Chevroletavtoliga - Автомобильный портал

Система зажигания. Контактная система зажигания: схема, принцип работы. Как работает контактная система зажигания? Как изготавливают контакты прерывателя для системы зажигания

Это наиболее старая из существующих систем - фактически она является ровесницей самого автомобиля. За границей такие системы прекратили серийно устанавливать в основном к концу 1980-х годов, в Японии ещё раньше, у нас такие системы на "классику" устанавливались и в XXIвеке.

Механический прерыватель, непосредственно управляющий накопителем энергии (первичной цепью катушки зажигания). Данный компонент нужен для того, чтобы замыкать и размыкать питание первичной обмотки катушки зажигания. Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта. Параллельно контактам включен конденсатор (condenser). Он необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного, между ними может проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного. Но это только половина полезной работы конденсатора - когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения. При выходе конденсатора из строя двигатель нормально работать не будет - напряжение во вторичной цепи получится недостаточно большим для стабильного

искрообразования.

Прерыватель располагается в одном корпусе с распределителем высокого напряжения - поэтому распределитель зажигания в такой системе называют прерывателем-распределителем.

Кратко принцип работы выглядит следующим образом - питание от бортовой сети подается на первичную обмотку катушки зажигания через механический прерыватель. Прерыватель связан с коленчатым валом, что обеспечивает замыкание и размыкание его контактов в нужный момент. При замыкании контактов начинается зарядка первичной обмотки катушки, при размыкании первичная обмотка разряжается, но во вторичной обмотке наводиться ток высокого напряжения, который, через распределитель, также связанный с коленчатым валом, поступает на нужную свечу.

Также в этой системе присутствуют механизмы корректировки опережения зажигания - центробежный и вакуумный регуляторы.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от скорости вращения коленчатого вала двигателя.

Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя. Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя. По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны, и сдвигают втулку кулачков прерывателя "в отрыв" от приводного валика. То есть набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Соответственно контакты размыкаются раньше, угол опережения зажигания увеличивается.

При уменьшении скорости вращения приводного валика, центробежная сила уменьшаются и, под воздействием пружин, грузики возвращаются на место - угол опережения зажигания уменьшается.

Вакуумный регулятор служит для увеличения угла опережения зажигания при уменьшении нагрузки двигателя (и наоборот). Для этого используется разрежение, создаваемое в диффузоре карбюратора. Расположение входного отверстия трубопровода, соединяющего карбюратор с регулятором, выбрано так, чтобы при полной нагрузке, холостом ходе и запуске двигателя разрежение не поступало на регулятор или было незначительным. Вследствие этих соображений входное отверстие

размещается перед дроссельной заслонкой. При открывании дроссельной заслонки ее край проходит мимо входного отверстия трубопровода и разрежение в нем увеличивается.

Разрежение через эластичный трубопровод 1 поступает в вакуумную камеру регулятора, находящуюся с левой стороны от диафрагмы 3.

При работе двигателя на холостом ходу разрежение невелико и регулятор не работает (рис. 2.3, а). По мере увеличения нагрузки (т. е. по мере открытия дроссельной заслонки) увеличивается разрежение в вакуумной камере регулятора. Вследствие разницы давлений (разрежения в вакуумной камере и атмосферного давления) эластичная диафрагма 3 прогибается влево, преодолевая сопротивление пружины 2 и увлекая за собой тягу 5. Эта тяга шарнирно соединена с диском 6, на котором расположены контакты или датчики.

Перемещение тяги влево (при увеличении разрежения) приводит к повороту опорной пластины 7 в направлении, противоположном направлению вращения экрана (рис. 2.3, б). Происходит более ранняя подача управляющего импульса с датчика или размыкание контактов а, значит, и более раннее зажигание. Максимальный поворот диска, а, следовательно, и максимальный угол опережения зажигания ограничены механически. При перемещении дроссельной заслонки в полностью открытое положение разрежение уменьшается, пружина 2 вызывает перемещение диафрагмы, тяги и диска в противоположном направлении, в результате чего уменьшается угол опережения зажигания (более позднее зажигание). При полностью открытой дроссельной заслонке регулятор не работает (рис. 2.3, в).

Принцип действия контактной (классической) системы зажигания

Контактная (классическая) система зажигания

Классическая система батарейного зажигания с одной катушкой и многоискровым механическим распределителем применялась в отечественном автомобилестроении до конца 20-го века. Главным достоинством этой системы являет­ся ее простота, обеспечиваемая двойной функцией механизма рас­пределителя: прерывание цепи постоянного тока для генерирова­ния высокого напряжения и синхронное распределение высокого напряжения по цилиндрам двигателя.

Принципиальная схема классической системы зажигания состо­ит из следующих элементов (рис. 6.4):

· источника электроэнергии – аккумуляторной батареи (генератора) 7;

· катушки зажигания (индукционной катушки) 5, которая преобразует низкое напряжение в высокое напряжение (между первичной и вторичной обмотками существует трансформаторная связь);

· прерывателя 17, содержащего рычажок 6 с подушечкой 7 из
текстолита, поворачивающийся около оси, контакты прерывателя 8, кулачок 16, имеющий число граней, равное числу цилиндров. Неподвижный контакт прерывателя присоединен к «массе»; подвижный контакт укреплен на конце ры­чажка. Если подушечка не каса­ется кулачка, контакты замкнуты под действием пружины. Когда подушечка находит на грань кулачка, контакты размыкаются. Прерыватель управляет размы­канием и замыканием контактов и моментом подачи искры;

· конденсатора первичной цепи 18, подключенного парал­лельно контактам 8, который является составным элементом колебательного контура в первичной цепи после размыкания контактов;

· распределителя 14, включающего в себя бегунок 12, крышку
10, на которой расположены неподвижные боковые электроды 11
(число которых равно числу цилиндров двигателя) и неподвижный
центральный электрод, который подключается через высоковольт­ный провод к катушке зажигания. Боковые электроды через высоко­вольтные провода соединяются с соответствующими свечами за­жигания. Высокое напряжение к бегунку 12 подается через цен­тральный электрод с помощью скользящего угольного контакта. На бегунке имеется электрод 13, который отделен воздушным зазором от боковых электродов 11. Бегунок 12 распределителя и кулачок 16 прерывателя находятся на одном валу, который приводится во вращение зубчатой передачей от распределительного вала двига­теля с частотой, вдвое меньшей частоты вращения коленчатого вала. Прерыватель и распределитель расположены в одном аппарате, называемом распределителем зажигания;

· свечей зажигания 15, число которых равно числу цилиндров
двигателя;

· выключателя зажигания 2;



· добавочного резистора 3 (R доб), который уменьшает тепловые
потери в катушке зажигания (при пуске двигателя R доб шунтируется выключателем 4 одновременно с включением стартера.) Добавочный резистор изготовляют из нихромовой или константановой проволоки, которую наматывают на керамический изолятор.

Рис. 6.4. Принципиальная схема классической системы зажигания

Принцип работы классической системы батарейного зажигания состоит в следующем. При вращении кулачка 16 контакты 8 попере­менно замыкаются и размыкаются. После замыкания контактов (в случае замкнутого выключателя 2) через первичную обмотку катушки зажигания 5 протекает ток (рис. 6.4), нарастая от нуля до определенного зна­чения в течение времени нахождения контактов в замкнутом состоянии. При малых частотах вращения валика 9 распределителя 14 ток может нарастать до значения, определенного напряжением аккумуляторной батареи (генератора) и сопротивлением первичной цепи (установившийся ток). Протекание первичного тока вызывает образова­ние магнитного потока и накопление электромагнитной энергии в обмотках катушки зажигания.

После размыкания контактов прерывателя в первичной обмотке катушки индуцируется ЭДС самоиндукции, которая препятствует уменьшению тока. Эта ЭДС самоиндукции наводит во вторичной обмотке катушки зажигания ЭДС (вторичное напряжение). Согласно закону индукции вторичное напряжение тем больше, чем больше скорость изменения магнитного потока, созданного током первичной обмотки, больше первичный ток в момент разрыва и больше число витков во вторичной обмотке по сравнению с первичной обмоткой (катушка является трансформатором напряжения).

В результате переходного процесса во вторичной обмотке возни­кнет высокое напряжение, достигающее 15…20 кВ. ЭДС самоиндукции в первичной об­мотке катушки зажигания достигает 200…400 В. При отсутствии конденсатора 18 ЭДС самоиндукции вызывает образование между контактами прерывателя во время их размыкания сильной искры, нося­щий дуговой характер. При наличии конденсатора 18 искрообразование уменьшается, так как ЭДС самоиндукции создает ток, заря­жающий конденсатор. В следующий период времени конденсатор разряжается через первичную обмотку катушки и аккумуляторную батарею. Таким образом, конденсатор 18 практически устраняет дугообразование в прерывателе, обеспечивая долговечность контактов и индуцирование во вторичной обмотке высокой ЭДС.

Вторичное напряжение подводится к бегунку распределителя, а затем через электроды в крышке и высоковольтные провода посту­пает к свечам соответствующих цилиндров.


Рис. 6.5. Временные диаграммы тока первичной цепи и вторичного напряжения

Таким образом, рабочий процесс любой батарейной системы зажигания, использующей для получения высокого напряжения индукционную катушку можно разбить на три этапа:

1 этап. Замыкание контактов прерывателя. На этом этапе происходит
подключение первичной обмотки катушки зажигания (накопителя) к
источнику электроэнергии. Этап характеризуется нарастанием первичного тока и, как следствие этого, накоплением электромагнитной энергии в магнитном поле катушки.

2 этап. Размыкание контактов прерывателя. Источник электроэнергии отключается от катушки зажигания. Первичный ток быстро уменьшается, в результате чего накопленная электромагнитная энергия преобразуется в энергию высокого напряжения (ЭДС) во вторичной обмотке.

3 этап. Пробой искрового промежутка свечи. В рабочих условиях при
определенном значении напряжения происходит пробой искрового
промежутка свечи с последующим разрядным процессом.

На первом этапе вторичная цепь практически не влияет на процесс нарастания первичного тока. Токи и напряжения во вторичной цепи при относительно малой скорости нарастания первичного тока незначительны. Вторичную цепь можно считать разомкнутой. Первич­ный конденсатор С1 замкнут накоротко контактами К . Схема замеще­ния для этого рабочего этапа приведена на рис.6.6.

Процесс нарастания первичного тока согласно второму закону Кирхгофа описывается дифференциальным уравнением


где – напряжение первичного источника питания (аккумулятора или генератора); – индуктивность первичной обмотки; – ток в первичной цепи; – сопротивление первичной цепи.

Рис. 6.6. Схема замещения клас­сической системы зажигания после замыкания контактов прерыватели (К – контакты прерывателя, М – взаимоиндукция)

Решением этого уравнения является выражение

Или , (6.2)

где – постоянная времени первичного контура ().

На втором этапе контакты размыкаются. Ток разрыва зависит от времени нахождения контактов в замкнутом состояния :

где – зависит от частоты вращения коленчатого вала двигателя , числа цилиндров , профиля кулачка (т.е. соотношения между углом замкнутого и разомкнутого состояния контактов); – постоянная времени первичного контура.

Частота размыкания контактов для четырехтактного двигателя определяется формулой

. (6.4)Время полного периода работы прерывателя

где – время разомкнутого состояния контактов.

Запасенная электромагнитная энергия в первичной обмотке катушки зажигания

Схема замеще­ния для этого рабочего этапа приведена на рис. 6.7.


Рис. 6.7. Упрощенная схема за­мещения классической системы зажигания после размыкания кон­тактов прерывателя

Согласно этой схеме имеем два магнитосвязанных кон­тура, каждый из которых содержит емкость (С 1 – конденсатор пер­вичной цепи; С 2 – распределенная емкость вторичной цепи), индук­тивность (L 1 , L 2 – индуктивности соответственно первичной и вто­ричной обмоток катушки зажигания), эквивалентное активное со­противление (R 1 , R 2 – суммарные активные сопротивления соот­ветственно первичной и вторичной цепей). Во вторичный контур включены шунтирующее сопротивление R ш и сопротивление потерь R п, учитывающее соответственно утечки тока на свече и магнитные потери.

В момент размыкания контактов прерывателя электромагнитная энергия, запасенная в катушке, преобразуется в энергию электри­ческого поля конденсаторов С 1 и С 2 и частично превращается и теплоту. Значение максимального вторичного напряжения можно получить из уравнения электрического баланса в контурах первич­ной и вторичной цепей, пренебрегая потерями в них:

где , – максимальные значения соответственно первичного и вторичного напряжений.

Так как ,

Однако это выражение не учитывает потери энергии в сопротивлении нагара, шунтирующего искровой промежуток свечи, маг­нитные потери в стали, электрические потери в искровом промежутке распределителя и в дуге на контактах прерывате­ля. Указанные потери приводят к снижению вто­ричного напряжения. На практике для учета потерь в контурах вводят в виде множителя коэффициент затухания , выражающий уменьше­ние максимума напряже­ния из-за потерь энергии:

где – коэффициент затухания составляет для контактных систем зажигания 0,75…0,85.

Для зажигания рабочей смеси электрическим способом необхо­димо образование электрического разряда между электродами свечи, которые находятся в камере сгорания. Протекание электрического разряда в газо­вом промежутке может быть представлено вольтамперной характеристикой (рис. 6.8).

Участок Оаb соответствует не­самостоятельному разряду. Напряжение возрастает, ток остает­ся практически неизменным и по силе ничтожно мал. При даль­нейшем увеличении напряжения скорость движения ионов по направлению к электродам увеличивается. При начальном напряжении U н , начинается ударная иони­зация, т.е. такой разряд, который, однажды возникнув, не требует для своего поддержания воздействия постороннего ионизатора. Если поле равномерное, то процесс ионизации сразу перерастает в пробой газового промежутка. Если поле неравномерное, то вначале возникает местный пробой газа около электродов в местах с наи­большей напряженностью электрического поля, достигшей критиче­ского значения. Этот тип разряда называется короной и соответству­ет устойчивой части вольтамперной характеристики . При дальнейшем повышении напряжения корона захватывает новые области межэлектродного пространства, пока не произойдет пробой (точка с ), когда между электродами проскакивает искра. Это происходит при достижении напряжением значения пробивного напряжения U пр.

Проскочившая искра создает между электродами сильно нагре­тый и ионизированный канал. Температура в канале разряда ра­диусом 0,2…0,6 мм превышает 10 000 К.

Сопротивление канала зависит от силы протекающего по нему тока. Дальнейшее протекание процесса зависит от параметров га­зового промежутка цепи источника энергии. Возможен или тлеющий разряд (участок de ), когда токи малы, или дуговой разряд (участок тп ), когда токи велики вследствие большой мощности источника тока и малого сопротивления цепи. Оба эти разряда являются са­мостоятельными и соответствуют устойчивым участкам вольтамперной характеристики. Тлеющий разряд характеризуется тока­ми величиной 10 -5 …10 -1 А и практически неизменным напряжением разряда. Дуговой разряд характеризуется большими токами при относитель­но низких напряжениях на электродах.

Пробивное на­пряжение ниже мак­симального вторичного напряжения , разви­ваемого системой зажига­ния, и поэтому, как только возрастающее напряже­ние достигает значения , в свече происходит искровой разряд, и коле­бательный процесс обры­вается (рис. 6.5 и 6.9).

Электрический разряд имеет две составляющие; емкостную и индуктивную. Емкостная составляющая искрового разряда пред­ставляет собой разряд энергии, накопленной во вторичной цепи, обусловленной ее емко­стью С 2 . Емкостный разряд характеризуется резким падением на­пряжения и резкими всплесками токов, по своей силе достигающих десятков ампер (рис. 6.9). Несмотря на незначительную энергию емкостной искры (), мощность, развиваемая искрой, благо­даря кратковременности (высокой скорости) процесса может достигать десятков и даже сотен киловатт. Емкостная искра имеет яркий голубоватый цвет и сопровождается специфическим треском.

Высокочастотные колебания (10 6 …10 7 Гц) и большой ток емко­стного разряда вызывают сильные радиопомехи и эрозию элек­тродов свечи. Для уменьшения эрозии электродов свечи (а в не­экранированных системах и для уменьшения радиопомех) во вторич­ную цепь (в крышку распределителя, бегунок, наконечники свечей, в провода) включается помехоподавляющие резисторы.

Поскольку ис­кровой разряд происходит раньше, чем вторичное напряжение дости­гает своего максимального значения , а именно при напряжении , на емкостный разряд расходуется лишь небольшая часть магнитной энергии, накопленной в сердечнике катушки зажигания.

Оставшаяся часть энергии выделяется в виде индуктивного раз­ряда. При условиях, свойственных работе распределителей и раз­рядников, и при обычных параметрах катушек зажигания индуктив­ный разряд всегда происходит на устойчивой части вольтамперной характеристики, соответствующей тлеющему разряду. Ток индуктивного разряда составляет 20…40 мА. Напряжение между электродами свечи сильно понижается до величины 220…330 В.


Рис. 6.9. Изменение напряжения и тока искрового разряда: а и б – соответственно емкостная и ин­дуктивная фазы разряда; – время индуктивной составляющей разряда; – амплитудное значение тока индуктивной фазы разряда; – напряжение индук­тивной фазы разряда

Продолжительность индуктивной составляющей разряда на 2…3 порядка выше емкостной и достигает в зависимости от типа катуш­ки зажигания, зазора между электродами свечи и режима работы двигателя (пробивного напряжения) 1…1,5 мс. Искра имеет блед­ный фиолетово-желтый цвет. Эта часть разряда получила название хвоста искры.

За время индуктивного разряда в искровом промежутке свечи вы­деляется энергия, которая может быть определена аналитически:

На практике широко используется приближенная формула для подсчета энергии искрового разряда:

Расчеты и эксперименты показывают, что при низких частотах вра­щения двигателя энергия индуктивного разряда W ир = 15…20 мДж для обычных классических автомобильных систем зажигания.

Максимальное вторичное напряжение, развиваемое системой зажигания U 2 m .

Аналитические выражения для вторичного напряжения (6.8) и (6.9) показывают, что значение U 2 m зависит от силы тока разрыва I р и, следовательно, определяется режимом работы и типом двигателя (n и z) , работой прерывателя (t з или τ з ), параметрами первичной цепи (L 1 , R 1 , С 1 , UGB, а также зависит от параметров вторичного контура и внешней нагрузки (С 2 , , сопротивления слоя нагара R ш на изоляторе свечи, шунтирующего воздушный зазор свечи).

Зависимость U 2 m от частоты вращения вала и числа цилинд­ров двигателя.

Время замкнутого состояния контактов определяется выражением

где – угол замкнутого состояния контактов; – частота вращения валика распределителя.

Из выражения (6.12) видно, что с возрастанием частоты враще­ния валика время уменьшается и ток разрыва (6.3) становится мень­ше. Уменьшение тока разрыва влечет за собой снижение напряже­ния U 2 m . Увеличение числа цилиндров двигателя при всех прочих равных условиях и параметрах системы зажигания также уменьша­ет время замкнутого состояния контактов и снижает вторичное U 2 m .

На рис. 6.7 приведены характеристики максимального вторич­ного напряжения в зависимости от частоты вращения ко­ленчатого вала двигателя и числа цилиндров двигателя. Характе­ристики носят монотонный убывающий характер, причем закон убывания жестко детерминирован параметрами первичной цепи () и углом замкнутого состояния контактов .

Уменьшение напряжения U 2 m на низких частотах вращения свя­зано с дугообразованием на контактах прерывателя.

Увеличения тока разрыва можно добиться за счет увеличения угла замкнутого состояния контактов, что достигается соответст­вующим профилированием кулачка. Однако по механическим сооб­ражениям увеличить время замкнутого состояния контактов преры­вателя больше чем до 60…65% времени полного периода ( = 0,60…0,65) практически невозможно. На некоторых зарубеж­ных двигателях применяют две независимые схемы с двумя прерывателями и катушкой, работающими на один распределитель. При этом относительная замкнутость может достигать 0,85.

Рис. 6.7. Типовые рабочие харак­теристики классической системы зажигания для четырех- и шести­цилиндровых двигателей

Первичный ток и скорость его нарастания зависят от постоянной нремени первичного контура (рис. 6.8). Чем меньше этот показатель, тем быстрее нарастает ток до установившегося значе­ния. Скорость нарастания тока из выражения обратно пропорциональна индуктивности L 1 :

и при . (6.13)

Однако уменьшение индуктивности целесообразно лишь до определенного значения, ниже которого начинает уменьшаться запас электромагнитной энергии, определяющий вторичное на­пряжение.

При неизменной индуктивности первичной цепи сила тока раз­рыва увеличивается с уменьшением сопротивления R 1 так как уве­личивается установившееся значение тока. При различных значе­ниях сопротивления первичной цепи скорость нарастания тока в начальный момент одинакова, т.е.

Однако чем меньше сопротивление R 1 , тем выше идет кривая тока (рис. 6.9).


Рис. 6.8. Кривые нарастания первичного тока при различных значе­ниях индуктивности первичной цепи ().

Рис. 6.9. Кривые нарастания пер­вичного тока при различных значе­ниях сопротивления первичной цепи

Таким образом, для увеличения максимального вторичного напряжения необходимо уменьшать сопротивление первичной цепи. Однако чрезмерное уменьшение R 1 приводит к увеличению установившего­ся тока, что ухудшает работу контактов при низких частотах враще­ния и приводит к перегреву катушки.

Зависимость U 2 m от емкости первичного конденсатора С 1 .

Из выражения (6.8) видно, что с уменьшением емкости конденсатора С1 вторичное напряжение должно увеличиваться, и при С1 = 0 оно достигает максимального значения. Такой характер изменения U2m возможен лишь при больших значениях С1. В диапазоне малых ем­костей по мере их уменьшения вторичное напряжение также уменьшается. Это явление объясняется тем, что при малой емко­сти не устраняется дугообразование на контактах, вызывающее значительные потери энергии. Характер зависимости вторичного напряжения от емкости конденсатора первичной цепи (рис. 6.10) показывает, что существует оптимальное значение С 1 , определяе­мое условиями гашения дуги на контактах. На практике С 1 выбира­ют в пределах 0,15…0,35 мкФ.

Рис. 6.10. Зависимость вторичного напряжения от емкости конденса­тора в первичной цепи

Зависимость U 2 m от вторичной емкости С 2 .

Значение макси­мального вторичного напряжения также зависит от емкости вторич­ных проводов, емкости свечи зажигания, собственной емкости вто­ричной обмотки катушки зажигания и практически не может быть меньше 40…75 пФ. В случае экранирования системы зажигания емкость вторичной цепи увеличивается до 150 пФ. Следовательно, экранирование, применяемое для существенного снижения радио­помех, значительно уменьшает значение вторичного напряжения.

Зависимость U 2 m от шунтирующего сопротивления R ш .

В про­цессе работы двигателя изолятор свечи нередко покрывается нага­ром, который создает проводящий мостик между электродами све­чи. Этот проводящий слой нагара можно представить в виде рези­стора R ш , шунтирующего воздушный зазор. Из-за наличия R ш на­растающее после размыкания контактов вторичное напряжение создает во вторичной цепи ток, называемый током утечки, который циркулируя во вторичной цепи до пробоя искрового промежутка, вызывает падение напряжения во вторичной обмотке и уменьше­ние подводимого к свече напряжения.

При малом шунтирующем сопротивлении ток утечки возрастает и вторичное напряжение может понизиться до значения меньшего пробивного напряжения, т. е. искра не возникнет (рис. 6.11).

Зависимость U 2 m от коэффициента трансформации.

В случае отсутствия утечек напряжение U 2 m при прочих равных параметрах возрастает с увеличением коэффициента трансформации катушки , стремясь к своему пределу:

При бесконечно большом сопротивлении нагара вся электро­магнитная энергия трансформируется в электростатическую энер­гию вторичной цепи. Однако если ≠ ∞, то каждому значению шунтирующего сопротивления соответствует оптимальный коэф­фициент трансформации, при котором напряжение вторичной цепи максимально (рис. 6.11). Оптимальным для существующих систем зажигания при индуктивности первичной обмотки 6,5…9,5 мГн явля­ется отношение = 55…95.


Рис. 6.11. Зависимость вторичного напряжения от коэффициента трансформации катушки зажигания.

Система зажигания предназначена для воспламенения рабочей смеси в цилиндрах бензиновых двигателей. Основными требованиями к системе зажигания являются:

  • Обеспечение искры в нужном цилиндре (находящемся в такте сжатия) в соответствии с порядком работы цилиндров.
  • Своевременность момента зажигания. Искра должна происходить в определенный момент (момент зажигания) в соответствии с оптимальным при текущих условиях работы двигателя углом опережения зажигания, который зависит, прежде всего, от оборотов двигателя и нагрузки на двигатель.
  • Достаточная энергия искры. Количество энергии, необходимой для надежного воспламенения рабочей смеси, зависит от состава, плотности и температуры рабочей смеси.
  • Общим требованием для системы зажигания является ее надежность (обеспечение непрерывности искрообразования).

Неисправность системы зажигания вызывает неполадки как при запуске, так и при работе двигателя:

  • трудность или невозможность запуска двигателя;
  • неравномерность работы двигателя – “троение” или прекращение работы двигателя при пропусках искрообразования в одном или нескольких цилиндрах;
  • детонация, связанная с неверным моментом зажигания и вызывающая быстрый износ двигателя;
  • нарушение работы других электронных систем за счет высокого уровня электромагнитных помех и пр.

Существует множество типов систем зажигания, отличающихся и устройством и принципами действия. В основном системы зажигания различаются по:
а) системе определения момента зажигания.
б) системе распределения высоковольтной энергии по цилиндрам.

При анализе работы систем зажигания исследуются основные параметры искрообразования, смысл которых практически не отличается в различных системах зажигания:

  • угол замкнутого состояния контактов (УЗСК, Dwell angle) – угол, на который успевает повернуться коленчатый вал от момента начала накопления энергии (конкретно в контактной системе – момента замыкания контактов прерывателя; в других системах – момента срабатывания силового транзисторного ключа) до момента возникновения искры (конкретно в контактной системе – момента размыкания контактов прерывателя). Хотя в прямом смысле данный термин можно применить только к контактной системе – он условно применяется для систем зажигания любых типов.
  • угол опережения зажигания (УОЗ, Advance angle) – угол, на который успевает повернуться коленчатый вал от момента возникновения искры до момента достижения соответствующим цилиндром верхней мертвой точки (ВМТ). Одна из основных задач системы зажигания любого типа – обеспечение оптимального угла опережения зажигания (фактически – оптимального момента зажигания). Оптимально поджигать смесь до подхода поршня к верхней мертвой точке в такте сжатия – чтобы после достижения поршнем ВМТ газы успели набрать максимальное давление и совершить максимальную полезную работу на такте рабочего хода. Также любая система зажигания обеспечивает взаимосвязь угла опережения зажигания с оборотами двигателя и нагрузкой на двигатель. При увеличении оборотов, скорость движения поршней увеличивается, при этом время сгорания смеси практически не изменяется – поэтому момент зажигания должен наступать чуть раньше – соответственно при увеличении оборотов, УОЗ надо увеличивать.
    На одной и той же частоте вращения коленчатого вала двигателя, положение дроссельной заслонки (педали газа) может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава. А скорость сгорания рабочей смеси как раз и зависит от ее состава. При полностью открытой дроссельной заслонке (педаль газа “в полу”) смесь сгорает быстрее и поджигать ее нужно позже – соответственно при увеличении нагрузки на двигатель, УОЗ надо уменьшать. И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает, поэтому угол опережения зажигания должен быть увеличен.
  • напряжение пробоя – напряжение во вторичной цепи в момент образования искры – фактически – максимальное напряжение во вторичной цепи.
  • напряжение горения – условно-установившееся напряжение во вторичной цепи в течение периода горения искры.
  • время горения – длительность периода горения искры.

Обобщенно структуру системы зажигания можно представить следующим образом:

Рассмотрим подробнее каждый из элементов системы:

1. Источник питания для системы зажигания – бортовая сеть автомобиля и ее источники питания – аккумуляторная батарея (АКБ) и генератор.

2. Выключатель зажигания.

3. Устройство управления накоплением энергии – определяет момент начала накопления энергии и момент “сброса” энергии на свечу (момент зажигания). В зависимости от устройства системы зажигания на конкретном авто может представлять из себя:

Механический прерыватель, непосредственно управляющий накопителем энергии (первичной цепью катушки зажигания). Данный компонент нужен для того, чтобы замыкать и размыкать питание первичной обмотки катушки зажигания. Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.Параллельно контактам включен конденсатор (condenser). Он необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного, между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного. Но это только половина полезной работы конденсатора – когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения. При выходе конденсатора из строя двигатель нормально работать не будет – напряжение во вторичной цепи получится недостаточно большим для стабильного искрообразования.Прерыватель располагается в одном корпусе с распределителем высокого напряжения – поэтому распределитель зажигания в такой системе называют прерывателем-распределителем. Такая система зажигания называется классической системой зажигания.Общая схема классической системы:


Это наиболее старая из существующих систем – фактически она является ровесницей самого автомобиля. За границей такие системы прекратили серийно устанавливать в основном к концу 1980-х годов, у нас такие системы на “классику” устанавливаются до сих пор. Кратко принцип работы выглядит следующим образом – питание от бортовой сети подается на первичную обмотку катушки зажигания через механический прерыватель. Прерыватель связан с коленчатым валом, что обеспечивает замыкание и размыкание его контактов в нужный момент. При замыкании контактов начинается зарядка первичной обмотки катушки, при размыкании первичная обмотка разряжается, но во вторичной обмотке наводиться ток высокого напряжения, который, через распределитель, также связанный с коленчатым валом, поступает на нужную свечу.

Также в этой системе присутствуют механизмы корректировки опережения зажигания – центробежный и вакуумный регуляторы.
Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от скорости вращения коленчатого вала двигателя.


Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя. Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя. По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны, и сдвигают втулку кулачков прерывателя “в отрыв” от приводного валика. То есть набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Соответственно контакты размыкаются раньше, угол опережения зажигания увеличивается. При уменьшении скорости вращения приводного валика, центробежная сила уменьшаются и, под воздействием пружин, грузики возвращаются на место – угол опережения зажигания уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от нагрузки на двигатель. Вакуумный регулятор крепится к корпусу прерывателя – распределителя. Корпус регулятора разделен диафрагмой на два объема. Один из них связан с атмосферой, а другой, через соединительную трубку, с полостью под дроссельной заслонкой. С помощью тяги, диафрагма регулятора соединена с подвижной пластиной, на которой располагаются контакты прерывателя. При увеличении угла открытия дроссельной заслонки (увеличение нагрузки на двигатель) разряжение под ней уменьшается. Тогда, под воздействием пружины, диафрагма через тягу сдвигает на небольшой угол пластину вместе с контактами в сторону от набегающего кулачка прерывателя. Контакты будут размыкаться позже – угол опережения зажигания уменьшится. И наоборот – угол увеличивается, когда вы уменьшаете газ, то есть, прикрываете дроссельную заслонку. Разряжение под ней увеличивается, передается к диафрагме и она, преодолевая сопротивление пружины, тянет на себя пластину с контактами.Это означает, что кулачок прерывателя раньше встретится с молоточком контактов и разомкнет их. Тем самым мы увеличили угол опережения зажигания для плохо горящей рабочей смеси.


Механический прерыватель с транзисторным коммутатором . В этом случае механический прерыватель управляет только транзисторным коммутатором, который, в свою очередь, управляет накопителем энергии. Такая конструкция имеет существенное преимущество перед прерывателем без транзисторного коммутатора – оно заключается в том, что здесь контактный прерыватель обладает большей надежностью за счет того, что в этой системе через него протекает существенно меньший ток (соответственно практически исключается пригорание контактов прерывателя во время размыкания). Соответственно и конденсатор, подключенный параллельно контактам прерывателя стал не нужным. В остальном система полностью аналогична классической системе. Обе описанные системы зажигания с механическим прерывателем имеют общее название – контактные системы зажигания.Управление первичной обмоткой катушки зажигания в системе с механическим прерывателем и транзисторным коммутатором:Транзисторный коммутатор с бесконтактным датчиком – генератором импульсов (индуктивного типа, типа Холла или оптического типа) и преобразователем его сигналов. В этом случае вместо механического прерывателя используется датчик – генератор импульсов с преобразователем сигналов, который управляет только транзисторным коммутатором, который, в свою очередь, управляет накопителем энергии.В системах зажигания с транзисторным коммутатором используются датчики трех типов:


Датчик-генератор импульсов, как правило, конструктивно располагается внутри распределителя зажигания (конструкция самого распределителя от контактной системы не отличается) – поэтому узел в целом называют “датчик-распределитель”.

Коммутатор управляет замыканием первичной цепи катушки зажигания на массу. При этом коммутатор не просто разрывает первичную цепь по сигналу с импульсного датчика – коммутатор должен обеспечить предварительную зарядку катушки необходимой энергией. То есть, до управляющего импульса с датчика, коммутатор должен предугадать, когда нужно замкнуть катушку на землю, для того чтобы её зарядить. Причём, он должен это сделать так, чтобы время заряда катушки было приблизительно постоянным (достигался максимум накопленной энергии, но не допускался перезаряд катушки). Для этого коммутатор вычисляет период импульсов приходящих с датчика. И в зависимости от этого периода, вычисляет время начала замыкания катушки на землю. Другими словами, чем выше обороты двигателя, тем раньше коммутатор будет начинать замыкать катушку на землю, но время замкнутого состояния будет одинаковым.

Одна из модификаций этой системы с механическим распределителем и катушкой зажигания, отдельно стоящей от распределителя и коммутатора получила устоявшееся название “бесконтактная система зажигания (БСЗ)”. Общая схема бесконтактной системы зажигания:


Естественно, существует множество модификаций данной системы – с применением других типов датчиков, с применением нескольких датчиков и пр.


Коммутатор (“воспламенитель”, igniter) – это транзисторные ключи, которые в зависимости от сигнала с ЭБУ включают или отключают питание первичной обмотки катушки (катушек) зажигания. В зависимости от устройства конкретной системы зажигания коммутатор может быть как один, так их может быть и несколько (если в системе зажигания используется несколько катушек).

Существует несколько типов систем с разным расположением ключей:

  • ключи объединены в один блок с ЭБУ.
  • ключи стоят отдельно для каждой катушки и не объединены ни с ЭБУ, ни с катушками.
  • ключи объединены в отдельный блок, но стоят отдельно и от ЭБУ и от катушек.
  • ключи объединены с катушками соответствующих цилиндров (особенно характерно для системы COP – см. далее).

4. Накопитель энергии. Накопители энергии, используемые в системах зажигания делятся на две группы:


5. Система распределения зажигания. На автомобилях применяются два типа систем распределения – системы с механическим распределителем и системы статического распределения.

  • Системы с механическим распределителем энергии. Распределитель зажигания, трамблер (англ. distributor, нем. ROV – Rotierende hochspannungsVerteilung) – распределяет высокое напряжение по свечам цилиндров двигателя. На контактных системах зажигания, как правило, объединен с прерывателем, на бесконтактных – с датчиком импульсов, на более современных либо отсутствует, либо объединен с катушкой зажигания, коммутатором и датчиками (системы HEI, CID, CIC).После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора. Во время вращения ротора ток “соскакивает” с его пластины, через небольшой воздушный зазор, на боковые контакты крышки. Далее, через высоковольтные провода, импульс тока высокого напряжения попадает к свечам зажигания. Боковые контакты крышки распределителя пронумерованы и соединены (высоковольтными проводами) со свечами цилиндров в строго определенной последовательности. Таким образом, устанавливается “порядок работы цилиндров”, который выражается рядом цифр. Как правило, для четырехцилиндровых двигателей, применяется последовательность: 1 – 3 – 4 – 2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующий “взрыв” произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения на грузки на коленчатый вал двигателя. С помощью поворота корпуса прерывателя-распределителя выставляется и корректируется первоначальный угол опережения зажигания (угол до коррекции центробежным и вакуумным регуляторами).

  • Системы со статическим распределением энергии. В процессе разработки новых систем зажигания одной из главных задач было отказаться от всех наиболее ненадежных компонентов системы – не только от контактного прерывателя, но и от механического распределителя зажигания. От контактного прерывателя удалось отказаться путем внедрения микропроцессорных систем управления (см. выше). От распределителя удалось отказаться разработкой так называемых систем зажигания со статическим распределением энергии или статических систем зажигания (статическим – потому что в этих системах отсутствует движущиеся части, имеющиеся в распределителе). Так как распределитель в этих системах отсутствует, эти системы также имеют общее обозначение DLI (DistributorLess Ignition), DIS (DistributorLess Ignition System) (“система без распределителя”), DI (Direct Ignition), DIS (“система прямого зажигания”, “непосредственное зажигание”).Примечание. Различные авторы используют разную терминологию, мы, чтобы избежать лишней путаницы, предлагаем остановиться на таком варианте: DLI – относиться ко всем систем без высоковольтного распределителя; DI – относиться только к системам с индивидуальными катушками (DI = COP + EFS); DIS – относиться только к системе синхронного зажигания с двухвыводными катушками (DIS = DFS). Такой подход, может быть, и не совсем правильный, но употребляется наиболее часто.С внедрением этих систем пришлось вносить существенные изменения и в конструкцию катушки зажигания (использовать двух- и четырехвыводные катушки) и/или использовать системы с несколькими катушками зажигания. Все системы зажигания без распределителя делятся на два блока – системы независимого зажигания с индивидуальными катушками зажигания на каждый цилиндр двигателя (EFS и COP системы) и системы синхронного зажигания, где одна катушка обслуживает, как правило, два цилиндра (DFS-системы).Систему EFS (нем. Einzel Funken Spule) называют системой независимого зажигания, так как в ней (в отличие от систем синхронного зажигания) каждая катушка и управляется независимо и дает искру только для одного цилиндра. В этой системе каждая свеча имеет свою индивидуальную катушку зажигания. Кроме отсутствия в системе механических движущихся частей, дополнительным преимуществом является то, что при выходе и строя катушки перестанет работать только один “ее” цилиндр, а система в целом сохранит работоспособность.

    Как уже говорилось при рассмотрении микропроцессорных систем управления зажиганием, коммутатор в таких системах может представлять собой один блок для всех катушек зажигания, отдельные блоки (несколько коммутаторов) для каждой катушки зажигания, а, кроме того, он может быть как интегрирован с электронным блоком управления, так и может устанавливаться отдельно. Катушки зажигания также могут стоять как отдельно, так и единым блоком (но в любом случае они стоят отдельно от ЭБУ), а кроме того, могут быть объединены с коммутаторами.


    Общая схема систем независимого зажигания:


    Одной из наиболее популярных разновидностей EFS-систем является так называемая COP система (Coil on Plug – “катушка на свече”) – в этой системе катушка зажигания ставится прямо на свечу. Таким образом, стало возможным полностью избавится еще от одного не вполне надежного компонента системы зажигания – от высоковольтных проводов.


    Устройство катушки зажигания в системе COP (с интегрированным воспламенителем):

    Система статического синхронного зажигания с двухвыводными катушками зажигания (одна катушка на две свечи) – DFS (нем. Doppel Funken Spule) система. Кроме систем, с индивидуальными катушками, используются и системы, где одна катушка обеспечивает высоковольтный разряд на двух свечах одновременно. При этом получается, что в одном из цилиндров, который находится в такте сжатия, катушка дает “рабочую искру”, а в сопряженном с ним, который находится в такте выпуска) дает “холостую искру” (поэтому такая система часто называется системой зажигания с холостой искрой – “wasted spark”). Например, в 6-цилиндровом V-образном двигателе на цилиндрах 1 и 4 поршни занимают одно и то же положение (оба находятся в верхней и нижней мертвой точке одновременно) и движутся в унисон, но находятся на разных тактах. Когда цилиндр 1 находится на компрессионном ходу, цилиндр 4 – на такте выпуска, и наоборот.


    Высокое напряжение, вырабатываемое во вторичной обмотке, подается напрямую на каждую свечу зажигания. В одной из свечей зажигания искра проходит от центрального электрода к боковому электроду, а в другой свече искра проходит от бокового к центральному электроду:

    Напряжение, необходимое для образования искры, определяется искровым промежутком и давлением сжатия. Если искровой промежуток между свечами обоих цилиндров равен, для разряда необходимо напряжение, пропорциональное давлению в цилиндре. Вырабатываемое высокое напряжение разделяется в соответствии с относительным давлением цилиндров. Цилиндр на ходу сжатия требует и использует больший разряд напряжения, чем на ходу выпуска. Это происходит потому, что цилиндр на ходу выпуска находится примерно под атмосферным давлением, поэтому расход энергии гораздо ниже.

    По сравнению с системой зажигания с распределителем, общий расход энергии в системе без распределителя практически такой же. В системе зажигания без распределителя потеря энергии от искрового промежутка между ротором распределителя и клеммой колпачка заменяется потерей энергии на холостую искру в цилиндре на ходу выпуска.

    Катушки зажигания в системе DFS могут устанавливаться как отдельно от свечей и связываться с ними высоковольтными проводами (как в системе EFS), так и прямо на свечах (как в системе COP, но в этом случае высоковольтные провода все равно используются для передачи разряда на свечи смежных цилиндров – условно такую систему можно назвать “DFS-COP”).


    Общая схема системы “DFS-COP”
    Варианты системы “DFS-COP”

    Также в этой системе коммутаторы могут быть объединены с соответствующими катушками – вот как выглядит такой вариант на примере Mitsubishi Outlander:

6. Высоковольтные провода – соединяют накопитель энергии c распределителем или свечами и распределитель со свечами. В системах зажигания COP отсутствуют.

7. Свечи зажигания (spark plug) – необходимы для образования искрового разряда и зажигания рабочей смеси в камере сгорания двигателя. Свечи устанавливаются в головке цилиндра. Когда импульс тока высокого напряжения попадает на свечу зажигания, между ее электродами проскакивает искра – именно она воспламеняет рабочую смесь. Как правило, устанавливается по одной свече на цилиндр. Однако, бывают и более сложные системы с двумя свечами на цилиндр, причем не всегда свечи срабатывают одновременно (например, на Honda Civic Hybrid используется система DSI – Dual Sequential Ignition – при малых оборотах две свечи одного цилиндра срабатывают последовательно – сначала та из них, что ближе к впускному клапану, а затем вторая – чтобы топливовоздушная смесь сгорала быстрее и полнее).

Любая система зажигания четко делится на две части:

  • низковольтную (первичную, англ. primary) цепь – включает первичную обмотку катушки зажигания и непосредственно связанные с ней цепи (прерывателя, коммутатора и других компонентов в зависимости от устройства конкретной системы).
  • высоковольтную (вторичную, англ. secondary) цепь – включает вторичную обмотку катушки зажигания, систему распределения высоковольтной энергии, высоковольтные провода, свечи.

Учитывая все возможные модификации и комбинации приведенных Выше элементов, на автомобилях используются не менее 15-20 разновидностей систем зажигания.

Контактная система зажигания – самая старая, в современных автомобилях ее уже не встретишь. Иногда ее можно встретить в старых моделях автомобилей. Например, ВАЗ использовал контактную систему зажигания в своих автомобилях вплоть до 2000 года. В контактной системе зажигания детонация воздушно-топливной смеси происходит с помощью искры, возникающей в результате подачи тока высокого напряжения на электроды свечи зажигания.

Контактная система зажигания

Первый автомобиль, в котором применена контактная батарейная система зажигания был Cadillac 1910 года. Новшество хорошо приняли автомобилисты. С этого момента началась эра контактного зажигания. Контактно-транзисторная система зажигания стала следующим шагом в истории развития автомобильной отрасли. В современных машинах используют бесконтактное, электронное зажигание. Оно является более надежным и безопасным.

Контактная система зажигания двигателей внутреннего сгорания состоит из:

  • Источника питания;
  • Прерывателя-распределителя зажигания;
  • Катушки зажигания;
  • Проводов низкого и высокого тока;
  • Свечи зажигания;

Двойная обмотка катушки зажигания проводит ток. Проволока на первичной обмотке проводит ток низкого напряжения, который при переходе на вторичную обмотку преобразуется в ток высокого напряжения. Суть процесса зажигания: с катушки на электроды свечи при участии механического распределителя подается импульс, воспламеняющий воздушно-топливную смесь.

Схема контактной системы зажигания

Распределитель состоит из крышки и ротора. На крышке находится две группы контактов, которые осуществляют распределение напряжения. На центральную группу контактов поступает импульс от вторичной обмотки, а через боковую напряжение подается на свечу.

Распределитель является одной из основных деталей трамблера. Вторая составляющая трамблера – прерыватель, который осуществляет размыкание цепей тока на обмотках катушки. Трамблер приводится в действие с помощью коленвала двигателя.

Момент зажигания происходит до достижения поршнем верхней мертвой точки. Это сделано для того, чтобы выгорание воздушно-топливной смеси произошло как можно более эффективно и в полном объеме. Угол поворота коленвала, при котором происходит момент зажигания – угол опережения зажигания.

Он может изменяться в зависимости от степени нагрузки на двигатель. Вакуумный регулятор опережения предназначен для определения необходимого угла зажигания.

Для передачи импульса от катушки зажигания, и потом – к свече, используют высоковольтные провода.

Как осуществляется процесс зажигания?

Поворачивается ключ, включается стартер. Ток, идущий по первичной обмотке катушки, при размыкании цепи преобразуется в ток высокого напряжения. При размыкании цепи на вторичной обмотке, импульс поступает на распределитель, который перенаправляет его на электроды свечи зажигания. Возникает искра, с помощью которой происходит детонация воздушно-топливной смеси.

Поломки контактной системы зажигания

Что сигнализирует о проблемах с контактной системой зажигания двигателя внутреннего сгорания?

При разумной эксплуатации контактная система зажигания не доставит хлопот и прослужит долгий срок, не напоминая о себе. Для того, чтобы система работала без сбоев, необходимо уметь диагностировать некоторые неисправности.

  1. Отсутствует искра. Такой сбой в работе системы может возникнуть при обрыве проводов, подгорании контактов, неисправности катушки зажигания, при поломке свечи.
  2. Двигатель работает со сбоями или не достигает полной мощности в работе. Такой сценарий возможен, когда «отошли» контакты, присутствует поломка в роторе или неисправна свеча зажигания.

Для устранения или предупреждения подобных поломок, необходимо в первую очередь следить за чистотой и целостностью контактов, креплении проводов. Если та или иная деталь вышла из строя, ее необходимо заменить.

Двигатель может сбоить по причине неравномерной работы свечей зажигания. Электроды свечей могут часто подгорать, поэтому возникают сбои. Очистить электроды можно в домашних условиях. Для этого их необходимо почистить надфилем, а если электроды сильно обгорели, свечу придется заменить. О состоянии свечи говорит цвет электродов. У исправной свечи он светло-коричневый, у неработающей электроды обгоревшие до черноты.

Еще один проблемный узел системы – высоковольтные провода . Часто они «отходят» от электродов, вследствие чего пропадает контакт и двигатель не заводится. Кроме того, часто возникает ситуация, когда вместо поджигания воздушно-топливной смеси, ток уходит «на сторону». Для решения проблем с проводами, рекомендуется приобретать силиконовые провода, через которые ток не уходит.

Простая рекомендация – не лезть под капот машины во время дождя или сильного снегопада, а также не ездить по глубоким лужам. Если вода попадает под капот, могут быть залиты электрические детали систем управления автомобилем. Промокшие электронные детали работать не будут. Поэтому машина может заглохнуть, а продолжить путь водитель сможет только тогда, когда все детали высохнут.

Поломки бесконтактной системы зажигания

В бесконтактной системе зажигания возникают похожие проблемы, двигатель начинает сбоить , глохнет, не заводится. Основная масса проблем связана с загрязнением деталей. Зимой на запчастях оседает влага и соль, которой посыпают дороги, летом – пыль, которая проникает во все щели.

Система пуска машины, как и любая часть единой системы, обеспечивает комфортное использование и бесперебойную работу всех узлов. Грамотная эксплуатация, своевременная диагностика, качественный ремонт помогут всем механизмам автомобиля служить долго и работать без поломок.

Контактная система зажигания выделяется наличием в составе распределителя, от которого производится подача напряжения к свечам зажигания двигателя.

В чем особенности этой системы? Где она применяется, и как работает? Из каких элементов состоит, и с какими поломками может столкнуться автовладелец в процессе пользования транспортным средством? Рассмотрим эти моменты подробнее.

Где используется?

Прошлые и настоящие владельцы ВАЗ «классики», разбирающиеся в конструкции таких автомобилей, прекрасно знают слабые места и принципы функционирования схемы зажигания контактного типа.

Ее особенность заключается в распределении напряжения к камерам сгорания двигателя через контактные соединения (отсюда и название).

Современные автомобили оборудуются более современным (электронным) зажиганием, которое управляется микропроцессором.

К основным системам, работающим на контактном принципе, стоит отнести:

Общий принцип работы

Наличие контактной системы зажигания в автомобиле подразумевает, что зажигание горючего в цилиндрах осуществляется по факту появления искры от свечи зажигания.

При этом сама искра возникает при поступлении импульса высокого напряжения от катушки зажигания.

Ключевую функцию выполняет катушка зажигания, которая по принципу работы напоминает трансформатор.

Она состоит из двух обмоток (первичной и вторичной), намотанных на сердечник из металла.

Сначала напряжение подводится к первичной обмотке, после чего в катушке создается ток.

Как только происходит кратковременный разрыв первичной цепи, магнитное поле нивелируется, но во вторичной обмотке возникает высокое напряжение (около 25000 Вольт).

В этот момент на первичной обмотке также присутствует напряжение, равное 300 Вольтам.

Причина его появления - токи самоиндукции. Именно из-за появления этого тока возникает обгорание и искрение контактов прерывателя.

Из сказанного выше можно сделать вывод, что вторичное напряжение напрямую зависит от следующих аспектов:

  • Магнитного поля;
  • Уровня интенсивности падения тока в первичной обмотке.

Для роста вторичного напряжения и снижения риска обгорания контактной группы, в цепочку включается конденсатор (устанавливается параллельно). Даже при незначительном размыкании конденсатор заряжается.

Принципиальная схема контактной системы зажигания показана ниже.

Разряд емкости происходит через первичную обмотку, посредством формирования импульсного тока обратного напряжения. Благодаря этой особенности, магнитное поле исчезает, а вторичное напряжение растет.

Оптимальная емкость конденсатора для контактной системы зажигания составляет 0,17-0,35 мкФ. Для примера, в «Жигулях» отечественного производства установлен конденсатор, имеющий емкость в 0,2-0,25 мкФ (при частоте от 50 до 1000 Гц).

Если система зажигания автомобиля работает без сбоев, вторичное напряжение должно постоянно расти. Оно зависит от двух основных параметров - размера зазора между свечными электродами, а также давления в цилиндрах машины.

Для контактной системы зажигания этот параметр (вторичное напряжение) должен находиться на уровне 8-12 Вольт.

Чтобы система работала без сбоев, в момент прерывания упомянутый показатель вырастает до 16-25 кВ. Наличие подобного запаса позволяет избежать неблагоприятных последствий от тех или иных колебаний в системе зажигания.

К упомянутым выше проблемам можно отнести корректировки состава горючей смеси или изменение расстояния между электродами свечи.

К примеру, снижение уровня кислорода в топливно-горючей смеси приводит к росту напряжения до 20 кВ.

Несмотря на ряд проведенных мероприятий, полностью избежать подгорания контактной группы создателям контактной системы зажигания не удалось. Оптимальным способом снижения этого эффекта является четкое выдерживание зазора на минимальном уровне (0,3-0,4 мм).

В качестве примера можно привести отечественные машины ВАЗ, в которых величина зазора в прерывателе равна 0,35-0,45 мм, что соответствует углу в 52-58 градусов Цельсия (при условии, что контактная группа находится в замкнутом состоянии).

В случае изменения этого угла корректируется и напряжение во вторичной обмотке. В итоге искры появляются не только на контактах, но и на бегунках. По этой причине уменьшается качество искры, и мотор теряет мощность.

Отдельного внимания заслуживает надежность контактной системы зажигания, которая зависит от целого ряда факторов:

  • Формы, энергии и времени появления искры;
  • Количества искр на определенной площади;
  • Вторичного напряжения (одна из наиболее важных характеристик). Чем больше этот параметр, тем меньше зависимость системы от состава горючей смеси и уровня чистоты электродов.

Устройство

Не секрет, что контактная система зажигания состоит из множества различных элементов:

  • Механический прерыватель и распределитель. Первый дает ток низкого, а второй - высокого напряжения;
  • Замок, катушка и свечи зажигания;
  • Регуляторы опережения зажигания представлены двумя видами - центробежным и вакуумным;
  • Высоковольтные провода.

Рассмотрим основные элементы подробно:


Конструктивно регулятор - пара грузиков, которые действуют на пластинку с размещенными на ней кулачками прерывателя. Здесь стоит отметить, что пластинка свободно перемещается, но угол опережения ставится за счет позиции трамблера мотора.


Принцип действия

Для полноценного обслуживания контактной системы зажигания важно понимать ее принцип действия, а также особенности взаимодействия различных элементов.

Пока контур прерывателя замкнут, ток проходит только по первичной обмотке.

Как только происходит разъединение цепи с помощью прерывающего устройства, во второй обмотке формируется высокое напряжение.

В этот же момент созданный импульс направляется по бронепроводам к крышке распределительного устройства, а дальше - к свечам зажигания. При этом распределение производится под определенным углом опережения.

Обороты коленчатого и распределительного валов находятся в полном взаимодействии. Это значит, что при росте оборотов первого, частота вращения второго также возрастает.

Здесь в работу вступает регулятор центробежного типа, грузики которого расходятся и передвигают передвижную пластинку с кулачками.

Немногим раньше производится разъединение цепочки прерывателя, а угол опережения растет.

В случае снижения оборотов коленвала происходит обратный процесс - снижение угла опережения.

Схема работы показана ниже.

Контактно-транзисторная система зажигания

Принципиальная схема показана ниже.

Особенность системы в том, что применение дополнительного устройства позволило снизить ток в цепи и продлить ресурс контактной группы прерывателя (она стала меньше подгорать).

Контактно-транзисторная схема, благодаря незначительным изменениям, получила лучшие характеристики, если сравнивать ее с классическим вариантом зажигания. Из-за применения транзистора в системе был добавлен новый узел - коммутатор.

Преимущество транзистора в этой схеме в том, что даже небольшого тока, направленного на управление (в базу), достаточно для контроля тока большей величины.

Как уже отмечалось, новая система контактно-транзисторного типа имеет небольшие отличия от прежней версии системы. Ее особенность заключается в особых характеристиках, которыми не может похвастаться стандартная контактная схема.

Главное отличие заключается в том, что прерыватель взаимодействует напрямую с транзистором, а не с «бобиной». В остальном работа контактно-транзитной системы аналогична.

Как только происходит прерывание тока в первичной обмотке, во второй цепи возникает импульс высокого напряжения.

Если не обращать внимания на конструктивные особенности и принципы подключения коммутатора, можно выделить одно главное преимущество - возможность повышения первичного тока, благодаря применению транзистора.

При этом удается решить ряд задач:

  • Увеличить зазор между свечными электродами;
  • Поднять вторичное напряжение;
  • Устранить проблемы с пуском при низкой температуре;
  • Оптимизировать процесс образования искры;
  • Поднять число оборотов и мощность мотора.

Еще одна особенность контактно-транзисторной схемы заключается в необходимости использования катушки с отдельной первичной и вторичной обмоткой.

Рассмотренные изменения схемы позволили снизить нагрузку на контактную группу прерывателя и уменьшить проходящий через нее ток. В итоге контакты служат дольше, а надежность системы возрастает.

Несмотря на рассмотренные плюсы, нельзя не отметить и ряд минусов контактно-транзисторной системы, которые связаны с работой прерывателя.

Так, в схеме формируется искра в момент, когда происходит разрывание тока в «бобине». Ток, который поступает в транзистор, имеет достаточную величину для влияния на работу детали.

Кроме того, уменьшение тока на контактной группе прерывателя негативно сказывается на определенных характеристиках системы.

Неисправности и их причины

От эффективности работы контактной системы зажигания зависит стабильность пуска автомобиля. Вот почему автовладелец должен знать, какие бывают неисправности, и чем они вызваны.

К основным поломкам можно отнести:

Мощность мотора падает или возникают перебои в его работе.

Причин может быть несколько:

  • Нарушение целостности крышки распределителя;
  • Повреждение ротора;
  • Выход из строя свечи зажигания или нарушение зазора между электродами;
  • Ошибочно .

Для устранения поломки можно сделать следующее - отрегулировать угол опережения, поменять вышедшие из строя элементы или выставить необходимые зазоры в прерывателе и электродах свечей.

На свечах отсутствует искра.

Подобная неисправность может быть вызвана:

  • Обгоранием контактов прерывателя и отсутствием необходимого зазора;
  • Плохим контактом или обрывом проводов во вторичной цепи;
  • Выходом из строя конденсатора, ротора, катушки зажигания, бронепроводов или свечей.

Для устранения неисправности требуется отрегулировать зазор контактов прерывателя, поменять неисправные элементы и (или) проверить исправность цепей обеих обмоток (высшей и низшей).

Похожие публикации