Chevroletavtoliga - Автомобильный портал

Надежный электродвигатель. Техническое обслуживание асинхронных электродвигателей Срок службы до списания эл двигателя дазо

Сегодня в каждом доме имеется электрооборудование, в техническую конструкцию которого входит электродвигатель. Это и стиральные машины , и различные обрабатывающие станки, и электронасосы , и электроинструмент , и т.д. Как и всё в этом мире, электродвигатели недолговечны. Я постараюсь рассказать вам о некоторых моментах, которые смогут помочь вам продлить срок службы электрических двигателей . Электродвигатели подразделяются на щёточные и роторные. Щёточные электродвигатели состоят из якоря с коллектором, статора с полюсными катушками и щёткодержателей с графитовыми (бывают другие) щётками. Роторные электрические двигатели состоят из ротора (набор железа) и статора с фазными катушками.
Как продлить срок службы щёточным электродвигателям 1. Необходим контроль и уход за щётками. Не допускайте полного износа щёток, пусть у вас всегда в наличие имеется ремкомплект. При разобранном электродвигателе, не забудьте проверить щётки, они должны быть не сильно стёрты (изношены) и свободно двигаться в щёткодержателях. По мере стирания щётки об пластины коллектора, необходимо растягивать пружину, которая прижимает её к коллектору якоря.
2. Не допускайте сильного износа подшипников на якоре. Небольшой люфт - это уже повод для их замены. Подшипники должны быть постоянно в смазке.
3. Не зачищайте коллекторные пластины наждачной бумагой или мелким надфилем (очень часто слышу такие советы). Это только навредит вашему электромотору. Коллектор можно только "продорожить" - т.е. не допускать соединения между собой коллекторных пластин. Как продлить жизнь роторному электродвигателю 1. Здесь главное - это подшипники на роторе. Следите за состоянием смазки, при малейшем износе подшипника (люфт) замените его. Люфт в подшипнике приводит к тому, что ротор начинает соприкасаться (трение) с железом статора. Это приводит к повышению нагрузки на электродвигатель, провода в обмотке статора начинают нагреваться, изоляция на них повреждается и это приводит либо к межвитковому замыканию, либо к замыканию на корпус двигателя. 2. Некоторые электродвигатели напряжением 220 В имеют в своей цепи питания конденсаторы. Конденсаторы так же имеют определённый срок службы, т.е. их необходимо заменять на новые по истечении долгого срока эксплуатации.
3. При использовании электродвигателя на 380 В необходимо следить за напряжением между фазами и между фазами и нулём. У вас не должно возникнуть "перекоса" фаз (разное напряжение) - это приведёт к поломке электродвигателя. Собл юдайте эти советы и ваш электродвигатель будет жить долго !
Внимание, только СЕГОДНЯ!

Любой электродвигатель, каким бы надежным он ни был, время от времени должен разбираться для осмотра, проверки и ремонта. При длительной работе в нем могут появиться раз­личные дефекты. Если их своевременно не устранить, то электродвигатель выйдет из строя аварийно с такими повреждениями, при которых придется полностью заме­нить обмотку. В некоторых случаях повреждения могут оказаться на­столько большими, что восстановить электродвигатель будет невозможно и его придется списать в металлолом. Чем надежнее изготовлен электродвигатель, чем легче условия его работы, чем лучше надзор и уход за ним, тем меньше вероятность появления дефектов в нем и тем реже придется ремонтировать его.

Совсем отказаться от проведения предупредитель­ного , однако, нельзя. В любом элек­тродвигателе имеются подшипники качения или подшип­ники скольжения. Расчетный срок службы подшипников качения в среднем не превышает 8 000 - 10 000 ч., что со­ставляет чуть больше одного года непрерывной работы.

На практике подшипники качения часто служат и боль­ше этого срока. Но гарантировать высокую надежность при сверхсрочной работе шарикоподшипников и роли­коподшипников нельзя. Поэтому если не заменить, то по крайней мере проверить подшипник, отработавший га­рантированное число часов, необходимо.

В подшипниках скольжения при работе из-за выра­ботки увеличивается зазор между шейкой вала и вкла­дышем. Если величина этого зазора превзойдет макси­мально допустимую нормами, то может повыситься вибрация ротора, а при дальнейшем срабатывании вкладыша ротор заденет за статор. Крупное повреждение электродвигателя в этом случае неизбежно. Поэтому необходимо следить за величиной зазора в подшипниках и своевременно производить перезаливку сработавшихся вкладышей.

Проверка и тем более замена подшипника качения или неразъемного подшипника скольжения требуют отсоединения электродвигателя от приводимой машины или механизма, развертывания электродвигателя на фундаменте, снятия с него полумуфты и торцовых кры­шек.

Для полной проверки электродвигателя после снятия торцевых крышек остается вынуть ротор, что при нали­чии приспособлений для выемки ротора большого труда не составляет. Выемка ротора для полной проверки необходима, так как некоторые дефекты статора и ротора можно обна­ружить только при вынутом роторе.

Ремонт электродвигателя с полной разборкой назы­вается капитальным ремонтом. В объем капитального ремонта, кроме полной разборки входят: чистка, осмотр и проверка статора и ротора, устранение выявленных дефектов (например перебандажировка схемной части обмотки статора, замена ослабевших клиньев и т. д.); покраска, если необходимо, лобовых частей обмотки и расточки статора, ротора; про­мывка и проверка подшипников; если необходимо, пере­заливка подшипников скольжения или замена подшип­ников качения; проведение профилактических испытаний.

Кроме ремонта электродвигателя с полной разборкой, производится так называемый текущий ремонт, при котором заменяется смазка и измеряются зазоры в подшип­никах скольжения или добавляется смазка и осматриваются сепараторы в подшипниках качения, произво­дятся чистка и обдувка статора и ротора от пыли при снятой задней крышке, производится осмотр обмоток и стали в доступных местах.

В какие же сроки должен производиться ремонт электродвигателей?

По ПТЭ капитальный ре­монт с выемкой ротора электродвигателей ответственных механизмов, работающих в тяжелых условиях по температуре и загрязненности окружающего воздуха, дол­жен производиться не реже 1 раза в 2 года. Для электродвигателей, работающих в нормальных условиях, срок капитального ремонта устанавливается в зависимости от местных условий. Периодичность теку­щего и капитального ремонтов устанавливается главным инженером

К числу ответственных механизмов относятся дымо­сосы, дутьевые и мельничные вентиляторы, вентиляторы первичного воздуха, питательные, конденсатные и цир­куляционные насосы, двигатель-генераторы и ряд дру­гих механизмов. В некоторых случаях к числу ответ­ственных относятся также сетевые насосы.

Роль и значение указанных механизмов действитель­но велика. Например, отключение дымососа, дутьевого вентилятора или вентилятора первичного воздуха при­ведет, в лучшем случае, к снижению нагрузки или пол­ной остановке котла, а в худшем, если откажет блоки­ровка, и к взрыву в котле. Отключение питательного насоса при отказе автоматического включения резерв­ного насоса приведет к остановке котла, а при промед­лении с остановкой котла - и к его повреждению из-за упуска воды.

Практически большинство крупных электродвигате­лей, установленных на электростанции, являются ответственными. Исключение составляют электродвигатели мельниц, дробилок, компрессоров и некоторые другие. Их отключение не вызовет немедленного снижения на­грузки и повреждения котла и турбины. Однако при вы­ходе из строя этих электродвигателей на время их ре­монта или замены на электростанции может сложиться аварийное положение, иногда со снижением нагрузки.

Деление электродвигателей на ответственные и не­ответственные оправдано при решении вопроса о том, какие из них следует обеспечить самозапуском в момент восстановления напряжения на собственных нуждах по­сле аварийного положения, а какие можно при этом отключить, чтобы облегчить пуск ответственных двига­телей. При определении сроков ремонта делить средние и крупные электродвигатели на ответственные и не­ответственные вряд ли целесообразно. Не следует забывать, что выход из строя электродвигателя мощностью в несколько сотен киловатт, где бы он ни был установлен, принесет большой ущерб производству.

Вполне очевидно, что рисковать выходом такого электродвигателя из строя из-за несвоевременного пре­дупредительного ремонта недопустимо. Поэтому все средние и крупные электродвигатели при определении сроков между ремонтами целесообраз­но считать ответственными.

В отношении мелких двигателей (мощностью до 100 кВт) следует придерживаться другого подхода.

Возможность появления устранимых дефектов в обмотке статора и ротора этих двигателей по сравне­нию с более крупными двигателями значительно ниже. Дефекты в шарикоподшипниках и роликоподшипниках этих двигателей, как правило, развиваются медленнее, чем в крупных, и их можно заблаговременно обнару­жить и устранить, не доводя дело до выхода электро­двигателя из строя. Наконец, если и произойдет повреж­дение двигателя, то стоимость его перемотки, по сравне­нию со стоимостью перемотки крупных электродвигате­лей, невелика.

Поэтому для мелких электродвигателей при опреде­лении сроков между ремонтами следует учитывать, на каких они механизмах установлены, на ответственных или нет.

Если они установлены на ответственных механизмах, то сроки между ремонтами должны обеспечить надеж­ную и бесперебойную работу этих электродвигателей от ремонта до ремонта. В противном случае дело может кончиться серьезной аварией. Например, аварийный вы­ход из строя небольшого электродвигателя насоса охлаждения генератора при отсутствии резерва может привести к снижению нагрузки или остановке генера­тора, а выход электродвигателя любого маслонасоса - к повреждению крупного агрегата, на котором установ­лен маслонасос.

Для мелких электродвигателей неответственных ме­ханизмов ремонт можно производить только при обна­ружении какого-либо дефекта, или, как говорят, по мере необходимости.

Итак, по ПТЭ периодичность капитального и теку­щего ремонта электродвигателей, в зависимости от усло­вий их работы, устанавливается главным инженером. Какими же соображениями следует руководствовать­ся при подготовке решения главного инженера?

Можно поступить просто. Всем электродвигателям, независимо от условий их работы, делать капитальный ремонт 1 раз в год. Раньше так и поступали. Но такое решение будет неправильным. Слишком частая разборка и сборка электродвигателей не только не повысит их надежность, но при недостаточно высоком качестве ре­монта может привести к обратному результату. При не­осторожной разборке может быть допущено задевание ротором или торцевой крышкой за обмотку и поврежде­ние ее. Могут быть повреждены подшипники при непра­вильном набивании полумуфты. Эти повреждения не всегда обнаруживаются, и в результате электродвига­тель выходит из строя через непродолжительное время после ремонта. Поэтому упор нужно делать не на более частый ремонт, а на более высокое качество его прове­дения.

Не следует забывать и главного: слишком частый ре­монт приведет к ненужным, неоправданным трудовым и материальным затратам на ремонт электродвигателей.

Однако из сказанного не следует делать вывод, что во всех случаях капитальный ремонт 1 раз в год не нужен. Например, для вновь смонтированных электродвига­телей, особенно средней и крупной мощности, первый капитальный ремонт имеет смысл проводить че­рез год с начала эксплуатации. Деревянные клинья в пазах статора и прокладки под ними, если они изготовлены из недостаточно сухого ма­териала, за это время успеют высохнуть и начнут вы­падать. Из-за высыхания и механических воздействий от пусковых токов и токов нагрузки могут ослабнуть креп­ления лобовых частей. За год успеют проявиться и будут выявлены при разобранном двигателе большин­ство других дефектов, которые могли быть допущены при изготовлении электродвигателя на заводе.

Наконец, при осмотре разобранного электродвигателя будет установлено, насколько сильно он запылился, не перегревался ли, не попадает ли на обмотку масло из подшипников, как работали подшипники и т. д. По ре­зультатам осмотра будет приниматься решение о перио­дичности дальнейших ремонтов.

Срок выполнения последующих капитальных ремон­тов, если электродвигатель работает нормально и заме­чаний по нему нет, как правило, будет определяться со­стоянием его подшипников.

При подшипниках скольжения решающим является величина зазора между вкладышем и валом. Срок служ­бы подшипников скольжения колеблется в больших пре­делах, от одного-двух лет до десяти.

Указать заранее, через сколько лет придется переза­ливать вкладыши подшипников, и определить тем самым срок капитального ремонта электродвигателей не пред­ставляется возможным.

Необходимо периодически 1 раз в год замерять за­зоры в подшипниках электродвигателя и, если они воз­росли до величины, близкой к максимально допустимой, предусматривать на следующий год капитальный ремонт этого электродвигателя. Если зазор увеличился за ко­роткий промежуток на большую величину, то капиталь­ный ремонт следует выполнить при ближайшей возмож­ности.

Практически капитальный ремонт электродвигателей с подшипниками скольжения в большинстве случаев достаточно производить 1 раз в 3 года или, судя по успеш­ному опыту эксплуатации на ряде электростанций, еще реже. По-видимому, для таких электродвигателей целе­сообразно переходить на капитальный ремонт по мере необходимости и только первый ремонт производить че­рез год с начала эксплуатации.

При определении периодичности капитального ремон­та электродвигателей с подшипниками качения должны учитываться число часов работы электродвигателя в году и его быстроходность.

Для быстроходных электродвигателей (1 500 и осо­бенно 3 000 об./мин) капитальный ремонт должен произ­водиться по истечении 8 000 - 10 000 ч. работы. При этом целесообразно подшипники, отработавшие при 3 000 об./мин 8 000- 10 000 ч., заменять на новые, если в них даже не будет обнаружено внешних дефектов.

Для электродвигателей со скоростью 1000 об./мин и менее капитальный ремонт допустимо производить 1 раз в 3 года. Подшипники, не имеющие внешних дефектов, в этом случае можно оставлять на следующий срок.

Если в электродвигателе при его работе будут обна­ружены дефекты, как, например, утечка масла из под­шипника и попадание его на обмотку, или произойдет забивание вентиляционных каналов пылью, грязью, что приведет к повышенному нагреву активной стали и обмотки, то капитальный ремонт должен быть выполнен при первой возможности.

Капитальный ремонт электродвигателей желательно (но не обязательно) совмещать с проведением капи­тального ремонта основного агрегата (котла, турбины, насоса), к которому эти двигатели относятся. В этом случае ремонт может быть выполнен в достаточно продолжительный срок, без спешки и, следовательно, более качественно. Кроме того, при этом уменьшается число операций по выводу электродвигателей в ремонт, отпа­дает необходимость в дополнительной центровке электродвигателей с агрегатом.

Для мелких электродвигателей (мощностью до 100 кВт), установленных на ответственных механизмах, капитальный ремонт достаточно производить 1 раз в 2-3 года. Для электродвигателей мощностью до 100 кВт, установленных на неответственных агрегатах, вполне допустимо производить капитальный ремонт только при обнаружении какого-либо дефекта (по мере необходи­мости).

Текущий ремонт средних и крупных электродвигате­лей следует производить 1 раз в год.

Для мелких электродвигателей периодичность теку­щего ремонта определяется на основании результатов наблюдения за состоянием смазки в подшипниках.

Периодичность обдувки электродвигателей от пыли должна устанавливаться в зависимости от условий их работы.

ВВЕДЕНИЕ

Работа электрика по обслуживанию электрооборудования сводится к поддержанию работоспособного и безопасного состояния электрических машин, пускозащитных аппаратов, устройств освещения, сигнализации и автоматики, что все и называется электрооборудованием, а также проводов, кабе­лей, разъемов, зажимов, электромонтажных изделий и т. д.

В состав устройств могут входить различные элементы, например, резисторы, конденсаторы, полупроводниковые при­боры. Электрик должен быть знаком со всеми этими элемен­тами, аппаратами и устройствами, но при работе он встречает много вопросов и затруднений, особенно в молодом возрасте, когда мало опыта. Полезно все эти вопросы, и затруднения не спеша проанализировать с книгой, но таких книг пока недоста­точно.

Целью данной работы является знакомство с электрооборудованием и электродвигателями, составляющими часть элек­троустановок (их устройством), назначением, а также мерами безопасности, безотказности, увели­чения срока службы. В этом смысле имеет большое значение знание всех отказов при работе в различных частях электроустановки, по­исков и методов устранения отказов, что подробно представ­лено ниже.

Практически во всех областях деятельности современ­ного общества применяется электрическая энергия.

Энергия - общая количественная мера различных форм движения материи. Для любого вида энергии мож­но назвать материальный объект, который является ее носителем. Так, механической энергией обладают вода, ветер, заведенная пружина; тепловой - нагретый газ, пар, горячая вода. Носителем электрической энергии является особая форма материи - электромагнитное поле.

Электрическая энергия получается путем преобра­зования других видов энергии (механической, тепловой, химической, ядерной и др.) и обладает ценными свой­ствами: относительно несложно, с малыми потерями передается на большие расстояния, легко дробится и пре­образуется в нужный вид энергии (механическую, тепло­вую, световую, химическую и др.).

Наибольшая часть электроэнергии для нужд народного хозяйства вырабатывается на тепловых электростанциях (ТЭС). Здесь химическая энергия органического топлива (угля, мазута, торфа, газа) при его сжигании в паровых котлах превращается в тепловую энергию нагретого водяного пара. Пар под высоким давлением поступает в паровую турбину, где его энергия преобразуется в механическую. Турбины приводят в действие электриче­ские генераторы, преобразующие механическую энергию в электрическую.

Следует отметить, что электродвигатели являются основным источником и потребителями электроэнергии. Учитывая быстрое истощение запасов органического топлива и неблагоприятное воздействие ТЭС на окружающую среду, существует необходимость в экономических разработках электропривода.

Электропривод-это совокупность устройств, приводящих в движение производственные машины и установки при помощи электрических двигателей.

Электропривод состоит из одного или нескольких двигателей, передаточного механизма, необходимого для передачи движения от двигателя к рабочей машине (зубчатого редуктора, ременной передачи и т. п.), и устрой­ства управления, служащего для пуска, остановки и регу­лирования привода.

В большинстве случаев работа электроприводов автоматизируется, начиная с относительно простых операций дистанционного пуска и остановки и кончая выполнением функций регулирования и управления слож­ными взаимосвязанными комплексами различных произ­водственных механизмов.

Автоматическое управление электроприводами, составляющее основу автоматизи­рованного производства, дает возможность увеличить производительность силовой установки.

В соответствии с Основными направлениями эконо­мического и социального развития РБ на 2006- 2010 годы и на период до 2016 года выработка элект­роэнергии в 1990 г. Должна составить 1910-2000 млрд кВт ч.

Для ускорения научно-технического прогресса боль­шое значение имеет автоматизация производственных процессов, осуществляемая на базе электротехники и электроники. К 2007 г. предусматривается резко повысить уровень автоматизации производства (в сред­нем в 2 раза). В промышленности намечено ввести 5,1 тыс. автоматизированных систем управления технологическими процессами.

Предполагается создание и освоение новых поколений электронных вычислительных машин (ЭВМ) всех классов от супер-ЭВМ до персональных для школьного обучения. Применение микропроцессоров и микроЭВМ позволяет создавать гибкие автоматизи­рованные системы управления технологическими процес­сами, электроприводом и электродвигателями, что дает возможность обеспечивать оптимальное выполнение производ­ственных программ. Прокопчик

Игорь Леонидович г. Осиповичи ОЗАА

2. Эксплуатация электродвигателей.

2.1 Назначение электродвигателей.

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую - осуществляется двигателями.

Любая электрическая машина может быть использована как в качестве генератора, так и в качестве электродвигателя. Это свойство электрической машины изменять направление преобразуемой ею энергии называется обратимостью машины. Электрическая машина может быть также использована для преобразования электрической энергии одного рода тока (частоты, числа фаз переменного тока, напряжения постоянного тока) в энергию другого рода тока. Такие электрические машины называются преобразователями.

В работе будут описаны принципы и характеристики работы двигателей электропривода, согласно заданной темы и выполненных работ по изучению основ электропривода.

В зависимости от рода тока электроустановки, в которой должна работать электрическая машина, они делятся на машины постоянного и переменного тока.

Машины переменного тока могут быть как однофазными, так и много фазными. Наиболее широкое применение нашли трехфазные синхронные и асинхронные машины, а также коллекторные машины переменного тока, которые допускают экономичное регулирование частоты вращения в широких пределах

В настоящее время асинхронные двигатели являются наиболее распространенными электрическими машинами. Они потребляют около 50% электроэнергии, вырабатываемой электростанциями страны. Такое широкое распространение асинхронные электродвигатели получили из-за своей конструктивной простоты, низкой стоимости, высокой эксплуатационной надежности. Они имеют относительно высокий КПД: при мощностях более 1кВт кпд=0,7:0,95 и только в микродвигателях он снижается до 0,2-0,65.

2.1.1 УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

Асинхронные двигателя

Устройство асинхронного двигателя. Двига­тель состоит из двух основных частей, разделенных воз­душным зазором: неподвижного статора 6 и вращающего­ся ротора 3. Каждая из этих частей имеет сердечник и обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигате­лей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние, иногда называют двигате­лями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструк­цией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус статора служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях в корпус устанавливают обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигате­лей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние - иногда называют двигате­лями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструк­цией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус и статор служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях корпус

отливают из алюминиевого сплава, стали или чугуна, а в крупных машинах делают сварным. В корпус статора за­прессован сердечник 2, который с целью уменьшения по-терь от вихревых токов собирается из изолированных друг от друга лаком листов электрической стали (рис. 8.7,6). В пазы сердечника уложены проводники обмотки статора, которая выполняется из медного провода. Основным элементом обмотки является секция, которая может иметь" один или несколько витков.

Активные стороны секций укладывают в пазы сердечника статора, например сторону / укладывают в первый паз, а сторону 4 секции - в четвертый паз. Секции соединяют между собой в катушки, из которых состоят обмотки каждой фазы. Начала С1, С2, С3 и концы С4, С5, С6 фазных обмоток присоединяют к зажимам коробки выводов (рис. 8.9, а). Для упрощения переключения схем У и д зажимы обмотки статора располагают в порядке, указан­ном на рис. 8.9, а.

Ротор асинхронного двигателя состоит из сердечника 3 обмотки 4 и вала 5. Вал ротора устанавливается в подшипниках, запрессованных в под­шипниковых щитах 7, прикрепленных болтами к корпусу статора, и служит для передачи вращающего момента производственному механизму. Сердечник ротора имеет цилиндрическую форму и собирается из листов электро­технической стали.

В двигателях с короткозамкнутым ротором обмотка ротора состоит из ряда алюминиевых стержней (располагаемых в пазах сердечника ротора), замкнутых по торцам кольцами. В этих двигателях мощностью до 400 кВт обмотку ротора выполняют заливкой его пазов под давлением расплавленным алюминием.

Асинхронные двигатели - наиболее распространенный вид электрических машин, потребляющих в настоящее время около 40% всей вырабатываемой электроэнергии. Их установленная мощность постоянно возрастает. Асинхронный двигатели широко применяются в приводах металлообрабатывающих, деревообрабатывающих и других видов станков, кузнечно-прессовых, ткацких, швейных, грузоподъемных, землеройных машин, вентиляторов, насосов, компрессоров, центрифуг, в лифтах, в ручном электроинструменте, в бытовых приборах и т.д. Практически нет отрасли техники и быта, где не использовались бы асинхронные двигатели.

Потребности народного хозяйства удовлетворяются главным образом двигателями основного исполнения единых серий общего назначения, т.е. применяемых для привода механизмов, не предъявляющих особых требований к пусковым характеристикам, скольжению, энергетическим показателям, шуму и т.п. Вместе с тем в единых сериях предусматривают также электрические и конструктивные модификации двигателей, модификации для разных условий окружающей среды, предназначенные для удовлетворения дополнительных специфических требований отдельных видов приводов и условий их эксплуатации. Модификации создаются на базе основного исполнения серий с максимально возможным использованием узлов и деталей этого исполнения.

В некоторых приводах возникают требования, которые не могут быть удовлетворены двигателями единых серий. Для таких приводов созданы специализированные двигатели, например электробуровые, краново-металлургические и др.

ЭНЕРГОСБЕРЕЖЕНИЕ Ведущие фирмы-производители выпускают энергосберегающие стандартные асинхронные двигатели мощностью 15-30 кВт и более. В этих двигателях потери электроэнергии снижены не менее чем на 10 % по сравнению с ранее производимыми двигателями с "нормальным" КПД (h). При этом КПД энергосберегающего двигателя можно определить

как hэ = h / , (1) где е - относительное снижение суммарных потерь в двигателе.

Очевидно, производство энергосберегающих электродвигателей связано с дополнительными затратами, которые можно оценить с помощью коэффициента удорожания

Ку = 1 + (1 - h) е2.100 (2)

Результаты расчетов показывают, что дополнительные затраты, связанные с приобретением энергосберегающих электродвигателей, окупаются за счет экономии электроэнергии за 2-3 года в зависимости от мощности двигателя. При этом срок окупаемости более мощных двигателей меньше, так как эти двигатели имеют большую годовую наработку и более высокий коэффициент загрузки.

В ряде стран вопросы энергосбережения в стандартных асинхронных двигателях связывают не столько со снижением эксплуатационных затрат, сколько с экологическими проблемами, обусловленными производством электроэнергии. В Российской Федерации Владимирский электромоторный завод начиная с 1998 г. выпускает энергосберегающие двигатели 5А280 и с 1999 г. 5А315 мощностью от 110 до 200 кВт, с 200 г.энергосберегающие двигатели 5А355 мощностью 315 кВт, а с 2003 готовиться к выпуску асинхронных двигателей серии 6А.

ПОВЫШЕНИЕ РЕСУРСА. СНИЖЕНИЕ УРОВНЯ ШУМА .

С энергосбережением - уменьшением потерь в асинхронном двигателе - неразрывно связано повышение его ресурса вследствие снижения температуры его обмоток. При применении системы изоляции класса нагревостойкости F (qб = 100°С и qб - q = 20°С, где qб и q - превышение температуры обмоток над температурой окружающей среды, соответствующее базовому ресурсу и фактическое) теоретический ресурс системы изоляции обмотки увеличивается в 4 раза согласно известному соотношениюТсл = Тсл.б ехр [-0,1 ln2 (qб - q)] , где

Тсл и Тсл.б - средний и базовый ресурсы системы изоляции обмоток, причем Тсл.б = 20.103 ч. В действительности ресурс обмотки определяется не только термодеструкцией, но и другими факторами (коммутационным перенапряжением, механическими усилиями, влажностью и др.), поэтому он увеличивается не так значительно, но при этом не менее, чем в 2 раза.

Руководствуясь этими соображениями, европейские фирмы-производители стандартных асинхронных двигателей придерживаются правила применения систем изоляции класса нагревостойкости F (qб = 100°С) при превышении температуры обмоток, соответствующем базовому для систем изоляции класса нагревостойкости В (qб = 80°С). Снижение температуры обмоток стандартных асинхронных двигателей способом охлаждения ICO141 МЭК 60034-6 позволяет в уменьшить диаметр вентилятора наружного обдува и существенно (до 5 дБ(А)) снизить уровень вентиляционного шума, который в двигателях с частотой вращения 3000 и 1500 мин-1 является определяющим.

УНИВЕРСАЛЬНОСТЬ

ПИТАНИЯ В настоящее время большинство стандартных асинхронных двигателей в России выпускают на напряжение сети 380 В при частоте 50 Гц. Вместе с тем МЭК предусматривает к 2003 г. переход на напряжение 400 В (публикация МЭК 60038). При этом необходимо будет обеспечивать длительную работу двигателя при отклонениях напряжения от номинального ±10 % (сейчас это ограничение установлено на уровне ±5 % - публикация МЭК 60031-1). Для обеспечения работы двигателя при пониженном на 10 % напряжении питания потребуются новые подходы при проектировании с целью создания соответствующих температурных запасов. Следует отметить, что и в этом случае для энергосберегающих двигателей с сервис-фактором 1,15 проблем не будет. Все европейские фирмы уже производят стандартные асинхронные двигатели на напряжение 400 В, российские заводы - пока только для поставок на экспорт. Одним из насущных требований европейского рынка является обеспечение возможности работы двигателя при напряжении 400 В и частоте 50 Гц от сети 480 В и 60 Гц при повышенной на 20 % номинальной мощности. Такую возможность также следует предусматривать при проектировании новых машин. ЭЛЕКТРОМАГНИТНАЯ

СОВМЕСТИМОСТЬ Вопросы электромагнитной совместимости (ЭМС) в настоящее время приобретают все большее значение при освоении и сертификации новых серий электродвигателей. ЭМС электродвигателя определяется его способностью в реальных условиях эксплуатации функционировать при воздействии случайных электрических помех и при этом не создавать недопустимых радиопомех другим средствам. Помехи от электродвигателя могут возникать в присоединенных к нему цепях питания, заземления, управления, в окружающем пространстве. ГОСТ Р 50034-92 устанавливает нормы на уровни устойчивости двигателей к отклонениям напряжения и частоты, несимметрии и несинусоидальности питающего трехфазного напряжения, а также методы испытания двигателей на устойчивость к помехам. Вместе с тем при проектировании и производстве асинхронных двигателей для внешнего рынка необходимо руководствоваться публикацией МЭК 1000-2-2, в которой установлены уровни совместимости для низкочастотных распространяющихся по проводам помех и передаче сигналов в низковольтных системах электропитания. При этом измерительное оборудование должно обеспечивать и спектральный анализ на базе компьютерных информационно-измерительных систем. ВОЗМОЖНОСТЬ РАБОТЫ В СИСТЕМАХ РЕГУЛИРУЕМОГО

ЭЛЕКТРОПРИВОДА .

При работе от преобразователя частоты (ПЧ) в ряде случаев необходимо предусматривать защиту двигателя от перенапряжения (если это не предусмотрено в системе) путем усиления витковой и корпусной изоляции. Большинство выпускаемых и применяемых в настоящее время ПЧ, рассчитанных на среднюю мощность до 3000 кВт, по своей структуре являются инверторами. Выходное трехфазное напряжение в этих ПЧ формируется методом широтно-импульсной модуляции, что приводит к воздействию на изоляцию (витковую, межфазовую) электродвигателя напряжения импульсной формы, амплитуда которого значительно превышает амплитуду первой гармоники выходного напряжения. Это приводит к преждевременному старению изоляции и снижению срока службы обмотки и двигателя в целом. Увеличение срока службы асинхронного двигателя общепромышленного применения в составе регулируемого привода может и должно быть обеспечено схемотехническими решениями ПЧ или введением специальных фильтрующих устройств в цепь питания электродвигателя. Разработка ПЧ и регулируемого электродвигателя в едином конструктивном исполнении позволяет оптимизировать систему электропривода не только по массогабаритным показателям и удобству обслуживания, но и с позиций единой системы независимого теплоотвода решить вопрос охлаждения машины на малых частотах вращения. При регулировании частоты вращения, превышающей синхронную, следует применять подшипники соответствующей быстроходности. В связи с этим в публикации МЭК 60034-1 предусмотрено значительное увеличение предельных скоростей, допускаемых для стандартных асинхронных двигателей.

Новые серии асинхронных электродвигателей.

Их характеристики.

К новым сериям выпускаемых асинхронных электродвигателей с короткозамкнутым ротором можно, без сомнений, отнести двигатели семейства 5А и 6А.Эти типы двигателей начали выпускать с конца 90-х годов на российских машиностроительных заводах – Владимирский моторный завод и Ярославский машиностроительный завод ОАО Eldin.

двигатели серии А

Двигатели серии А - унифицированная серия асинхронных трехфазных закрытого обдуваемого исполнения с короткозамкнутым ротором двигателей. Двигатели серии А охватывают диапазон мощностей от 0,06 до 100 кВт, диапазон высоты оси вращения от 50 до 250 мм, частоты вращения 3000, 1500, 1000, 750.

Структура серии предусматривает следующие группы исполнений :

    Модификации по условиям окружающей среды (тропическое, химически стойкое, для сельского хозяйства)

    По точности установочных размеров (высокой точности и повышенной точности),

    С дополнительными устройствами (с фазным ротором, со встроенным электромагнитным тормозом)

    С повышенным пусковым моментом

    С повышенным скольжением

    Многоскоростные

    Узкоспециальные (для судовых механизмов, для привода моноблочных насосов, рудничное исполнение, для привода бессальниковых компрессоров и др.)

Двигатели основного исполнения предназначены для работы от сети переменного тока частоты 50 Гц и изготавливаются на номинальные напряжения, указанные в таблице:

Структура условного обозначения

АИХХХХХХХХХХХ

А - асинхронный; И - унифицированная серия (И - Интерэлектро); Х - привязка мощностей к установочным размерам (Р по ГОСТ, С - по CENELEK); Х - Р - с повышенным пусковым моментом, С - с повышенным скольжением; ХХХ - габарит, мм; Х - установочный размер по длине станины (S, M, L); Х - длина сердечника статора (А или В, отсутствие буквы означает только одну длину сердечника статора - первую); Х - число полюсов: 2, 4, 6, 8; Х - дополнительные буквы для модификаций двигателя (Б - со встроенной температурной защитой; П - с повышенной точностью по установочным размерам; Х2 - химически стойкие; С - сельскохозяйственные); ХХ - климатическое исполнение (У, Т, ХЛ) и категория размещения (1, 2, 3, 4, 5).

Двигатели асинхронные трехфазные закрытого обдуваемого исполнения с короткозамкнутым ротором серии 5А привязаны по мощности к установочным размерам по ГOCT 28330-89.

Электродвигатели серии АИР полностью взаимозаменяемы с соответствующими типами электродвигателей серий 5А Двигатели предназначены для работы в режимах S1-S6 ГОСТ 183-74 (номинальная мощность указана для длительного режима S1) от сети переменного тока 50Гц, напряжением 220, 380, 660В.

Двигатели используются в различных отраслях промышленности и в сельском хозяйстве: для привода станков, насосов, компрессоров, вентиляторов, мельниц, кормоизмельчителей, транспортных механизмов и т.д.

Выпускаются с высотой вращения вала до 315 мм и с высотой вращения вала 90, 100 и 112 мм

Асинхронные двигатели общепромышленного назначения серий 5А основного исполнения и его модификаций соответствует требованиям стандартов, перечисленных в таблице:

НАИМЕНОВАНИЕ

СТАНДАРТ РФ

ПУБЛИКАЦИЯ МЭК

Машины электрические вращающиеся. Номинальные данные и рабочие характеристики

ГОСТ 28173

МЭК 34-1

Машины электрические асинхронные мощностью от 1 до 400 кВт. Двигатели. Общие технические требования

ГОСТ 28330

Машины электрические вращающиеся. Ряды номинальных мощностей, напряжений и частот

ГОСТ 12139

МЭК 38

Машины электрические вращающиеся. Установочно-присоединительные размеры

ГОСТ 18709

МЭК 72

Машины электрические вращающиеся. Классификация степеней защиты, обеспечиваемая оболочками вращающихся машин

ГОСТ 17494

МЭК 34-5

Машины электрические вращающиеся. Методы охлаждения. Обозначения

ГОСТ 20459

МЭК 34-6

Машины электрические вращающиеся. Условные обозначения конструктивных исполнений по способу монтажа

ГОСТ 2479

МЭК 34-7

Машины электрические вращающиеся. Обозначения выводов и направления вращения

ГОСТ 26772

МЭК 34-8

Машины электрические вращающиеся. Допустимые уровни шума

ГОСТ 16372

МЭК 34-9

Машины электрические вращающиеся. Встроенная температурная защита

ГОСТ 27895

МЭК 34-11

Машины электрические вращающиеся. Пусковые характеристики односкоростных трехфазных асинхронных двигателей с короткозамкнутным ротором напряжением до 660В

ГОСТ 28327

МЭК 34-12

Машины электрические вращающиеся. Допустимые вибрации

ГОСТ 20815

МЭК 34-14

Система изоляции. Оценка нагревостойкости и классификация

ГОСТ 8865

МЭК 85

Новые серии электродвигателей асинхронных типа 5A3MB имеют взрывонепроницаемое исполнение. Такие двигатели предназначены для стационарных насосов, компрессоров и других быстроходных механизмов во взрывоопасных зонах, в которых возможно образование взрывоопасных смесей газов, паров с воздухом 1, 2, 3 категории и групп Т1, Т2 ТЗ, Т4 или смесей пыли с воздухом, температура тления или воспламенения которых выше 185 о С.

Электродвигатели асинхронные трехфазные с короткозамкнутым ро- тором серии АТК (аналог АИР) с высотой оси вращения 80,90,100,112 мм

Тип электро- двигателя

Номинальная мощность, кВт

Тип электро- двигателя

Номинальная мощность, кВт

Ном. частота вращения, мин.-1

Крупные асинхронные электродвигатели взрывозащищенного исполнения.

Номенклатура крупных асинхронных взрывозащищенных электродвигателей постоянно обновляется и расширяется, новые серии двигателей отличают более высокие технические характеристики и целый ряд конструктивных решений, направленных на повышение надежности и удобства эксплуатации.

Взамен двигателей ВАО2-450, ВАО2-560 и ВАО2-630 в настоящее время освоено промышленное производство новых серий –ВАО3-710,ВАО3-800, ВАО4-450, ВАО4-560 и ВАО4-630. Отрезки серии ВАО4-450 и ВАО4-560 дополнены исполнениями двигателей с частотой вращения 3000 об/мин.

Электродвигатели серии ВАО4 полностью взаимозаменяемы по установочно-присоединительным размерам с двигателями серии ВАО2. В конструкции электродвигателей серии ВАО4 применены как зарекомендовавшие себя традиционные, так и новые конструктивные решения, дающие ряд преимуществ относительно других производителей аналогичной продукции:

    литая алюминиевая короткозамкнутая обмотка ротора, позволяющая обеспечить оптимальные форму и размеры паза и, как следствие, увеличенный пусковой момент электродвигателей при относительно небольших величинах кратности пусковых токов;

    технология вакуум-нагнетательной пропитки (HPI) обмоток эпоксидным компаундом, являющимся основой изоляции "Монолит-2", высокая надежность которой признана во всем мире;

    изоляционные материалы класса нагревостойкости F, включая изоленты новейших разработок типа "Элмикапор" производства АО ХК "ЭЛИНАР" (Россия), а также ведущих мировых производителей: Von Roll Isola (Швейцария) и Isovolta (Австрия);

    подшипники повышенной надежности производства фирмы SKF (Швеция) в стандартном варианте для двигателей с частотой вращения ротора 3000 об/мин и для любых других типоразмеров серии по заказу потребителя;

    динамическая балансировка ротора и наружного вентилятора, обеспечивающая пониженные значения уровней вибрации, шума и увеличение срока эксплуатации;

    оребренная конструкция корпуса статора повышенной механической жесткости, с обработкой мест посадки пакета статора и подшипниковых щитов с одной установки на специальных расточных станках;

    новая конструкция системы вентиляции. Внутренний вентилятор новой конструкции установлен за зоной расположения лобовых частей обмотки, что значительно повышает надежность;

    конструкция коробки выводов с использованием цельной изоляционной панели;

    устройства контроля температуры подшипников нового типа с возможностью дистанционной передачи сигналов аварийного предупреждения и управления отключением электродвигателя в аварийных режимах;

    пазовые клинья из специального магнитного материала, а также лакировка листов пакета статора, обеспечивающие снижение потерь и увеличение энергетических параметров.

Режим работы двигателя продолжительный S1 от сети переменного частотой 50Гц.

Исполнение по взрывозащите:

1ExdIIBT4(ExdIIBT4).

Вид климатического исполнения:

Конструктивное исполнение по способу монтажа:

Степень защиты:

корпуса и коробки выводов - IP 54; кожуха наружного вентилятора - IP 20.

Способ охлаждения: ICA 0151.

Структура условного обозначения:

Типоразмер

Напря- жение, В

Мощ- ность, кВт

Частота вращения (синхр.), об/мин

КПД, %

Масса, кг

ВАОВ3-710 M4

ВАОВ3-710 L4

ВАОВ3-800 M4

ВАОВ3-800 L4

ВАОВ3-710 LA6

ВАОВ3-710 LB6

ВАОВ3-800 LA6

ВАОВ3-800 LB6

Что нужно для правильного выбора электродвигателя? Его основные электрические характеристики – это:

  • номинальное напряжение;
  • номинальная мощность;
  • скорость вращения вала.

Но двигатели могут работать по-разному. Самый легкий для электромотора режим работы описывается выражением «запустил и забыл». В момент запуска двигатель потребляет ток, в несколько раз больший номинального. Затем ток не изменяется во времени, механическая нагрузка на валу стабильна. При этом обмотки и магнитопроводы нагреваются до рабочей температуры, которая также остается постоянной.

Но двигатели приводят во вращение механизмы различного назначения. Некоторые из них требуют частых запусков и остановок, изменений направления вращения . Наглядный пример – работа электродвигателей в составе грузоподъемных механизмов: кранов, лебедок, тельферов. Оператор не даст отдохнуть электромотору, а будет манипулировать им столько, сколько потребуется для выполнения работы по перемещению груза. То же происходит с электродвигателями металлообрабатывающих станков: при установке детали, подгонке ее положения и в процессе обработки требуется неоднократные запуски и остановки станка и изменения направления вращения.

Нагрузка на валу также не всегда остается постоянной. В технологических процессах нередки случаи работы электродвигателей с резкопеременной загрузкой. Есть продукт – двигатель загружен, закончился – работает в холостую.

Все это приводит к изменению во времени электрических характеристик электродвигателей: тока и мощности. Но главное – изменяется характер нагрева обмоток и магнитопроводов. Потери на нагрев обмоток называются мощностью потерь в меди , а железа магнитопроводов – мощностью потерь в стали . Первые происходят за счет выделения тепла на активном сопротивлении обмотки, вторые – нагрева вихревыми токами, возникающими под действием магнитного поля. Для снижения потерь от вихревых токов магнитопроводы изготавливают из пакета тонких пластин. Их изолируют друг от друга, покрывая лаком. Но полностью избавиться от вихревых токов невозможно.

Так как при запуске двигатель потребляет повышенный ток, то и мощность, рассеиваемая в виде потерь в стали и меди, в момент пуска возрастает. Если после запуска мотор продолжает работу с постоянной нагрузкой, то пусковой нагрев не успевает оказать существенного влияния на его температуру. Если же запуски происходят постоянно, то установившаяся температура становится больше той, что была бы в случае продолжительной работы.

Перегрев электродвигателя снижает срок службы изоляции обмоток и стальных листов магнитопровода. При изготовлении ее рассчитывают на определенную температуру, а при ее превышении изоляция быстрее теряет свои характеристики.

Другим фактором, влияющим на срок службы электродвигателя, является механические воздействия на его детали . На проводник с током в магнитном поле действует сила, стремящаяся его переместить, сдвинуть с места. Прохождение пускового тока через обмотки приводит к увеличению на них механических нагрузок. Усилие передается на элементы, фиксирующие обмотки в пазах статора и ротора, расшатывает их.

Механические усилия испытывают и другие элементы конструкции электродвигателя: вал ротора, места крепления магнитопроводов, подшипники.

Почему нельзя учесть все эти факторы и изготавливать все электродвигатели способными им противостоять? Все дело в стоимости. Для ровной и продолжительной работы электродвигатель можно изготовить дешевле. А для эксплуатации в тяжелых условиях потребуются дополнительные усиления конструкции, изоляции, что вызовет удорожание двигателя в целом.

Поэтому, помимо основных электрических характеристик, электродвигателям устанавливают типовые режимы работы. Обозначаются они сокращениями от S1 до S10, и для каждого из них есть свое описание.

Рассмотрим основные особенности каждого из них.

S1 — продолжительный режим

Самый легкий и простой режим работы. Электродвигатель, будучи включенным, работает продолжительное время с неизменной нагрузкой. Он разогревается до рабочей температуры, после чего параметры работы не изменяются.

S2 — кратковременный режим

Электродвигатель включается на непродолжительное время и постоянную нагрузку. Времени работы недостаточно для того, чтобы был достигнут номинальный тепловой режим, а времени паузы после нее хватает, чтобы двигатель остыл практически до температуры окружающей среды.

В обозначение режима после S2 добавляется числовое значение продолжительности нагрузки в минутах.

S3 — повторно-кратковременный периодический режим

Последовательность режимов S2, повторяющихся с определенной частотой. При этом двигатель работает с неизменной нагрузкой, время покоя сменяется временем работы. То пуска не влияет на установившуюся температуру.

После обозначения S3 в маркировке указывается коэффициент циклической продолжительности включения (К=∆tр/Т) в процентах.

S4 — режим S3 с пусками

В этом режиме продолжительность работы становится соизмеримой с продолжительностью пуска. В результате цикл работы выглядит так: «пуск-работа-остановка». Он циклически повторяется.

Параметрами режима являются:

  • коэффициент К=∆tр/Т;
  • момент инерции двигателя (Jд), в кг∙м 2
  • момент инерции нагрузки (Jн), в кг∙м 2

Их значения указываются после знака S4.

S5 — режим S3 с электрическим торможением

По сравнению с предыдущим в цикл работы добавляется электрическое торможение, физический смысл которого – преобразование механической энергии вращения вала двигателя обратно в электрическую. При этом происходит отбор энергии от вала, и он быстрее останавливается.

Виды электрического торможения:

  • реверсивное (запуск вращающегося электродвигателя в обратную сторону);
  • реостатное (отключенная от сети обмотка статора подключается к тормозным резисторам);
  • рекуперативное (энергия вращающегося мотора заряжает аккумуляторы или отдается в сеть);
  • динамическое (отключенная от сети переменного тока отмотка статора подключается к источнику постоянного тока);
  • комбинации способов между собой.

После обозначения S5 указываются параметры, аналогичные режиму S4.

S6 — непрерывный периодический режим с кратковременной нагрузкой

Электродвигатель постоянно вращается, но циклически чередуется холостой ход и работа под нагрузкой.

Режим характеризуется коэффициентом К=∆tр/Т.

S7 — режим S6 с электрическим торможением

К режиму S6 добавляется торможение. Параметры те же, что и у S4.

S8 — режим S6 с взаимозависимыми изменениями скорости вращения и нагрузки

Как видно из названия, в этом режиме циклически изменяются нагрузка двигателя и частота его вращения. Причем эти два параметра связаны между собой. Измерение частоты вращения производится, например, путем изменения числа пар полюсов для асинхронных электродвигателей с короткозамкнутым ротором.

Ответ на этот вопрос следует искать не в процессе использования электродвигателя, а заблаговременно. За счет грамотного выбора агрегата и соблюдения условий его эксплуатации можно обеспечить долгий и эффективный срок службы. Также нельзя пренебрегать рекомендациями по использованию, качественной установке и профессиональному сервисному обслуживанию техники. Союз всех этих пунктов обеспечивает долговечность устройств.

1. Выбираем электродвигатель правильно

Никому не нужна «головная боль» от электромотора, поэтому при его выборе следует посоветоваться с механиками. Именно эти специалисты будут контактировать с двигателями и заботиться о них, чтобы агрегаты не вышли из строя в самых неподходящий момент. Они уж точно знают, какой двигатель нужен вашей компании. В их компетенции:

  • подобрать серию устройства и лучшего производителя;
  • рассчитать нужную мощность и обороты оборудования;
  • определиться с коэффициентом полезного действия и cos φ;
  • решить вопрос с рабочим напряжением, вариантом установки и климатическому исполнению;
  • уточнить дополнительные моменты при выборе агрегатов.

Если вы все же сомневаетесь в грамотности советов механиков, вы также можете проконсультироваться у наших специалистов. Они ответят на все интересующие вас вопросы.

2. Общайтесь напрямую со специалистами завода-производителя

Такая прямая связь с разработчиками позволит вам решать все вопросы по ремонту и сервису оборудования быстро и грамотно. Это выгодно не только для вас, но и для второй стороны. Завод-производитель получает обратную связь от клиентов - а это большой вклад в повышение уровня качества выпускаемых изделий.

3. Не пренебрегайте техникой безопасности при выполнении монтажа, а также рекомендациями по использованию машин

Установка оборудования выполняется с привлечением кранов или ручных лебедок, талей и иных устройств, которые располагают над местом, где планируется использовать электродвигатель . В обязательном порядке проверяйте нагрузку на все устройства.

Еще один момент , на который следует обратить внимание - отключение рубильника, снятие вставок предохранителей на питающей линии и вывешивание на рубильнике запрещающего плаката. Эти процедуры следует выполнять, если планируется проводить:

  1. центровку электрического двигателя с технологической машиной;
  2. проверку зазоров воздуха;
  3. смену смазки;
  4. подгонку щеток;
  5. проверку сопротивления изоляции обмоток.

Осуществляя монтаж оборудования, следует крайне внимательно отнестись к состоянию электромотора и ни в коем случае не использовать инструмент с дефектами.

4. Выполняйте регламентные работы вовремя

В процессе работы устройства необходимо регулярно проверять его внешний вид. Такая профилактическая процедура является очень важной, ведь именно она позволяет вовремя выявить неисправности и исключить перебои в функционировании. Для качественного осмотра поверхность оборудования очищается, после чего затягиваются болтовые соединения и крепления заземлений.

Также важно проводить работы по контролю базовых характеристик электромашины. Это замер токов и определение их соответствия с заводскими параметрами. Уменьшение срока службы напрямую зависит от перегрузки двигателя. Также следует проверить смазку элементов двигателя, его температуру и наличие или отсутствие вибрации и постороннего шум.

5. Обращайте внимание на энергоэффективность

Главнейшим параметром энергоэффективности двигателя является КПД. Его формула:

  • η=P2/P1=1 - ΔP/P1,
  • Р2 — полезная мощность на валу электрического двигателя,
  • Р1 — активная мощность, которую потребляет электродвигатель из сети,
  • ΔP — суммарные потери, возникающие в двигателе.

Можно проследить обратную зависимость: чем коэффициент полезного действия больше, тем меньше энергии затрачивается электродвигателем, создающим полезную мощность.

На долговечность изоляции во многом оказывает влияние температура. Она сокращается вдвое при повышении температуры на 100 градусов Цельсия. Это говорит о том, что устройства, имеющие повышенную энергоэффективность, служат гораздо дольше, поскольку нагрев и потери их меньше.

6. Используйте оборудование с частотным преобразователем

Такой прибор позволяет отрегулировать скорость вращения двигателя путем изменения входной частоты. Благодаря этой особенности удается уменьшить расход электроэнергии как минимум на 30%, чего нет при классических способах управления оборудованием. В частности, если уменьшить рабочую частоту на 20%, можно сократить энергопотребление в 2 раза!

Кроме энергосбережения частотный преобразователь удлиняет срок эксплуатации мотора, делая всю систему еще более надежной без необходимости ее техобслуживания.

7. Отслеживайте температурный режим

Долговечность электрического двигателя зависит от температуры, до которой нагревается изоляции. Существует несколько классов изоляции со следующими значениями допустимой температуры:

  • В - 130 градусов Цельсия;
  • F- 180 град.;
  • Н - 180 град.

Если температура больше допустимого значения, изоляция может разрушиться раньше времени, а долговечность двигателя, соответственно, уменьшиться.

8. Отслеживайте обмотку электромотора

Дефекты, которые могут произойти в обмотке:

  • Обрыв в треугольнике;
  • Обрыв в звезде.

Остановимся на каждом подробнее.

Когда обмотка оборвалась в «треугольнике ». По сути обмотка с дефектом никак не влияет на работу двигателя. Вся мощность распределяется на другие две обмотки путем соединения к сети по типу «открытый треугольник». Итог - обороты ускоряются, двигатель держит нагрузку, но две подключенные фазы сильнее нагреваются. Если эксплуатировать силовой агрегат в таких условиях в течение долгого времени, выгорание обмоток статора неминуемо.

Когда обмотка обрывается в «звезде ». В результате обрыва обмотки в трехфазном двигателе, который включен в сеть по типу «звезда», происходит отказ машины запускаться после ее остановки. Двигатель нагревается, гудит, вибрирует, но не запускается. Все потому, что отсутствует вращающееся магнитное поля. Конечно, запуск электродвигателя возможен, но это требует предварительной раскрутки вала ротора. При этом увеличивается потребление электроэнергии, возрастает шум, а двигатель быстрее изнашивается.

Есть одно рациональное решение, как избежать проблем в результате обрыва обмотки, и оно предполагает поиск и перемотку дефектной обмотки. Не допускается скрутки и спайки, грамотнее перемотать всю обмотку с сохранением количества витков и сечения проволоки.

9. Внимание к аварийному режиму!

Опыт эксплуатации электрических двигателей в течение множества лет показал, что основная доля защит не способна по максимуму обеспечить безаварийную работу агрегатов. К примеру, расчет тепловые реле осуществляется на длительную перегрузку, достигающую 25-30% от номинальной. Однако на практике очень часто они срабатывают, когда происходит обрыв фазы при перегрузке 60% от номинальной. Получается, что реле просто не срабатывает, когда нагрузка меньше, и двигатель функционирует на двух фазах. В итоге машина ломается из-за перегрева изоляции обмотки.

Именно поэтому выбор защиты - крайне важное условие для безопасной работы электрического двигателя. Выделяют несколько разновидностей таких приборов, позволяющих обезопасить агрегат от аварий:

  1. тепловые - расцепители, тепловые реле;
  2. термочувствительные - термисторы, термостаты;
  3. устройства от сверхтоков - автоматы, плавкие предохранители;
  4. приборы максимальной токовой защиты - электронные токовые реле;
  5. приборы защиты от аварий в сети - мониторы сети, реле напряжения и контроля фаз;
  6. комбинированные устройства.

Выбирая релейную защиту лучше всего проконсультироваться со специалистом.

10. Проверяйте шум и вибрацию

Это еще пара характеристик, которые могут повлиять на долговечность машины. Если их показатели за пределами нормы, налицо механическая неисправность. Такие недочеты в работе необходимо сразу же замечать и устранять, определяя причину появления.

Если вопрос самостоятельно не разрешить, необходимо обратиться к производителю или специалистам, которые занимаются решением проблем такого типа. Если вы не обладаете соответствующими знаниями, лучше всего не пытаться исправить недочеты в работе устройства самостоятельно, поскольку это может привести к дополнительным затратам.

Похожие публикации