению действия вызвавших деформацию внешних сил тело возвращается в исходное недеформированное состояние. Такие деформации называются упругими.

Соотношение (17.2) называют законом Гука. Модуль Юнга, однако, еще не характеризует полностью упругие свойства тела. Это видно и из рисунка 17.1. – продольное растяжение цилиндра связано с сокращением его поперечных размеров: удлиняясь, цилиндр одновременно становится более тонким. Характеристикой этого изменения является относительное поперечное сжатие

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Физика»

для студентов, обучающихся по направлению 230400.62 «Информационные системы и технологии» очной формы обучения

Тюмень, 2012

Величко Т.И. Определение коэффициента вязкости жидкости методом Стокса: методические указания к лабораторной работе по дисциплине «Физика» для студентов направления 230400.62 «Информационные системы и технологии» очной формы обучения/ Т.И. Величко.-Тюмень: РИО ФГБОУ ВПО «ТюмГАСУ», 2012. – 11 c.

Методические указания разработаны на основании рабочих программ ФГБОУ ВПО ТюмГАСУ дисциплины «Физика» для студентов направления 230400.62 «Информационные системы и технологии» очной формы обучения.

Указания включают описание экспериментальной установки и метода измерений, порядок выполнения измерений и расчетов в лабораторной работе по теме «Механика жидкостей и газов».

Рецензент: Михеева О.Б.

Тираж 50 экз.

© ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет »

© Величко Т.И.

Редакционно-издательский отдел ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. Краткая теория к работе. . . . . . . . . . . . . . . . . . . . . . . 5

2. Лабораторная работа №12. Определение коэффициента вязкости

жидкости методом Стокса. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Описание установки. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Порядок выполнения работы. . . . . . . . . . . . . . 9

3. Контрольные вопросы. . . . . . . . . . . . . . . . . . . . . . . . . 10

Библиографический список. . . . . . . . . . . . . . . . . . . . . . 11

Введение

Методические указания разработаны на основании рабочих программ ФГБОУ ВПО ТюмГАСУ дисциплины «Физика» для студентов направления 230400.62 «Информационные системы и технологии» очной формы обучения. Указания включают описание экспериментальной установки и метода измерений, порядок выполнения измерений и расчетов в лабораторной работе по теме «Механика жидкостей и газов».

Настоящие методические указания нацелены на приобретение студентами следующих компетенций:

- общекультурных:

ОК-1 – владение культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения;

ОК- 11 – владение основными методами, способами и средствами получения, хранения, переработки информации, использование компьютера как средства работы с информацией;

- профессиональных:

ПК-1 – использование основных законов естественнонаучных дисциплин в профессиональной деятельности, применение методов математического анализа и моделирования, теоретического и экспериментального исследования;

ПК-2 –выявление естественнонаучной сущности проблем, возникающих в ходе профессиональной деятельности, привлечение для их решения соответствующего физико-математического аппарата;

ПК-5 – владение основными методами, способами и средствами получения, хранения, переработки информации, навыками работы с компьютером как средством управления информацией;

ПК-18 – способность к проведению экспериментов по заданной методике и анализу результатов с привлечением соответствующего математического аппарата.

Цель работы – по результатам экспериментальных измерений рассчитать коэффициент вязкости раствора глицерина.

Оборудованием служат сосуд с раствором глицерина, стальные шарики, микрометр, секундомер, линейка.

1. КРАТКАЯ ТЕОРИЯ К РАБОТЕ

1.1 Вязкость . Вязкость или внутреннее трение - свойство жидкостей (или газов) оказывать сопротивление перемещению одного слоя жидкости относительно другого. Силы внутреннего трения направлены по касательной к поверхности слоев; на слой, движущийся быстрее, со стороны слоя, движущегося медленнее, действует тормозящая сила. Эти силы возникают за счет передачи импульса от одного слоя жидкости (газа) другому.

Вязкость жидкостей объясняется действием сил притяжения между молекулами и проявляется в торможении движущихся в жидкости тел, в появлении сопротивления при помешивании жидкости и т.д.

Если вязкая жидкость движется по горизонтальной трубе с небольшой скоростью так, что ее течение является ламинарным (слоистым), то молекулы слоя, соприкасающегося со стенками трубы, прилипают к стенкам и остаются неподвижными. Другие слои движутся с возрастающими скоростями, и наибольшую скорость имеет слой, движущийся вдоль оси трубы. Картина распределения скоростей слоев вязкой жидкости имеет при этом вид параболы (рисунок 1).

Рисунок 1- Распределение скоростей слоев вязкой жидкости в

Рассмотрим течение некоторой жидкости по горизонтальной поверхности (рисунок 2) . Если скорость в этом течении меняется от слоя к слою, то на границе между слоями действует сила внутреннего трения , величина которой определяется по закону, впервые найденному Ньютоном,

. (1)

где -коэффициент вязкости жидкости, - площадь поверхности слоя, на которую действует сила, - модуль градиента скорости (величина, показывающая, как быстро изменяется скорость движения жидкости в направлении , перпендикулярном к поверхности слоев.)

Рисунок 2 - Течение вязкой жидкости по горизонтальной поверхности.

Величина коэффициента вязкости зависит от природы жидкости или газа и их температуры. Для жидкостей с увеличением температуры уменьшается, для газов, наоборот, возрастает. Как следует из уравнения (1), единицы измерения коэффициента вязкости - Паскаль∙секунда (Па×с).

1.2 Определение вязкости методом Стокса. Метод Стокса определения коэффициента вязкости основан на измерении скорости равномерно движущихся в жидкости небольших тел сферической формы.

При небольшой скорости движения тела в вязкой жидкости на него действует сила сопротивления движению, пропорциональная скорости тела,

Коэффицент сопротивления зависит от формы и размеров тела и от вязкости жидкости. Дж. Стоксом было эмпирически установлено, что для тела сферической формы радиусом , . Сила сопротивления, равная

называется силой Стокса.

Рисунок 2 - Силы, действующие на

падающий шарик.

При падении шарика в жидкости (рисунок 2), на него действуют три силы:

1) сила тяжести ,

(2)

Масса шарика, - его объем, -плотность материала шарика, -радиус шарика.

2) сила Архимеда ,

, (3)

-масса вытесненной шариком жидкости, - плотность жидкости.

3) сила сопротивления движению (сила Стокса) ,

, (4)

Скорость движения шарика.

При равномерном, т.е. с постоянной скоростью, движении шарика

, (5)

.

Если измерить расстояние , пройденное шариком за время , то скорость шарика . Тогда окончательно,

, (6)

или, если использовать диаметр шарика,

. (7)

2. ЛАБОРАТОРНАЯ РАБОТА № 12 (механика)

ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

2.1 Описание установки

Установка состоит из цилиндрического сосуда с раствором глицерина. Сосуд с помощью кронштейнов закреплен на стене. При падении шарика в жидкости его скорость вначале возрастает, но через малый промежуток времени становится величиной постоянной. Чтобы рассчитать скорость падения шарика в растворе глицерина, на стенке сосуда указаны две метки, верхняя отмечает положение, начиная с которого движение шарика можно считать равномерным. В момент похождения шариком верхней метки включают секундомер, отсчитывающий время движения. В момент прохождения шариком второй метки секундомер отключают.

1. Метод Стокса (Дж. Стокс (1819-1903) - английский физик и математик). Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести ( - плотность шарика), сила Архимеда ( - плотность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: где - радиус шарика, v - его скорость. При равномерном движении шарика

Измерив скорость равномерного движения шарика, можно определить вязкость жидкости (газа).

2. Метод Пуазейля (Ж. Пуазейль (1799-1868) - французскии физиолог и физик). Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной . В жидкости мысленно выделим цилиндрический слой радиусом и толщиной dr (рис. 54).

Сила внутреннего трения (см. (31.1)), действующая на боковую поверхность этого слоя,

где dS - боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.

Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получим

Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы (см. также рис.53).

За время t из трубы вытечет жидкость, объем которой

откуда вязкость

Похожие публикации