Chevroletavtoliga - Автомобильный портал

Индикатор разряда литиевых аккумуляторов. Простой индикатор разряда акб Как сделать индикатор разряда аккумулятора на светодиодах

Недавно решил собрать индикатор для своего аккумулятора и нашел на мой взгляд самую простую схему индикатора разряда АКБ. Эту схему может собрать любой, даже начинающий радиолюбитель.

Схема построена на 2х транзисторах (кт315), но эти транзисторы можно заменить на более мощные(кт815 или кт817) или поставить их аналоги, такие как s9014, s9016 и т.п.

Переменный резистор имеет сопротивление от 1 до 2.2 кОм. Светодиод выбран стандартный, с напряжением от 2.5 до 3 вольт, цвет не имеет значение.

Для того чтобы настроить наш индикатор, подключаем к блоку питания и ставим нам нужное напряжение, потом вращаем переменный резистор. Если светодиод горит то акб нужно поставить на зарядку, в противно случает все ок. Схема очень точная и простая. Светодиод загорается сразу, без всяких предупреждений.

Работает для 12 в. аккумуляторов, хотя можно настроить и для 3-6 в. Если собрать несколько таких устройств с разными напряжениями, то будем всегда знать состояние нашего акб.

Думаю эта тема будет актуальна тем, у кого в пользовании более двух автомобилей. Как правило, один эксплуатируется зимой, другой — летом. То есть один из них сезон в году стоит в гараже или на стоянке. А пока он стоит там, мы не знаем, как себя чувствует его аккумулятор. Нет, конечно можно "щупать" его периодически вольтметром или купить готовый индикатор, коих много на том же Али-экспресс (например вставляющийся в прикуриватель). Но мне захотелось сделать свой индикатор, который бы показывал промежуточные значения остаточного заряда АКБ. Ну, например, — более 75%, 75%, 50% и 25% заряда. Причем хотелось бы так лениво радеть за здоровьем АКБ, чтобы лишний раз не лезть под капот авто и не распаковывать без надобности зарядное устройство.

Долго искал приемлемые схемы в инете. Собрал некоторые. Но все не то. То гистерезис срабатывания индикации такой, что лучше бы ее и не было, этой индикации, проще и надежнее тестером померить. То установки плавают и нет стабильности, то вообще яркость светодиода плавно изменяется в зависимости от напряжения на АКБ и поди узнай, что там на ней есть. И вот нашел одну схему на каком-то португальском сайте. Проста до неприличия и вроде должна работать. Построена она на операционном усилителе UA741. Вот она:

В ней я поменял только номинал стабилитрона с 6,2 в на 7,5 в. Срабатывания четкие. Светодиод загорается на нужной установке (регулируется подстроечным резистором R2). R2 лучше применять многооборотный, так как выставить им нужное напряжение не просто. Чувствительность в зоне срабатывания очень нежная и почти незримый поворот винта регулировки уносит нужное напряжение в сторону.

Настраивать необходимо, используя точный регулируемый лабораторный источник питания с цифровым вольтметром, показывающим десятые (а лучше сотые, я параллельно включал цифровой тестер) доли вольт. Поскольку я возжелал видеть степень зарядки АКБ в градациях указанных выше, я собрал схему из трех таких блоков. Вот рисунок печатки:

При полной зарядке батареи напряжение на ней выше 12,7 в, при этом ни один светодиод не горит и все прекрасно (фото 1).

Первый блок зажигает зеленый светодиод при напряжении на клеммах АКБ менее 12,5 в, что соответствует около 75% заряда АКБ (фото 2).

Второй зажигает желтый светодиод при напряжении ниже 12,2 в, что есть около 50% заряда (Фото 3).

Ну а третий, красный, загорается при напряжении ниже 11,7 в или около 25% остаточного заряда АКБ (Фото 4).

Значения установок напряжения я использовал для AGM батарей (у меня на автомобилях такие стоят). Для обычных кислотных их можно изменить на другие. Плату поместил в небольшой (40 мм х 70 мм) корпус. На корпусе разместил дополнительно малогабаритный выключатель в разрыве плюсового провода для удобства, чтобы не скидывать зажимы с клемм АКБ, когда не требуются замеры и чтобы устройство не потребляло при этом хотя и небольшой (около 20 мА, в основном определяется током горящих светодиодов) ток от батареи. К аккумулятору от устройства подключается двойной красно-черный провод с зажимами на концах (Фото 5).

Устройство подключено к клеммам аккумулятора стоящего в гараже автомобиля постоянно. Когда нужно, зайдя в гараж, без лишних "плясок" включаю выключатель на устройстве, наблюдаю, каким цветом горят "лампочки" и вижу здоров ли мой АКБ или его надо "подлечить".

В литературе часто публикуются описания устройств, оповещающих о разряде аккумуляторной батареи. Строятся они как на дискретных элементах, так и на микросхемах. Но для этих целей выпускаются и специализированные микросхемы, которые называются супервизорами (детектор понижения напряжения). Основой индикатора разряда АКБ является специализированная микросхема серии КР1171.

Эти микросхемы специально разработаны для контроля о снижении напряжения питания в микропроцессорной технике. В состав микросхемы входит источник опорного напряжения, компаратор, сравнивающий опорное и питающее напряжения, и транзисторный ключ, выполненный по схеме с открытым коллектором (Рис.1).

Для реализации простейшего индикатора достаточно подключить к микросхеме светодиод и токоограничительный резистор. При этом габариты устройства практически равны габаритам микросхемы и светодиода (резистор можно взять самый миниатюрный). Единственным недостатком данного индикатора можно считать жестко фиксированный ряд изготавливаемых микросхем в этой серии, каждая из которых рассчитана на конкретное пороговое напряжение. Пороговое напряжение для каждой микросхемы в серии указывается непосредственно в ее наименовании после букв СП. Основные характеристики приведены в табл.1.

Фиксированные пороговые напряжения хотя и создают некоторые трудности, но все же позволяют создавать индикаторы для разных аккумуляторов. Так на микросхеме КР1171СП20 (Uпор = 2 В) можно создать очень компактный индикатор для использования в устройствах, питаемых от двух никель-кадмиевых аккумуляторов - игрушках, фототехнике, плеерах, приемниках, фонарях и др. Малые габариты и минимальный ток потребления позволяют встроить индикатор в любое готовое устройство. Дальнейшим развитием индикатора может служить добавление звукового сигнализатора. Схема его может быть любой, но потребляемый ток в режиме «Выключено» должен быть как можно меньше, и сигнализатор должен сохранять работоспособность при необходимом пороговом напряжении. Для свинцовой герметичной аккумуляторной батареи на номинальное напряжение 12В был собран индикатор, схема которого приведена на рис.2.


Малый потребляемый ток в режиме «Вык.» позволяет встраивать данный индикатор в устройства с непрерывным контролем напряжения аккумуляторной батареи. При этом индикатор можно подключить до выключателя питания устройства, непосредственно на клеммы аккумулятора. Для переработки данного индикатора на другое напряжение достаточно поставить соответствующую микросхему серии КР1171 и рассчитать резистор R1 для нового напряжения. Исключение составляет КР1171СП20, т. к. при пороговом напряжении в 2В генератор на микросхеме К561ЛА7 отказывается работать.
Для достижения минимальных габаритов вместо динамика Ls1 желательно применить наиболее миниатюрный излучатель с приемлемой громкостью звучания. C помощью резистора R6 можно менять громкость звука. Резисторы - типа МЛТ, ОМЛТ и т.п. мощностью 0,125Вт. Конденсатор СЗ-любой с минимальным током утечки, остальные К10-7, К10-17 или КМ. Светодиод - любой с номинальным током не более 10 мА. Цвет, яркость и габариты выбираются исходя из конкретных условий. Настройка индикатора сводится к подбору резистора R6 для обеспечения максимальной громкости примененной модели пьезоизлучателя.

Li-ion очень капризен к переразряду и чтобы не убить аккумулятор, решил сделать самодельный индикатор разряда аккумулятора для шуруповерта. описывал ранее. Светодиод на корпусе акб должен загораться и гореть при падении напряжения ниже заданного уровня.

Для чего нужен индикатор разряда аккумулятора.

Например, вы используете литий-ионые аккумуляторы без платы защиты. Чтобы не перегрузить их случайно можно поставит обычный плавкий предохранитель ампер на 30. Берем автомобильный или делаем самодельный из медной жилы сечением 0.5мм2.

Для того, чтобы не переразрядить АКБ больше нужного предела используем приведенный ниже индикатор разряда, светодиод которого загорится, когда аккумулятор разрядиться до установленного уровня. Балансировку осуществляем при заряде для этого я вывел на корпус разъем.

Также можно настроить схему на промежуточную разрядку например 50% или 75%-типа скоро сядет. Или даже использовать несколько схем настроенных на разные напряжения. Например, три. Один загорается при 75%, второй при 50%, а третий при 25% от заряда.

Схема самодельного индикатора.

Итак к схеме (нарыл в интернете). Схема собрана, проверена, заработала сразу.

В схеме используется TL431 .

Очень удобная штука, я вам скажу. Многие схемы с ней сильно упрощаются. Так что можете закупать их сразу пачку, как я.

На ее основе можно так же сделать и балансир для аккумулятора, но об этом в другой раз.

Брал . У них пачка стоит, как у нас одна штука.

Транзистор BC547 очень распространен, стоит копейки и есть в любом магазине радиокомпонентов. Можно купить и у китайцев , но он и так очень дешевый. Если только тоже пачку взять.

Резисторов я уже закупил в свое время разных номиналов. Вот очень дешевый набор резисторов , который еще долго будет вас радовать.

R1*(у меня)=4,6K; R2=1К; R3=11К(подобран под транзистор BC547); R4=1,5К(подбираем под светодиод в зависимости от напряжения питания схемы).

Светодиод берем любой маломощный трех миллиметровый , просто smd не удобно монтировать в корпус.

Расчет резистора R1 под необходимое напряжение срабатывания схемы осуществляется по формуле: R1=R2*(Vo/2,5В - 1) .

Я рассчитывал чтобы индикатор загорался при 14В, то есть при 3,5В на банку (мой АКБ состоит из четырех АКБ номиналом 3.7В). В полностью заряженном состоянии 16.8В (по 4.2В на банку). Возьмем R2 равный 1К. (При настройке на низкие напряжения, например 3.6В, необходимо R2 брать 10К).

Итак рассчитываем на 14В . R2=1КОм=1000 Ом. R1=1000*(14В/2,5В-1)=1000*(5,6-1)=1000*4.6=4600 Ом = 4,6КОм (Для шуруповерта на 14.4В (4 банки по 3,7В), переделанного на литий).

Для 12В (3 банки по 3,7В) шуруповерта при 10,5В R2=1К R1=1000*(10,5/2,5-1)= 3,2КОм .

Для 18В (5 банок по 3,7В) шуруповерта , переделанного на литий: срабатывание при 17,5В R2=1К R1=1000*(17,5/2,5-1)= 6КОм .

Список значений R1 при R2=1КОм для тех кому лень считать:

  • 5В – 1К
  • 7,2В – 1,88К
  • 9В – 2,6К
  • 10,5В — 3,2К
  • 12В – 3,8К
  • 14В — 4,6К
  • 15В - 5К
  • 17,5В — 6К
  • 18В – 6,2К
  • 20В – 7к
  • 24В – 8,6к

Готовый индикатор разряда аккумулятора шуруповерта.

» поступил комментарий с интересными предложениями по доработке конструкции.

Так как индикатор разряда батареи (п.3 комментария) целесообразно применять на любом автономном электронном устройстве, для исключения неожиданных сбоев или отказа аппаратуры в самый неподходящий момент при разряде батареи, то изготовление индикатора разряда вынесено отдельной статьей.

Применение индикатора разряда особенно важно для большинства литиевых аккумуляторов с номинальным напряжением 3.7 вольта (например, популярные сегодня 18650 и им аналогичные или распространенные плоские Li-ion аккумуляторы от заменяемых на смартфоны телефонов), т.к. они очень «не любят» разряд ниже 3,0 вольт и выходят при этом из строя. Правда, в большинство из них должны быть встроены схемы аварийной защиты от глубокого разряда, но кто знает какой аккумулятор в ваших руках, пока вы его не вскроете (Китай полон загадок).

Но главное, хотелось бы заранее узнать, какой заряд в настоящее время имеется в используемом аккумуляторе. Тогда мы могли бы вовремя подключить зарядку или поставить новый аккумулятор, не дожидаясь грустных последствий. Поэтому нам нужен индикатор, который заранее подаст сигнал о том, что аккумулятор скоро сядет окончательно. Для реализации этой задачи существуют различные схемотехнические решения - от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

В нашем случае, предлагается изготовить простой индикатор разряда литиевых аккумуляторов, который с легкостью собирается своими руками . Индикатор разряда отличается экономичностью и надежностью, компактностью и точностью определения контролируемого напряжения.

Схема индикатора разряда


Схема выполнена с применением, так называемых детекторов напряжения. Их еще называют мониторами напряжения. Это специализированные микросхемы, разработанные специально для контроля напряжения. Неоспоримые достоинства схем на мониторах напряжения - чрезвычайно низкое энергопотребление в дежурном режиме, а также ее крайняя простота и точность. Чтобы сделать индикацию разряда еще более заметной и экономичной, выход детектора напряжения нагружаем на мигающий светодиод или "мигалку" на двух биполярных транзисторах.

Применяемый в схеме детектор напряжения (DA1) PS Т529Н соединяет выход (вывод 3) микросхемы с общим проводом, при снижении контролируемого напряжения на батарее до 3,1 вольта, включая этим питание на генератор импульсов высокой скважности. При этом сверхяркий светодиод начинает вспыхивать с периодом: пауза - 15 сек., короткая вспышка - 1 сек. Это позволяет снизить потребляемый ток до 0,15 ma в паузе, и 4,8 ma при вспышке. При напряжении на аккумуляторе более 3,1 вольта, схема индикатора практически отключается и потребляет всего 3 мкa.

Как показала практика, указанного цикла индикации вполне достаточно, чтобы увидеть сигнал. Но при желании можно установить более удобный для вас режим подбором резистора R2 или конденсатора С1. В связи с малым током потребления устройства, отдельный выключатель напряжения питания для индикатора не предусмотрен. Устройство работоспособно при снижении питающего напряжения до 2,8 вольта.

Изготовление зарядного устройства

1. Комплектация.
Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем индикатор разряда на универсальной монтажной плате. Для удобства наблюдения (большая частота импульсов), на время проверки, заменяем конденсатор С1 на конденсатор меньшей емкости (например 0,47 мкф). Подключаем схему к блоку питания с возможностью плавной регулировки постоянного напряжения в пределах от 2 до 6 вольт.

3. Проверка схемы.
Медленно понижаем напряжение питания индикатора разряда, начиная с 6 вольт. Наблюдаем на дисплее тестера величину напряжения, при которой включится детектор напряжения (DA1) и начнет мигать светодиод. При правильном подборе детектора напряжения, момент переключения должен состояться в районе 3,1 вольта.


4. Готовим плату для монтажа и пайки деталей .
Вырезаем необходимый для монтажа кусочек из универсальной печатной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки. Размер вырезаемой платы зависит от применяемых деталей и их компоновки при монтаже. Размеры платы на фото 22 х 25 мм.

5. Монтаж отлаженной схемы на рабочую плату
При положительном результате в работе схемы на монтажной плате, переносим детали на рабочую плату, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки проверяем монтаж. Схема может быть собрана любым удобным способом, в том числе и навесным монтажом.


6. Проверка рабочей схемы индикатора разряда
Проверяем работоспособность схемы индикатора разряда и ее настройки, подключив схему к блоку питания, а затем к тестируемому аккумулятору. При напряжении в цепи питания менее 3,1 вольта, индикатор разряда должен включиться.



Вместо применяемого в схеме детектора напряжения (DA1) PS Т529Н на контролируемое напряжение 3,1 вольта, возможно применить аналогичные микросхемы других производителей, например BD4731. Этот детектор имеет открытый коллектор на выходе (о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы), а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

В схеме также возможно применить детекторы на напряжение 3.08 вольта - TS809CXD, TCM809TENB713, МСР103Т-315Е/ТТ, САТ809ТТВI-G. Точные параметры выбираемых детекторов напряжения желательно уточнить в их datasheet.

Аналогичным образом можно применить и другой детектор напряжения на любое другое необходимое для работы индикатора напряжение.

Решение по второй части вопроса в п.3 приведенного комментария – работы индикатора разряда только при наличии освещенности, отложено по следующим причинам :
- работа дополнительных элементов в схеме, требует дополнительных затрат энергии от аккумулятора, т.е. страдает экономичность схемы;
- работа индикатора разряда днем, чаще всего, бесполезна, т.к. в комнате нет «зрителей», а к вечеру заряд батареи может и закончиться;
- работа индикатора в темное время суток ярче и эффективнее, а для быстрого отключения устройства имеется выключатель питания.

Применение, предложенного по п.2 комментария, отечественного операционного усилителя не рассматривал, по причине отладки режимов работы схемы по минимальным токам, в процессе доводки на монтажной плате.

Для решения задачи по п. 1 комментария, несколько изменил схему устройства «Ночник с акустическим включателем». Для чего включил положительную шину питания акустического реле через инвертор на VT3, с управлением от постоянно работающего фотореле.

Похожие публикации