Chevroletavtoliga - Автомобильный портал

Схема зарядное для шуруповерта 12 в. Изготовление устройства зарядного для шуруповёрта своими руками. Преимущества аккумуляторных инструментов

В конце прошлого года я публиковал пару обзоров на тему переделки батарей шуруповертов. Сегодня я расскажу о альтернативном варианте заряда переделанной батареи при помощи готового зарядного устройства.
В общем как всегда, осмотр, разборка, схемы, тесты.

В прошлый раз я предлагал использовать для заряда старое зарядное с отдельной платой преобразователя. Вариант в общем то неплохой, но мне стали задавать вопросы, а что делать если старое зарядное разбито, поломано, съела кошка.
И вот я случайно наткнулся в одном из магазинов на вариант зарядного устройства, которое подойдет для батарей 3S, т.е. 12.6 Вольта. Так как такой вариант является одним из самых распространенных при переделке старых шуруповертов, то я решил заказать его для обзора.

Упаковка весьма аскетичная, впрочем как и надпись, указывающая напряжение и ток заряда.

Комплект поставки весьма прост, кабель и собственно зарядное устройство.

Кабель в принципе неплохой, вот только вилка подкачала, варианты - резать, менять или искать переходник.

Зарядное устройство выполнено в формате блока питания, довольно увесистое, корпус прочный.

На одном из торцов корпуса расположен двухконтактный сетевой разъем, на второй стороне кабель с привычным 5.5/2.1мм штекером. Длина кабеля около 1 метра.

Так как это именно зарядное устройство, а не блок питания, которым вы заряжаете свой смартфон/планшет, то здесь присутствует индикатор окончания заряда. Светит правда он не очень ярко, при ярком солнце его не будет заметно, как например и в свете вспышки.

Снизу присутствует наклейка с указанием характеристик, ничего нового, помимо того что было указано на упаковке, я не увидел.

Как я выше писал, корпус довольно прочный, но против молотка и ножа он устоять не смог, а других способов разобрать данное изделие нет.

Плата внутри сидит очень крепко. Частично на двухстороннем скотче, частично приклеена силиконом в районе силовых элементов. На фото видно внутренности корпуса, в дополнение там осталась какая-то клейкая масса.

На вид экономно, но вполне качественно. Радиаторы имеют изоляцию и удерживаются за счет самого силового элемента, дополнительного лепестка и силиконовым герметиком.
Также к корпусу приклеен трансформатор и входной дроссель. В общем вынималась плата довольно тяжело.

На входе присутствует предохранитель, а также входной фильтр. К сожалению нет термистора, вместо него перемычка.

1. Входной конденсатор имеет емкость 68мкФ, для мощности около 40 Ватт вполне достаточно.
2. Высоковольтный транзистор CS7N60F в полностью изолированном корпусе.
3, 4. С одной стороны трансформатора спрятался оптрон обратной связи, с другой - правильный помехоподавляющий конденсатор Y класса, так что током вас не убьет.
5. Выходная диодная сборка 10 Ампер 100 Вольт, с запасом как по току, так и по напряжению.
6. Выходные конденсаторы имеют емкость 1000мкФ и напряжение до 25 Вольт, здесь также вопросов нет. Попутно есть место для установки помехоподавляющего дросселя и третьего конденсатора.

Снизу платы компонентов еще больше.

«Горячая» сторона блока питания. Здесь у меня также не возникло вопросов, ну почти не возникло:)

«Холодная» сторона. Здесь расположены элементы стабилизации напряжения, тока, а также индикации окончания заряда.

Претензия к «горячей» стороне у меня была только в плане пайки, а точнее ее качества. Такое ощущение, что ШИМ контроллер перепаивали, так как остальные компоненты запаяны аккуратно.
К выходной стороне вопросов нет, все аккуратно, элементы дополнительно зафиксированы при помощи клея. Операционный усилитель LM358.

Так как обзора подобного устройства у меня еще нет, то не перерисовать схему было нельзя.
Впрочем первичная часть блока питания оказалась практически один в один с блоком питания, который я уже обозревал - . Блок весьма надежный и качественный.
Отличие только в номиналах некоторых компонентов, а также их количестве, микросхема имеет одинаковую распиновку.

Так как схема большая, то чтобы было более понятно, я разбил ее на две части, первичную и вторичную.
Вторичная сторона отличается от привычных схем блоков питания, так как содержит больше узлов.

Распишу отдельно узлы.
1. Зеленый - Узел стабилизации выходного напряжения, отвечающий за режим CV.
2. Красный - Стабилизация тока, режим СС.
3. Синий - узел индикации.
Слева вверху два выпрямителя, основной и дополнительный (D3, С5) для питания операционного усилителя и светодиода. Дополнительное питания необходимо чтобы эти элементы не потребляли ток когда подключен аккумулятор, а зарядное не включено в розетку.
Между красным и синим узлом источник опорного напряжения для узла индикации и стабилизации тока.

И хотя большей частью все сделано вполне корректно, но есть особенность. Параллельно первому конденсатору подключен резистор номиналом 2.2к (R13A), потому потребление в выключенном состоянии есть все равно. Попробовать исправить эту ситуацию можно установкой диода (отмечен красным) вместо перемычки, которая в свою очереди стоит на месте отсутствующего помехоподавляющего дросселя. Но есть проблема, этот диод будет греться, причем заметно, потому я бы рекомендовал оставить как есть.
Теперь что менять если надо другое напряжение/ток.
1. Зеленый - делитель по цепи измерения напряжения, увеличение номинала верхнего резистора увеличит выходное напряжение, нижнего - уменьшит.
2. Синий - Увеличение номинала шунта уменьшит ток, уменьшение - увеличит. Изменение будет пропорционально изменению номинала. Также изменение этого резистора влияет и на индикацию.
R19, R13, увеличение верхнего резистора - уменьшение выходного тока, изменение нижнего действует наоборот.
3. Оранжевый - Делитель порога переключения индикации. Все то же самое как в п.2, только для индикации. Кстати отмечу, что этот узел имеет гистерезис, потому переключение красный/зеленый происходит скачкообразно, а не плавно, мелочь, но приятно.

Отдельно фотка для перфекционистов, здесь я перечислил то, что можно установить на плату.
1. Y- конденсаторы, так как подключение без заземления, то смысла не имеют. Если заменить гнездо на трехконтактное, уменьшат помехи в сеть.
2. Термистор, уменьшит пусковой ток. Например NTC 5D-9
3. Выходной дроссель. Уменьшит уровень пульсаций на выходе, ток более 3 Ампер, индуктивность 1-10мкГн.
4. Варистор, увеличит защищенность блока питания при подаче высокого напряжения на вход. Диаметр 10мм, напряжение 470 Вольт.
5. Х-конденсатор, уменьшит уровень помех в сеть, место под 22-33нФ.
6. Двухобмоточный дроссель, обычно на небольшом колечке, также для уменьшения помех в сеть.
7. Диодная сборка. Можно поставить параллельно первой, немного увеличит КПД и поднимет надежность, лучше ставить такую же как уже используется, 10 Ампер 100 Вольт.
8. Выходной конденсатор. На уровне пульсаций скажется мало, но может поднять надежность работы. 1000мкФ 25 Вольт.

Переходим к тестам.
Для начала пройду по основным позициям
1. Выходное напряжение - завышено примерно на 30мВ, считаю что вполне в норме.
2. Ток от аккумулятора при отключенном питании, около 7мА. Довольно много, разрядит аккумулятор примерно через 2-3 недели. Лучше использовать аккумуляторы с защитой, впрочем защита обязательна в любом случае.
3. Зарядный ток 2.9 Ампера, немного ниже заявленного, но я считаю что ничего страшного.
4. Индикация настроена на ток 270мА, при падении тока заряда ниже этой величины включается зеленый светодиод и погасает красный.
5, 6. Так как устройство не умеет полностью обесточивать аккумулятор, то дальше вы увидите падение тока почти до нуля. К примеру с 66мА до 28мА ток упал примерно за 8 минут.
Режим без полного снятия тока допустим, хотя и не очень желателен. Если аккумулятор исправен, то проблем не будет, но я бы советовал просто не оставлять его на большое время, например день-два.

Дальше я подключил зарядное к электронной нагрузке. Но так как электронная нагрузка не имеет режима CV, то пришлось подключиться минуя цепь стабилизации тока.
Был задан ток нагрузки в 3 Ампера и закрыт корпус для термопрогрева. Попутно контролировался уход напряжения, здесь также проблем нет, 5мВ через час термопрогрева это просто отлично, сказывается то, что большей частью применены точные резисторы.

Так как это зарядное, а не блок питания и большую часть времени оно работает с максимальным током, то я сразу зада ток 3 Ампера. Время теста было 1 час, за это время оно полностью зарядит аккумулятор емкостью 2400-2600мАч. Дальше в любом случае ток начнет падать и тестировать нагрев смысла нет.

1. Спустя час я проверил температуру корпуса, в самом горячем месте прибор показал 59 градусов, хотя на ощупь корпус был не горячий, возможно сказывается то, что пластмасса частично прозрачна в ИК диапазоне.
2. Открыл корпус и измерил температуру, самая высокая была в районе снаббера и шунта первичной стороны, около 80 градусов, транзистор имел температуру 70-72 градуса.
3. Закрыл корпус на пару минут, повернул на 180 градусов, чтобы были видны остальные компоненты и измерил еще раз. В этот раз самую высокую температуру имела выходная диодная сборка, около 85 градусов.

Из тестов могу заключить, что с температурным режимом все нормально, до критических температур есть запас еще около 20-30 градусов.

После обзора было снято видео, где я вкратце объясняю что к чему, просто как дополнение.

Что можно сказать в качестве резюме, сначала по пунктам:
Преимущества
Крепкая и аккуратная конструкция
Применены компоненты с запасом
Хорошая стабильность параметров
Отсутствие перегрева
Четкая работа индикации окончания заряда

Недостатки
Отсутствие полного отключения заряда
Собственное потребление в 7мА.
Вилка кабеля имеет плоские штыри.

Мое мнение. На мой взгляд устройство имеет только один существенный недостаток, оно не снимает зарядный ток полностью. правильный заряд идет до снижения тока ниже 1/10 от установленного, затем отключение и последующее включение если напряжение опять снизится. Конечно можно подумать и сделать какую нибудь схемку с гистерезисом, которая будет не отключать заряд, а снижать выходное напряжение так, чтобы прекращался зарядный ток. Но на мой взгляд, если не оставлять подключенный аккумулятор надолго, то вполне пройдет и вариант как сделано сейчас.
Порадовала довольно неплохая сборка и то, что компоненты установлены с запасом. Также стоит отметить отсутствие перегрева, чем грешит довольно большое количество блоков питания. Мне вообще показалось, что устройство собрали на базе БП 12 Вольт 5 Ампер, подняв немного напряжение и снизив ток, потому получился такой результат.

В общем если вы переделали батареи своего шуруповерта и они имеют напряжение 12.6 Вольта (три последовательных аккумулятора), а родное зарядное не подлежит восстановлению, то довольно неплохой вариант.

На момент заказа зарядное стоило около 13.7 доллара, для обзора менеджер снизил цену до 11 долларов, что на мой взгляд вполне адекватно за данное устройство с учетом его функционала и качества сборки.

На этом все, надеюсь что обзор был полезен.

Небольшой бонус

А не протестировать ли нам аккумулятор смартфона.


Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +52 Добавить в избранное Обзор понравился +79 +144

Беспроводные инструменты используют для своей работы энергию аккумуляторных батарей. Естественно, что время от времени необходимо восполнять израсходованный запас. Такой процесс называется зарядкой. В процессе заряда и разряда происходят обратимые химические реакции в аккумуляторе, которые и определяют принцип его работы.

Разновидности устройств для зарядки

Выполняя одинаковую функцию, зарядные устройства имеют разнообразные варианты внутренней структуры. По типу преобразования напряжения бытовой электросети конструкции для зарядки шуруповертов различаются на такие:

  • Трансформаторные;
  • Инверторные (импульсные).

Трансформаторные устройства изначально появились в первую очередь, поскольку требовали простейшей электронной базы. В состав классической конструкции устройства входят:

  • Трансформатор;
  • Выпрямительный мост;
  • Фильтрующая емкость;
  • Стабилизатор тока;
  • Контролирующая схема.

Вне зависимости от типа стабилизатора и дополнительных опций, трансформаторные зарядные устройства объединяет такой недостаток, как большие габариты и вес. Связано это с тем, что массогабаритные показатели трансформатора увеличиваются пропорционально мощности изделия. Соответственно, те зарядные устройства, которые обладают приемлемыми массой и габаритами, способны выдавать малые значения зарядного тока, и процесс заряда идет длительное время.

От указанного недостатка свободны устройства инверторного типа, которые используют преобразование входного напряжения в ток высокой частоты. Такой подход позволяет использовать малогабаритные трансформаторы, работающие с большими значениями мощностей. При габаритах, значительно меньших, чем у трансформаторных конструкций, инверторные способны вырабатывать значительный по величине зарядный ток. Время заряда аккумуляторов при этом сокращается до одного часа и менее.

Дополнительные функции

Простейшее зарядное устройство (зу) не производит контроль состояния аккумуляторной батареи. Все это возложено на пользователя. Как следствие – регулярный недозаряд, длительный заряд, неоптимальный процесс зарядки, все это приводит к резкому сокращению срока службы аккумуляторов. Такой тип схемотехники применяется только в самых дешевых моделях шуруповертов и не может быть рекомендован к приобретению.

Более дорогие модели имеют встроенный контроллер заряда или таймер отключения. Зарядка аккумуляторной батареи производится до достижения требуемого значения емкости либо через определенное время. В последнем случае возможен недозаряд, но исключается длительная подача напряжения. Контроль уровня заряда ведется по уровню напряжения аккумулятора. Большинство видов инструмента в средней ценовой категории используют именно такие модели ЗУ.

Наиболее совершенные модели имеют схему контроллера заряда, основанную на использовании микроконтроллера. При этом, помимо собственно заряда, применяется предварительный разряд не полностью выработанных элементов и до строго определенного значения. Данная процедура исключает появление эффекта «памяти», свойственного щелочным аккумуляторам, и способствует выравниванию емкости отдельных элементов аккумуляторной батареи. Аккумулятор заряжается согласно определенного алгоритма по требованиям производителя.

Уровень заряда контролируется по напряжению батареи. Используется дельта-метод. В его основе лежит особенность Ni-Cd и Ni-MH аккумуляторов к некоторому снижению напряжения при полной зарядке. Схема контроллера реагирует на снижение напряжения в конце периода времени и отключает подачу зарядного тока.

Зарядное устройство для шуруповерта на микроконтроллерах будет иметь высокую стоимость, но при этом существенно продлит срок службы дорогостоящего аккумулятора и сократит время полного заряда. Такой тип контроллеров заряда идет в комплект дорогих профессиональных моделей шуруповертов.

Напряжение заряда и форм-фактор

У производителей нет единого стандарта по напряжению питания инструмента. С одной стороны, низкое напряжение аккумулятора снижает его стоимость за счет уменьшения количества элементов, с другой – более высоковольтные аккумуляторы дают ряд преимуществ:

  • Более высокая мощность устройства;
  • При одинаковой мощности снижается потребляемый ток;
  • Увеличивается срок работы между зарядами.

Увеличенное количество элементов повышает стоимость инструмента, поэтому такой подход свойственен производителям качественного и дорогого оборудования.

Обратите внимание! Если важен вес инструмента, то предпочтение следует отдавать низковольтным изделиям. У 18-и вольтовых шуруповертов самый значительный вес. Исключение составляют литий-ионные аккумуляторы, но их можно встретить только в самых дорогих моделях инструмента.

Поскольку ЭДС Ni-Cd и Ni-MH аккумуляторов имеет строго определенную величину, а именно 1.2В, то и напряжение батарей элементов сводится к ряду нескольких значений:

  • 10 аккумуляторов – 12.0В;
  • 11 аккумуляторов – 13.2В;
  • 12 аккумуляторов – 14.4В;
  • 13 аккумуляторов – 16.6В;
  • 14 аккумуляторов – 17.8В.

Можно встретить и иные значения, как в сторону уменьшения, так и в сторону увеличения, но нечасто.

Для упрощения многие производители указывают округленное значение напряжения аккумулятора. К примеру, аккумуляторная батарея с 14-ю элементами зачастую имеет обозначение 18 вольт, а с 10-ю 12 вольт.

Аккумуляторные батареи шуруповертов различаются не только по напряжению, но и по форме крепежных приспособлений и расположению клемм. Из этого следует важный вывод.

Важно! Различные аккумуляторные батареи и устройства для их зарядки не совместимы между собой. Исключение составляют изделия одного производителя, которые и создавались с учетом совместимости.

Модернизация зарядных устройств

Переделка штатных зарядных устройств для шуруповерта своими руками обычно производится с целью улучшения их характеристик. Наиболее просто поддаются переделке конструкции трансформаторного типа, у которых изменяется только схема контроля и управления. Инверторные изменить значительно сложнее. В большинстве случаев доработка требует полной замены внутренней «начинки» устройства.

Как правило, переделкам подвергаются зарядные блоки низшей ценовой категории. Основные опции, которые вводятся в переделываемую конструкцию, это контроль уровня заряда и автоматическое отключение. Переделки такого типа, выполненные с применением аналоговой схемотехники, не представляют особой сложности и доступны начинающему и среднему радиолюбителю.

Изготовление более сложных конструкций, с управлением на микроконтроллере, под силу только опытным мастерам, к тому же не имеют особого смысла. Как уже говорилось, простейшие приспособления выпускаются для дешевых моделей инструмента, соответственно, и качество аккумуляторных батарей в них не на высоте. Выигрыш в надежности аккумуляторных батарей, продление их срока жизни получится несоразмерным затратам на такую переделку зарядного устройства.

Ремонт

Так же, как и переделка, ремонт зарядного устройства для шуруповерта требует наличия определенных знаний в области радиотехники. Без наличия опыта можно заменить соединительные шнуры питания и предохранители. Стоит отметить, что такие неисправности занимают одно из основных мест по частоте. Отсутствие заряда и индикации питания обычно связаны с обрывом проводов или перегоранием предохранителя. Обе неисправности выявляются путем прозвонки при помощи омметра.

Более серьезный ремонт зарядки шуруповерта, особенно в дорогих конструкциях, затруднен отсутствием принципиальной схемы.

Важно! Самостоятельный или неквалифицированный ремонт зарядных устройств для литий-ионных аккумуляторных батарей чреват воспламенением и даже взрывом аккумулятора, поскольку батареи такого типа крайне чувствительны к режиму зарядки.

Видео

Практически все шуруповёрты работают от аккумуляторов. Средняя ёмкость аккумулятора — 12 мАч. А для того, чтобы он всегда находился в рабочем состоянии, нужна постоянная подзарядка. Для этого необходимо зарядное устройство, характерное для каждого типа аккумуляторов. Однако они сильно различаются по своим характеристикам.

В настоящее время выпускают модели на 12–18 В . Также стоит отметить, что производители используют разные компоненты для зарядных устройств различных моделей. Чтобы разобраться с этим, вы должны ознакомиться со стандартной схемой этих зарядных устройств.

Стандартная электросхема зарядного устройства

Основой стандартной схемы является микросхема трехканального типа . В этом варианте на микросхеме крепятся четыре транзистора, сильно отличающихся по ёмкости и высокочастотные конденсаторы (импульсные или переходные). Для стабилизации тока используются тиристоры или тетроды открытого типа. Проводимость тока регулируется дипольными фильтрами. Эта электрическая схема легко справляется с сетевыми перегрузками.

Принципиальная схема

Предназначение электроинструментов в первую очередь в том, чтобы сделать наш повседневный труд менее утомительным и рутинным. В домашнем быту незаменимым помощником в ремонте или разборке (сборке) мебели и прочих предметов домашнего обихода является шуруповёрт. Автономное питание шуруповёрта делает его более мобильным и удобным в использовании. Зарядное устройство является источником питания для любого аккумуляторного электроинструмента, в том числе и шуруповёрта. Для примера познакомимся с устройством и принципиальной схемой.

Для принципиальных схем зарядных устройств шуруповёртов на 18 В используются транзисторы переходного типа несколько конденсаторов и тетрод с диодным мостом. Частотную стабилизацию осуществляет сеточный триггер. Проводимость тока зарядки на 18 В обычно составляет 5,4 мкА. Иногда, для улучшения проводимости, применяют хроматические резисторы. Ёмкость конденсаторов, в этом случае, не должна быть выше 15 пФ.

Конструкция аккумуляторного устройства для шуруповёрта

«Банки» аккумулятора заключены в корпус, который имеет четыре контакта, включая два силовых плюс и минус для разряда/заряда. Верхний управляющий контакт включён через термистор (термодатчик), который защищает аккумулятор от перегрева во время зарядки. При сильном нагреве он ограничивает или отключает ток заряда. Сервисный контакт включается через резистор на 9 кОм, который выравнивает заряд всех элементов сложных зарядных станций, но они используются обычно для промышленных приборов.

Стандартные и индивидуальные характеристики зарядного устройства фирмы «Интерскол»

Элементы блока питания

Аккумулятор является самой дорогостоящей частью шуруповёрта и составляет примерно 70% от всей стоимости инструмента. При выходе его из строя придётся тратиться на приобретение практически нового шуруповёрта. Но если есть определённые навыки и знания вы можете самостоятельно исправить поломку. Для этого нужны определённые знания об особенностях и строении аккумулятора или зарядного устройства.

Все элементы шуруповёрта, как правило, имеют стандартные характеристики и размеры. Их основным отличием является величина энергоёмкости, которая измеряется в А/ч (ампер/час). Ёмкость указывают на каждом элементе блока питания (их называют «банками»).

«Банки» бывают: литий - ионные, никель - кадмиевые и никель - металл - гидридные. Напряжение первого вида — 3,6 В, другие имеют напряжение — 1,2 В.

Неисправность аккумулятора определяется мультиметром . Он определит, какая из «банок» вышла из строя.

Ремонт аккумулятора своими руками

Для ремонта аккумулятора шуруповёрта нужно знать его конструкцию и точно определить место поломки и саму неисправность. Если хотя бы один элемент выйдет из строя, вся цепь потеряет свою работоспособность. Наличие «донора», у которого все элементы в порядке или новые «банки» помогут решить эту проблему.

Мультиметр или лампа на 12 В подскажет, какой именно элемент неисправен. Для этого нужно поставить аккумулятор заряжаться до полной его зарядки. После чего разберите корпус и измерьте напряжение всех элементов цепи. Если напряжение «банок» ниже номинального, то нужно пометить их маркером. Затем соберите аккумулятор и дайте ему поработать до тех пор, пока его мощность заметно упадёт. После этого разберите снова и замерьте напряжение помеченных «банок». Проседание напряжения на них должно быть наиболее заметным. Если разница составляет 0,5 В и выше, а элемент работает, то это говорит о его скором выходе из строя. Такие элементы необходимо заменить.

С помощью лампы на 12 В можно также определить неисправные элементы цепи. Для этого нужно полностью заряженный и разобранный аккумулятор подключить к контактам плюс и минус на лампу 12 В. Нагрузка, созданная лампой, будет разряжать аккумуляторную батарею . После чего замерьте участки цепи и определите неисправные звенья. Ремонт (восстановление или замену) можно произвести двумя способами.

  1. Неисправный элемент обрезается и паяльником припаивается новый. Это касается литий - ионных батарей. Так как восстановить их работу не представляется возможным.
  2. Никель - кадмиевые и никель - металл - гидридные элементы можно восстановить, если присутствует электролит, который потерял объём. Для этого их прошивают напряжением, а также усиленным током, что способствует устранению эффекта памяти и повышает ёмкость элемента. Хотя полностью устранить дефект не получится. Возможно, спустя, некоторое время неисправность вернётся. Гораздо лучшим вариантом будет замена вышедших из строя элементов.

Замена необходимых элементов цепи

Для ремонта аккумулятора для шуруповёрта потребуется запасная аккумуляторная батарея , из которой, можно позаимствовать нужные детали или покупка новых элементов цепи. Новые «банки» должны соответствовать необходимым параметрам. Для их замены потребуется паяльник, олово, канифоль или флюс.

Универсальный зарядник своими руками

Чтобы зарядить аккумуляторное устройство, можно сделать самодельную зарядку, питающуюся от USB-источника . Необходимые компоненты для этого: розетка, USB-зарядка, 10 амперный предохранитель, необходимые разъёмы, краска, изолента и скотч. Для этого нужно:

Как видите, этот процесс не займёт много времени и не будет слишком разорителен для вашего семейного бюджета.

Нередко покупатели дрели жалуются, что «родное» зарядное устройство для шуруповерта слишком медленно заряжает аккумулятор. В результате приходится неоднократно откладывать работу на 2-4 часа. Существует 2 варианта, как можно избежать подобной ситуации. В первом случае потребуется приобрести новое зарядное устройство, во втором - сделать его своими руками.

Разновидности аккумуляторов

Чтобы разобраться, как сделать зарядное устройство для шуруповерта, в первую очередь необходимо изучить разновидности аккумуляторов и их режимы заряда. Существует 3 вида батареек:

Никель-кадмиевые

Данный вид именуется как Ni-Cd, он считается хорошим источником напряжения, который способен отдавать большую мощность. Единственным недостатком является то, что такие аккумуляторы попали в список запрещенных изделий по экологическим нюансам, поэтому в продаже такая разновидность теперь будет встречаться намного реже.

Никель-кадмиевые батареи обладают энергоемкостью от 1200 до 1500 мА/ч. Общая мощность обеспечивается и поддерживается количеством банок внутри

Максимальное напряжение ячейки составляет 1,2 В. Аккумулятор заряжается электротоком 0,1-1 номинальной емкости. Получается, что батарею с ёмкостью в 5 А*ч разрешается подзаряжать током 0,5-5 А.

ВИДЕО: 5 правил зарядки никель-кадмиевых аккумуляторов

Другое название - Pb с кислотным гелевым наполнением. Они обладают средними характеристиками и низкой стоимостью. Минус - аккумуляторы имеют большую массу, за счет чего утяжеляют аппарат. Основное преимущество заключается в возможности использования в любом положении, при этом из емкости не вытекает электролит.

Главная их особенность — это высокое напряжение и сопротивление, благодаря чему даже к концу цикла «заряд-разряд» не наблюдается резкого падения напряжения

Максимальный уровень напряжения ячейки составляет 2 В, при этом ток зарядки батареи всегда соответствует показателю 0,1 С.

Литий-ионные батареи для шуруповерта

Наиболее распространенный вид благодаря полной герметичности емкости. Данный вариант отличается повышенной удельной мощностью, безопасностью, экологичностью, незначительной массой и простотой в утилизации.

Литий-ионный аккумулятор для шуруповёрта Li-ion 18650 Samsung 12.6V (Вольт) 2400mAh

Литий-ионная ячейка обладает максимальной мощностью в 3,3 Вольта. Напряжение разрешается плавно увеличивать при комнатной температуре с 0,1 до 1 С. Таким образом ускоряется процесс зарядки. Но данный метод подходит только для тех аккумуляторов, которые не переразряжались.

Здесь важно помнить, что заряд шуруповерта происходит до 4,2 Вольта, его превышение повлияет на уменьшение эксплуатационного срока, снижение - сократит емкость. Очень важно при подзарядке отслеживать температуру.

При разработке схемы зарядного устройства для шуруповерта своими руками очень важно учитывать, какой именно аккумулятор планируется заряжать. А также нужно дополнительно просчитывать его напряжение - 12 Вольт или 18 Вольт. При работе зарядника для шуруповерта необходимо отслеживать процесс при помощи мультиметра или системой с компаратором напряжения, которая прошла предварительную настройку под определенный тип батареи.

ВИДЕО: Правила выбора аккумулятора для шуруповерта

Как самому собрать зарядное устройство

Создание самодельного зарядного для шуруповерта требует соблюдения техники безопасности и проведения работы строго по заданной схеме. Можно воспользоваться ниже приведенным чертежом, который является универсальным, поскольку такое зарядное оборудование будет подходить для любого типа аккумулятора. Здесь важным параметром является только ток заряда.

Самодельная зарядка

При подзарядке значение тока полностью соответствует имеющему состоянию батареи, а при завершении процесса показатель становится немножко больше.

Схема самого простого ЗУ для шуруповерта

Зарядное устройство для шуруповерта выступает в качестве генератора электротока на транзисторе VT2. Он, в свою очередь, получает питание через выпрямительный мост, контактирующий с занижающим трансформатором. Уровень тока заряда настраивается регулятором резистора R1 при включенной батарее. Он всегда будет оставаться неизменным. R3 работает ограничителем номинального электротока. VD 6 - светодиод, он выступает в качестве индикатора, определяющего, зарядка продолжается или уже завершилась.

Все составляющие из схемы зарядного устройства для шуруповерта устанавливаются на печатной плате, в качестве диодов можно использовать отечественные приборы КД202 и д242. Размещать элементы требуется таким образом, чтобы на плате было минимальное количество пересечений, идеальным вариантом послужит, если не окажется ни одного. Оставляйте между деталями не менее 3 мм.

Транзистор монтируется на теплоотводе 25-55 см 2 . Поле подключения составляющих зарядки для шуруповертов их нужно накрыть корпусом. Здесь могут возникнуть трудности с клеммами и подсоединением батареи. Поэтому дорабатывать зарядное устройство шуруповерта лучше методом модернизации старого:

  • вскройте корпус устаревшего подзарядного устройства;
  • уберите из него все составляющие детали и другую начинку;
  • установите в корпус самодельную схему.

В схеме должны присутствовать следующие элементы:

Наименование позиции

Краткая характеристика

Выпрямительный диод серии 1N-4001

Стандартный светодиод

Разноцветный светодиод различного вида

Переменный резистор проволочного типа 10

Резисторный элемент серии МЛТ0,25 на 330 Ом

Рез0истор МЛТ2,1 Ом

К5035 или 220 1000мФ свыше 50 Вольт

Транзисторная деталь КТ 361В

Трансформатор силовой на 220/24 В и показателем мощности в 100 Вт

Этапы работы:

  1. Подберите наиболее оптимальные габариты для схемы, которые легко вмещаются в корпус со всеми перечисленными составляющими.
  2. Прорисуйте нитью все ее пути по принципиальному чертежу, протравите в медной раме и распаяйте все элементы.
  3. На алюминиевую пластину установите радиатор таким образом, чтобы она не контактировала с какой-либо частью платы.
  4. Надежно зафиксируйте транзистор гайкой М-3.
  5. Соберите составляющие строго по схеме и припаяйте ко всем необходимым деталям клеммы с соблюдением полярности. Выведите электропровод для трансформатора.
  6. Сам трансформатор вместе с предохранителем на 0,5 А установите в корпус и оснастите переходником для включения подзарядки.

ВИДЕО: Как сделать зарядку для Li-ion аккумулятора от шуруповерта

Рейтинг зарядных устройств для шуруповерта

Для тех, кто не планирует заниматься самостоятельной сборкой, предлагаем выбрать из ассортимента готовых зарядных устройств разных производителей.

DEWALT DCB118

Универсальное приспособление FLEXVOLT DEWALT DCB118 используется для восстановления аккумуляторов шуруповертов марки DEWALT напряжением 54В, с равных успехом можно зарядать и любые другие устройств с номинальным напряжением 18 вольт.

FLEXVOLT DEWALT DCB118

Для удобства на корпусе расположен индикатор, благодаря чему можно контролировать процесс. Тип заряжаемых аккумуляторов Li-ion. Масса 850 гр. Цена оборудования 3500 руб.

ONE+ Ryobi RC18120

Заявлено как узкоспециализированное приспособление, предназначенное только для зарядки аккумуляторов Ryobi серии ONE+. Преимущество в наличии только одного блока питания - за счет этого даже снижен вес устройства (всего 460 гр.), при этом внедрена интеллектуальная система мониторинга IntelliCell™, когда каждая ячейка заряжается до максимума в течение 40-50 мин, при этом увеличивается срок службы батарей.

ONE+ Ryobi RC18120

Напряжение составляет 18 вольт, тип аккумулятора - никель-кадмиеывый и литий-ионный. Предусмотрено 4 положения индикатора уровня - 25…50…75…100%. Сам корпус можно крепить на стену. Есть световая индикация уровня. Стоимость устройства 4850 руб.

DC10WC (10.8 В) Makita

Приспособление используется для восстановления литий-ионных аккумуляторов с номинальным напряжением 10,8 вольт. Есть световая индикация, но нет автоматической остановки. Желательно контролировать время, чтобы не допустить перезаполнения емкости.

DC10WC (10.8 В) Makita

Масса 1200 гр. при относительно небольших габаритах - в длину всего 20 см. Есть гарантия производителя 1 год. Цена 2200 руб.

ВИДЕО: Как правильно заряжать Li-ion

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую - с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемент а. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель - тем дольше работает шуруповёрт. Единица измерения ёмкости - миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH - 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через , выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.

Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры - термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.

Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея . Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.

Самодельные приборы для заряда

Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

Схема на двух транзисторах

Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

Использование специализированной микросхемы

Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

HL1 служит для индикации питания, а HL2 - для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C - ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:

  • Uвх – наибольшее напряжение на входе;
  • Uбат – напряжение на аккумулятор;
  • Iзар – зарядный ток.

Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.

Зарядка шуруповёрта без зарядного

Восстановить батарею без помощи ЗУ несложно, но многие не представляют, как. Зарядить аккумулятор шуруповёрта без зарядного устройства можно, используя любой блок питания с постоянным напряжением. Величина его должна быть равной или немного больше значения напряжения заряжаемого аккумулятора. Например, для 12V батареи можно взять выпрямитель для зарядки автомобиля. С помощью клеммных зажимов и проводов подключить, соблюдая полярность, их друг к другу минут на тридцать, при этом контролируя температуру батареи.

А можно провести доработку и устройства питания с большим напряжением, воспользовавшись простым интегральным стабилизатором. Микросхема LM317 позволяет управлять входным сигналом до 40 вольт. Понадобится два стабилизатора: один включается по схеме стабилизации напряжения, а второй - тока. Такую схему можно применить и при переделке ЗУ, не имеющего узлов контроля процесса зарядки.

Работает схема совсем несложно. Во время работы образуется падение напряжения на резисторе R1, его хватает для того, чтобы засветился светодиод. По мере заряда ток в цепи падает. Через некоторое время напряжение на стабилизаторе будет малым и светодиод погаснет. Резистор Rx задаёт наибольший ток. Его мощность выбирается не менее 0,25 ватт. При использовании такой схемы аккумулятор не сможет перегреваться, поскольку устройство автоматически отключается при полном заряде батареи.

Часто можно встретить вредные советы, что зарядить аккумулятор можно, используя диодный мост и лампу накаливания на 100 Вт. Так делать категорически нельзя, потому что отсутствует гальваническая развязка и, кроме смертельного поражения электрическим током, существует большая вероятность взрыва батареи.

Похожие публикации