Chevroletavtoliga - Автомобильный портал

Заряжаем и используем NiMH аккумуляторы правильно. Схема зарядного устройства для никель-металлгидридных и никель-кадмиевых аккумуляторов Умная зарядка ni mh аккумуляторов своими руками

Б ольшинство людей, которые используют в своей портативной технике аккумуляторы, не по наслышке знают, что это очень брезгливый источник питания, в особенности если речь идет о никель-металл-гидридных аккумуляторах (далее NiMH)

Эти аккумуляторы имеют ограниченный срок жизни как по времени, так и по количеству циклов разряд-заряд. Не последнюю роль играет и зарядное устройство со всеми входящими в этот процесс механизмами.

Б ольшинство пользователей NiMH аккумуляторов не знает о тонкостях работы с этими аккумуляторами и зачастую разочаровываются в их использовании, не подозревая того, что короткий срок и низкая емкость – это результат неправильной эксплуатации аккумулятора

Зарядки которые входят в базовый комплект (см.фото внизу) являются так сказать “ночниками”, т.е. они имеют простейшую схему без стабилизации, без функции отключения, разрядки, контроля температуры, отключения по дельте и т.д.

Собственно до недавнего времени и я пользовался лишь такими зарядными, что создавало мне лишь одни хлопоты при использовании аккумуляторов. Срок из службы был минимальным

Поэтому я решил поискать в интернете на аукционах зарядные устройства. В основном были “ночники”, а также современные интеллектуальные зарядные устройства NiMH, микропроцессорные китайские устройства со всеми необходимыми функциями, но цена их 1500-3000 рублей меня не устраивала и случайно я наткнулся на немецкую очень старую зарядку Conrad VC4+1 для NiCd и NiMH + 1 крона 9в

В интернете информации по этому зарядному устройству нет, лишь попадаются редкие ссылки страниц с немецкий аукционов.

Долго не думая, я решил выкупить этот лот и спустя 2 недели у меня в руках была эта зарядка. Цена лота составила 370 рублей и 250 рублей доставка, итого 620 рублей за древнюю немецкую зарядку с неизвестными качествами

Технические характеристики Conrad VC4+1 и возможности

После недолгого наблюдения с мультиметром, а также поисках в интернете, изучения надписей на задней крышке устройства я могу сказать следующее:

– ток зарядки регулируемый от 15 мА до 4000 мА
– два режима заряда “быстрый 85 минут током 1С” и “капельный током 0.1С”
– автоматическая разрядка перед зарядом до 0.9в
– температурный датчик на плюсовом контакте устройства
– автоматическое отключение с последующей поддержкой заряда
– зарядка импульсным током и импульсами
– гнездо для зарядки аккумуляторов типа “крона”
– тип аккумуляторов NiCd и NiMH, размеры от ААА до D size
– предварительная капельная зарядка полностью убитого аккумулятора
– четыре независимых канала

Вот так выглядит оригинальное зарядное устройство, которое я купил на аукционе, очень уж сильно захотелось подержать в руках и попользоваться таким интересным устройством

Насчет отключения по дельте и работы термодатчика я пока не разобрался. Ниже хочу предоставить фотографии плат зарядного устройства

Как видно, сюда уже заглядывала рука с паяльником, судя по всему зарядное устройство было в ремонте. В основном как я понял были просто пропаяны силовые места устройства

Немецкие технологии уже с десяток лет назад были всем доступны и люди пользовались достаточно умными зарядными устройствами. Как видно и схемы это далеко не ночник

Я очень доволен покупкой и считаю, что мне очень повезло. Это очень редкая в России зарядка, очень старая, но имеет функционал, которого вполне достаточно, чтобы поддерживать свои аккумуляторы в идеальном состоянии

Г лавными плюсами я считаю возможность регулирования тока зарядки от 15 мА до 4000 мА, а также автовыключение через 16ч или 85 минут (отключение по вольтажу или по дельте мною не замечено) и поддержка полного заряда импульсами с частотой 1 в 20 секунд.

Если кто вдруг захочет приобрести себе такое зарядное устройство, попробуйте поискать на немецких интернет аукционах. В Германии эта зарядка довольно была распространена и известна

Недавно на рынке появились интеллектуальные зарядные устройства для NiMH аккумуляторов фирмы LaCrosse, модели bc-900, BC 1000 и technoline bc-700, а также китайские подделки и пародии. Отличаются такие зарядные устройства как внешне, так и своим принципом работы и естественно функционалом. Цена на интеллектуальные зарядные устройства пока что остается высокой для обычного пользователя – 1500-3000 рублей в зависимости от модели и производителя


Эти приборы обещают выполнить все необходимые меры для того, чтобы NiMH прослужили долго и верно своему владельцу, вот например список возможностей наиболее дорогих и функциональных моделей

ТЕСТ – полный заряд аккумулятора с последующим полным разрядом для определения реальной емкости (индикация на экране), затем полный заряд аккумуляторов
ЗАРЯД – независимый заряд каждого канала выбранным током (200/500/700/1000 mA)
РАЗРЯД – разряд аккумуляторов (настраиваемый) для снижения эффекта памяти
ТРЕНИРОВКА – до 20 циклов заряд/разряд до полного восстановления емкости аккумулятора

Работает со всеми NiCd и NiMH “AA” и “AAA” аккумуляторами
LCD экран показывает информацию по каждой батарее отдельно
Можно заряжать одновременно аккумуляторы размеров “AA” и “AAA”
Определяет испорченные батареи
Защита аккумулятора от перегрева
Возможность выбора мощности тока подзарядки для каждого канала
Автоматическое переключение на подзарядку малым током, когда зарядка завершена, чтобы обеспечить максимальную емкость батареи
Зарядка автоматически начинается током 200мА (оптимально для продления службы батареи)

К ак видите, функционал действительно значительно отличается от обычных “ночников”, но встает следующий вопрос – оправдывает ли себя такое умное зарядное устройство ценой в 100 долларов?

Лично я раз уже купил Conrad VC4+1 и полюбил эту зарядку за ее шарм старины и оригинальность, то от покупки LaCrosse теперь я откажусь, о чем в принципе не жалею. Т.к. многим зарядка LaCrosse мне не нравится – например грубым регулированием тока заряда.

В процессе эксплуатации аккумуляторных батарей рекомендуется периодически контролировать их электрическую емкость, измеряемую в ампер-часах (А-ч). Для определения этого параметра необходимо разряжать полностью заряженную батарею стабильным током и фиксировать время, по истечении которого ее напряжение уменьшается до заранее установленного значения. Чтобы оценить состояние аккумуляторной батареи более полно необходимо знать ее емкость при различных значениях тока разрядки

Ч тобы измерить емкость своих аккумуляторов, я использую показания вольтметра, который подключен параллельно сопротивлению, которое является нагрузкой на аккумулятор . Сопротивление я выбираю по среднему току потребителя, в котором планируется использовать аккумулятор – это очень важный момент для расчета емкости, так как при разных условиях мощности потребления – способности аккумуляторы сильно разнятся. Таким образом я беру полностью заряжённый аккумулятор, нагружаю его нужным мне током и наблюдаю, когда напряжение на аккумуляторе под нагрузкой снизиться до 1 – 0.9 вольта, далее произвожу расчет умножая ток разряда на время. К примеру аккумулятор разряжался током 500 мА, в течении 2 часов, значит емкость аккумулятора 1000 мА/ч

Буду раз вашим комментариям, хотелось бы услышать отзывы владельцев интеллектуальных зарядных устройств, поделитесь своим опытом их использования, какие у них есть недостатки?

Купил на Али кучку держателей для аккумуляторов (или просто батареек) формата АА… Вещь бывает нужна в хозяйстве, тем более, если собираешь или ремонтируешь какие-либо электронные приборы или гаджеты. Собственно больше то и писать о них было бы нечего (ну только оценить сопротивление контактов, померить длину проводков и оценить на зуб и глаз пластмассу - что будет в обзоре), но наткнулся на одну статью в интернете и родилась идея проверить, можно ли восстановить емкость отработавших свой срок NiCd и NiMh аккумуляторов, которых накопилось в хозяйстве, и выбросить их просто на свалку рука не поднимается, т.к такие элементы нужно сдавать на утилизацию… Что из этого получилось, и вообще получилось ли… Можно узнать прочитав обзор…
Внимание - много фото, трафик!!!

Вот собственно, сама статья, которую я упоминал в оглавлении обзора…


Начал искать еще информацию про восстановление утративших емкость NiCd и NiMh АКБ и поиск привел меня на занимательную статью на английском, которую вы сможете прочитать пройдя по ссылке: Не знающие английский могут воспользоваться возможностями автоматического перевода на русский системой Google. Из статьи я вынес главное, что элементы NiCd и NiMh имеют память (у NiCd это очень выражено, у NiMh менее выражено, но все же эффект имеет место), и что бы продлить жизнь им, необходимо разряжать, до определенного напряжения перед зарядкой.


Наверное многие знают об этом, что производитель рекомендует разряжать аккумуляторы до остаточного напряжения 0.9-1В, а только потом ставить на зарядку. Но часто это игнорируется и со временем элементы теряют емкость, в них образуются кристаллы солей кадмия и никеля. И что бы их, хотя бы частично, разбить, нужно разряжать аккумуляторы небольшим током до остаточного напряжения 0.4-0.5В…

Кстати, немного о том, как устроен аккумулятор: Основу любого аккумулятора составляют положительный и отрицательный электроды. Разберем на основе NiCd аккумулятора. Положительный электрод (катод) содержит гидрооксид никеля NiOOH с графитовым порошком (5-8%), а отрицательный (анод) - металлический кадмий Cd в виде порошка.


Аккумуляторы этого типа часто называют рулонными, так как электроды скатаны в цилиндр (рулон) вместе с разделяющим слоем, помещены в металлический корпус и залиты электролитом. Разделитель (сепаратор), увлажненный электролитом, изолирует пластины друг от друга. Он изготавливается из нетканого материала, который должен быть устойчив к воздействию щелочи. Электролитом чаще всего выступает гидрооксид калия KOH с добавкой гидроксида лития LiOH, способствующего образованию никелатов лития и увеличения емкости на 20%.

Никель-металлогидридные аккумуляторы по своей конструкции являются аналогами никель-кадмиевых аккумуляторов, а по электрохимическим процессам - никель-водородных аккумуляторов. Удельная энергия Ni-MH-аккумулятора значительно выше удельной энергии Ni-Cd- и Ni-Н2-аккумуляторов
Аккумулятор NiMh (Никель-металлогидридный), устроен почти так же как NiCd:


Положительный и отрицательный электроды, разделенные сепаратором, свернуты в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой. Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае сбоя при эксплуатации аккумулятора.

Вооружившись знаниями, я решил попробовать собрать нечто подобное как в статье «Автоматическая разряжалка», и на практике проверить поможет это или нет, восстановить, хотя бы частично, утратившие емкость аккумуляторы… Собрал такое тестовое устройство по схеме приведенной в статье. В статье в качестве индикации была применена лампочка на 1В 75мА, уж не знаю где автор нашел такую. Так же в статье было предложено использовать светодиод, но эта идея не пройдет, поскольку все светодиоды при 1-1.5В не светят… Потому в качестве индикатора был применен амперметр…

Начальный ток разрядки свежезаряженной АКБ составляет 250мА, и постепенно падает. При остаточном напряжении в 1В, ток разряда снижается до 30-40мА, как раз примерно такой ток и нужен, что бы попытаться разбить кристаллы «шлака» в аккумуляторе…
Провел небольшое тестирования «убитого» радиотелефоном Ni-Mh аккумулятора формата ААА, всего было проведено 4 цикла заряда-разряда. Тестирование проводилось таким образом: Аккумулятор был разряжен до рекомендуемого производителем напряжения в 1В и был полностью заряжен при помощи автоматического Зарядного устройства Soshine (спасибо китайцам)

Зарядное устройство считает количество «закаченного» в АКБ заряда, конечно это неправильный способ оценки емкости, т.к нужно измерять емкость АКБ при разряде, а не заряде (в дальнейшем будем измерять емкость правильно), но косвенно можно судить, изменяется или нет емкость «убитого» аккумулятора…

Лирическое отступление

Кстати, на Муське, многие авторы этим «грешат», измеряя емкость аккумуляторов при помощи всеми любимого, «белого доктора»… Измерив «вдуваемый» в аккумулятор заряд, с важным видом рассуждают о емкости батареи, не учитывая, что не всё «вдутое» можно «выдуть» назад, а так же многочисленные потери энергии на саморазряд, нагрев батареи и т.п. Любой обзор девайса имеющего USB порт, считается не полным, если в нем нет фотографии «белого доктора». Китайцы вероятно обогатились на продажах этих супер-устройств для тестирования...))))


Полностью заряженный аккумулятор взял 480мА/ч «заряда» и был поставлен на разрядку в изготовленное разрядное устройство… Отсечка разрядки произошла при остаточном напряжении АКБ при 0.5В… Это значение зависит от параметров транзисторов, использованных в разрядном устройстве… Цикл Заряда-Разряда повторяли 4 раза… Результаты предварительного тестирования привожу ниже:

1- заряд - 680мА/ч

2- заряд - 726мА/ч

3- заряд - 737мА/ч

4- заряд - 814мА/ч

Что ж мы видим положительную динамику… По крайней мере, в аккумулятор входит все больше «заряда», но к сожалению это только косвенная оценка емкости, а что бы оценить точно, нужно разряжать аккумулятор измеряя емкость…
Чем мы и займемся далее))))
Для правильной оценки емкости аккумуляторов было заказано новое Зарядно-разрядное устройство ВМ200 в у китайцев… Оно способно разряжать АКБ и измерять емкость, это будет намного точнее…

Поскольку можно сразу же тестировать 4 АКБ, было решено переделать разряжалку, и сделать её тоже 4-х канальной. Зарядно-разрядное устройство ВМ200 конечно способно самостоятельно разряжать АКБ, но делает она это до остаточного напряжения 0.9В, а это мало, мне необходимо разрядить каждый элемент до 0.4В, потому была найдена схема другого разряжающего устройства в интернете

Я перевел эту схему на современные элементы и размножил до 4-х каналов…
Получилось вот такое разрядное устройство:




Поскольку во всех 4-х каналах, я выставляю одинаковое напряжение отсечки компараторов, то обошелся одним стабилитроном и одним построечным резистором на все четыре канала…
Для желающих повторить, даю ссылку на печатную плату, на ней все элементы подписаны

Вот тут-то мы и дошли до наших держателей для АКБ или батареек… Мне нужно было 4 шт, остальные уйдут «про запас»… Как обычно ссылка уже идет в «никуда», потому я поставил в заголовке аналогичный товар у другого продавца. Под спойлером прикладываю скриншот заказа, а то не поверят, что я заказываю запчасти у китайцев…))))

Скрин заказа


Пока ко мне на всех парáх, на рикшах китайцы, в поте лица, везут мои 2 посылки, позволю себе короткое лирическое отступление… Обязательно найдутся пару читателей «муськи», которые скажут, что я занимаюсь фигней, тем более изготавливая печатные платы, и вообще надо не париться, а просто выкидывать отслужившие аккумуляторы… Возможно, это и правильно, но у каждого свой путь, кто-то водку пьет, кто-то в баню ходит, ну а мне нравится что-то созидать, пусть даже это кажется кому-то бессмысленным… Главное, что мне это нравится, ну а вам я желаю просто хорошо отдохнуть, читая мой обзор, может быть узнать что-то новое и обсудить это в комментариях, только не доводите споры до «холивара»…)))
Пока ждал посылку, сделал модуль индикации, вместо вольтметра для первого варианта платы, что на двух транзисторах…

развлекаюсь под спойлером

Это все сделано на микросхеме LM3914, практически по типовой схеме с даташита. Питание 5В от какой-то зарядки сотового телефона… На плате есть перемычка, которой можно переключать микросхему из режима «Точка», в режим «Столбик» и обратно…

обратная сторона


Когда горит один красный светодиод, напряжение на АКБ, равно 0.2В, когда горит весь столбик - значит на АКБ 1.2В. Каждый потухший светодиод сообщает, что напряжение на АКБ упало еще на 0.1В… Удобно использовать эту плату в виде вольтметра индикатора с довольно высокой точностью...

Наконец то обе посылки пришли, я не буду описывать распаковку, взвешивание, измерение размеров, ибо и так понятно, что держатели батареек формата АА, чуть больше самих батареек… Вот общий вид держателя.


Пластмасса упругая, держит аккумулятор хорошо, более того, довольно сложно пальцами вытащить батарейку, приходится поддевать каким-либо тонким предметом, отверткой, например.
Проверим сопротивление пружинного контакта. 2 миллиОма…


Длина проводов (красного и черного) около 15 см.

Настроим теперь напряжение отсечки компараторов, это можно сделать на любом канале из четырех. И проверим ток которым будут разряжаться наши аккумуляторы… Подаем на разрядное устройство 5В с какого то источника питания от сотового телефона. Видим что все светодиоды горят. Зеленый сигнализирует, что подключено питание, а красные 4 светодиода нам сообщают, что все компараторы находятся в закрытом состоянии, и разряд не происходит.

Описание процесса настройки и фотографии под спойлером

Присоединяем к первому каналу лабораторный блок питания и даем 1.2В - это напряжение полностью заряженного аккумулятора… Видим, что началась разрядка током 70мА (справа точный амперметр имеющий 4 разряда после запятой)


Обратите внимание, что светодиод первого канала потух, сигнализируя, что началась разрядка в этом канале…


При напряжении на аккумуляторе в 0.5В ток разряда составляет 40мА, в принципе как раз примерно такой ток нам и нужен для успешного разбиения образовавшихся кристаллов…


При напряжении 0.4В компаратор закрывается и разрядка на этом окончена. Обратите внимание, что ток на амперметре стал нулевой


При помощи кримпера (не дешевый, профессиональный, куплен на Али), обжимаем провода в специальные наконечники для разъемов


Получается вот такой обжатый наконечник… Приятно работать профессиональным инструментом, хотя он и не дешев, но удобство и результат стоят того.

Ну что же… все готово, отбираем кандидатов на восстановление емкости. Под номерами 1 и 2 идут NiMh аккумуляторы от электробритвы «Panasonic» изначальная емкость не известна. После 3 лет работы в электробритве полностью заряженных аккумуляторов не стало хватать на один сеанс бритья. Под номерами 3 и 4 NiCd аккумуляторы, изначальная емкость 600мА, отработали свое в электрокардиографе…
Поскольку аккумуляторы долго лежали без использования, сначало необходимо их «взбодрить», это можно сделать на Зарядном устройстве ВМ200 выбрав режим Gharge-Refresh - зарядное устройство проведет 3 цикла разрядки до 0.9В, а затем полная зарядка и так 3 раза. При этом емкость незначительно повышается. Таким образом мы исключим погрешность, незначительного повышения емкости, которая добавится после нескольких циклов «тренировки» долго лежащих без работы аккумуляторов. Тренировка была проведена, по времени заняло примерно 36 часов

Теперь можно приступить к процессу восстановления…


Вставляем все аккумуляторы в зарядное устройство, выбираем режим «Зарядка-Тест»… и ждем… После полной зарядки током 200мА, ЗУ разрядит аккумуляторы до 0.9В током 100мА и посчитает отданную емкость. Будем оперировать ей, как начальной емкостью до восстановления.


Вот под утро зарядное устройство выдало посчитанную емкость аккумуляторов, её будем использовать как начальные значения, Никель-Кадмиевые аккумуляторы потеряли половину своей начальной емкости, Никель-металлогидридные, не известно сколько имели емкости изначально, подозреваю, где-то 1200мАч, но это не важно, нам главное динамика и восстановление емкости.


Ставим все аккумуляторы в разрядное устройство, видим, что все красные светодиоды потухли, во всех четырех каналах началась разрядка аккумуляторов. При постижении остаточного напряжения 0.4В на каждом аккумуляторе, компараторы закроются, и красные светодиоды зажгутся, сигнализируя об окончании разрядки. Это может занять много времени…


Пришел с работы, на разрядном устройстве горят все 4 красных светодиода. На всякий случай замерил вольтметром остаточное напряжение на всех аккумуляторах. Примерно 0.4В на каждом…

Ну что же, начинаем повторять цикл разрядки-зарядки. Долго-нудно, день-ночь. Все тестирование заняло 4 суток. На дисплее ЗУ ВМ200 видна положительная динамика, все больше и больше заряда «входит» в аккумуляторы… Видно что метод работает...)))))


Но точки над i расставит заключительное тестирование емкости аккумуляторов при разряде.
5 циклов зарядки-разрядки прошли… Ставим аккумуляторы на определение емкости, это режим «Gharge-Test»… Ну и вот окончательный результат - вердикт…


Как мы видим, емкость какой была, такой и осталась… Чуда не произошло, хотя все говорило, что аккумуляторы восстанавливаются, т.к. растет «закачиваемая» емкость… Но увы…
На этом месте Муськовчане, имеющие гуманитарное образование, опечалено закрыли обзор и поставили мне жирный минус… Муськовчане, имеющие инженерное образование, похихикали и подумали, что законы физики, химии, старость и старуху с косой никто еще не обманул… И они об этом заранее знали… Но… Есть одно небольшое НО…
Как вы помните, я ранее писал про восстановление аккумуляторов формата ААА от радио телефона, в начале статьи… Аккумуляторы отработали 2 года, и перестали держать заряд. Если снять телефон с зарядки, через 10-15 минут на экране мигал значок разряженной батарейки, и требовал поставить телефон на зарядку. Если его требование игнорировалось, то телефон просто отключался. Это было примерно год назад. После 4-х циклов разряда-заряда, я опять поставил аккумуляторы в телефон, и они уже год как работают в нем, пусть ставить на зарядку телефон приходится немного чаще, чем с новыми аккумуляторами, НО!!! Телефон нормально работает год с восстановленными аккумуляторами!!! Почему и как, я не знаю… Но факт остается фактом…
Теперь вернем заряженные аккумуляторы в бритву «Panasonic»… До восстановления аккумуляторов хватало примерно на 4-5 минут после полной зарядки… Потом бритва неизбежно «умирала»… Ну что же, проверим, поставил аккумуляторы на место… Я побрился… потом еще 25 минут держал бритву включенной… Жужжит, как имеющая новые аккумуляторы… Дальше не стал мучить двигатель… выключил… Чувствую, что мне еще хватит этих аккумуляторов на некоторое время…
Выводы я делать не буду, каждый может сделать их самостоятельно… Спасибо всем, кто дочитал мой обзор до конца…
В завершение обзора, по традиции животное… Животному понравилась пластмасса и сопротивление пружинного контакта, но крайне не понравилась длина проводков… Длинее надо… и шуршун должен быть на конце проводков…

С. Рычихин

Предлагаю вариант несложного зарядного устройства. Для его сборки можно использовать детали из отслужившей свой век отечественной аппаратуры.

Прибор представляет собой регулируемый стабилизированный источник тока, позволяющий поддерживать заданное значение зарядного тока в течение всего процесса зарядки аккумуляторов. Схема устройства приведена на рис. 1.

Сетевое напряжение понижает трансформатор Т1, выпрямляет диодный мост VD1 и сглаживает конденсатор С1. Выпрямленное и сглаженное напряжение поступает на стабилизатор тока, собранный на транзисторах VT1, VT2, стабилитроне VD2 и резисторах R2-R6.

Принцип действия стабилизатора тока весьма прост: на транзисторе VT1 собран обычный стабилизатор напряжения, на базу которого подано образцовое напряжение со стабилитрона VD2, а в цепь эмиттера включены резисторы R4-R6, которые задают ток зарядки аккумуляторов. Поскольку напряжение на базе транзистора VT1, а значит, и на этих резисторах стабилизировано, то и ток, протекающий через них и участок эмиттер-коллектор транзистора VT1, стабилен. Следовательно, стабилен и ток базы транзистора VT2, который регулирует зарядный ток аккумуляторов. Резисторами R5 и R6 осуществляют соответственно грубую и точную регулировки тока зарядки. Зарядный ток контролируют по показаниям миллиамперметра РА1. Диод VD3 предотвращает разрядку подключенных аккумуляторов при выключении устройства. Светодиод HL1 индицирует подключение зарядного устройства к сети.

В устройстве вместо указанных на схеме можно использовать любые транзисторы серий КТ315 (VT1), КТ814, КТ816 (VT2). Транзистор VT2 желательно установить на небольшой теплоотвод площадью 8... 10 см2. Допустимый прямой ток диодов VD1 и VD3 должен быть не менее максимального тока зарядки аккумуляторов. Стабилитрон VD2 - любой на напряжение 10...12 В. Постоянные резисторы - МЛТ-0,5, переменные - любые. Конденсатор С1 - любой оксидный, емкостью не менее указанной на схеме и номинальным напряжением не менее амплитудного значения напряжения на вторичной обмотке трансформатора Т1.

Трансформатор - выходной трансформатор кадровой развертки лампового телевизора ТВК-70Л2. Его магнитопровод необходимо перебрать встык, удалив бумажную изолирующую прокладку в зазоре между торцами пластин магнитопровода. Первичная обмотка остается, а вторичную необходимо перемотать. Первичная обмотка содержит 3000 витков провода ПЭВ-1 диаметром 0,12 мм, вторичная (перемотанная) - 330 витков провода ПЭВ-2 диаметром 0,23 мм. Сечение магнитопровода - 18x23 мм. Напряжение на вторичной обмотке доработанного трансформатора должно находиться в пределах 22...25 В. Миллиамперметр постоянного тока - любой с током полного отклонения 50 мА.

Все детали зарядного устройства, за исключением трансформатора Т1, светодиода HL1, переменных резисторов R5 и R6, миллиамперметра РА1 и регулирующего транзистора VT2, собирают на печатной плате, чертеж которой приведен на рис. 2.

Внешний вид собранного устройства показан на рис. 3.


Алгоритм зарядки весьма прост: разряженные аккумуляторы подключа ют к зарядному устройству и заряжают в течение 16 ч. Зарядный ток выбирают исходя из номинальной емкости аккумулятора. Для этого емкость аккумулятора (в А-ч) умножают на 100 и получают зарядный ток в миллиамперах. Например, для аккумулятора ЦНК-0,45 зарядный ток равен 45 мА, а для батареи 7Д-0,125 - 12,5 мА.

Безошибочно собранное устройство в налаживании не нуждается.
[email protected]

Традиционная ("безопасная") зарядка никель-кадмиевых аккумуляторов током, значение которого в десять раз меньше емкости аккумулятора, удовлетворяет далеко не всех пользователей, поскольку в этом случае для гарантированной полной его зарядки требуется затратить более десяти часов.

Между тем аккумуляторы можно безопасно заряжать и большими токами, соответственно сокращая время зарядки. При этом, однако, необходим постоянный контроль за состоянием заряжаемого аккумулятора, чтобы избежать его выхода из строя.

Момент, когда никель-кадмиевый аккумулятор полностью заряжен, можно надежно установить, измеряя зависимость его напряжения от времени зарядки. В общем виде она показана на рис. 1.

Полностью заряженному аккумулятору соответствует момент, когда напряжение на нем достигает максимума. Поскольку для различных экземпляров абсолютное значение максимума может различаться, этот параметр нельзя использовать для однозначного определения окончания зарядки.

"Интeллeктyaпьныe," зарядные устройства, периодически измеряя напряжение на заряжаемом аккумуляторе определяют момент когда изменение напряжения сменит знак (напряжение начнет уменьшаться), и прекращают зарядку.

Точнее, обычно переводят зарядное устройство в безопасный режим зарядки малым током. Следует отметить, что уменьшение напряжения по отношению к максимуму после его прохождения невелико-около 10 мВ на один элемент, и для его регистрации нужна измерительная аппаратура с соответствующим разрешением

Второй параметр, который принято контролировать при быстрой зарядке, - время. Его рассчитывают исходя из тока быстрой зарядки, и даже если за это время напряжение на аккумуляторе не достигло максимума, зарядку прекращают.

Это позволяет в какой-то мере уменьшитъ опасность выхода из строя зарядного устройства если в него установлен дефектный аккумулятор, у которого может и не произойти смены знака изменения напряжения в процессе зарядки.

Есть еще один параметр который наряду со сменой знака изменения напряжения на аккумуляторе объективно отражает завершение процесса зарядки, - температура корпуса аккумулятора.

Однако этот параметр относится к числу наиболее трудно контролируемых, поскольку требует установления надежного теплового контакта датчика температуры с корпусом заряжаемого аккумулятора.

Более того, в герметичных аккумуляторных батареях которые в основном используются в современной носимой аппаратуре, это в принципе невозможно. Поэтому на практике зарядку аккумуляторов с контролем температуры не применяют.

Но при этом приходится также отказываться и от предельных - очень быстрых режимов зарядки.

Микросхема МАХ713

Для реализации описанных алгоритмов зарядки выпускают специализированные микросхемы которые выполняют все перечисленные выше функции контроля и управления. К их числу относится например микросхема МАХ713 . Она позволяет заряжать как единичный элемент, так и батарею, состоящую из нескольких аккумуляторов.

Контрольное время для быстрой зарядки может быть в пределах от 22 до 264 минут (восемь дискретных значений), а ток - в пределах от 4С до 0,ЗЗС (С - емкость аккумулятора) Все эти параметры устанавливают программно. Предусмотрена в микросхеме МАХ713 и функция контроля температуры заряжаемого аккумулятора.

При расчете режима быстрой зарядки никель-кадмиевых аккумуляторов сначала выбирают зарядный ток I, ориентируясь на требуемое время зарядки. Следует заметить, что при отсутствии надежного контроля температуры заряжаемого аккумулятора выбирать его более 2С не рекомендуется.

По окончании режима быстрой зарядки ток снижают до значений, безопасных в течение длительного периода ("дозарядка"). В микросхеме МАХ713 это значение например выбрано около 30 мА и не зависит от тока быстрой зарядки.

Принципиальная схема зарядного устройства

Схема "интеллектуального" зарядного устройства для никель-кадмиевых аккумуляторов, выполненного на микросхеме МАХ713, приведена на рис 2, Источник питания напряжением 12 В подключают к разъему X1.

Он должен обеспечивать ток нагрузки, по крайней мере на 50 мА больше максимального зарядного тока. При напряжении питания 12В можно заряжать батареи содержащие до девяти аккумуляторов .

В авторском варианте для питания устройства использовался обычный сетевой адаптер, обеспечивающий ток нагрузки до 300 мА при напряжении 12 В Светодиод HL1 индицирует работу устройства в целом, а светодиод HL2 - режим быстрой зарядки.

Рис 2. Принципиальная схема умного зарядного устройства.

Если он не светится, то это означает, что зарядка закончена Аккумулятор (батарею) подключают к разъему Х2 Зарядный ток регулирует транзистор VТ1. Если после включения устройства с подключенным аккумулятором светодиод HL2 не светится, значит, аккумулятор заряжен.

Программирование микросхемы производят подключением выводов 3 (PGM0), 4 (PGM1). 9 (PGM2) и 10 (PGM3) к выводам микросхемы 15 (+), 12 (ВАТТ-) 16 (REF). Они могут быть также и не подключены к чему-либо (OPEN). Через выводы PGM0 и PGM1 программируют число аккумуляторов в батарее (табл 1). а через выводы PGM2 и PGM3-таймер окончания быстрой зарядки (табл. 2).

Перед выбором окончательной версии устройства задают число элементов N в аккумуляторной батарее, подлежащей зарядке, и зарядный ток.

Исходя из первого параметра, определяют подключение выводов 3 и 4 микросхемы (в соответствии с табл 1), а по второму параметру - ориентировочное время зарядки Т (в часах) по формуле Т=С/0,8І. Здесь С подставляют в мАч, а I - в мА. В табл. 2 находят ближайшее большее значение программируемого интервала времени зарядки и определяют соответствующее ему подключение выводов 9 и 10 микросхемы.

На следующем этапе рассчитывают мощность Р (в ваттах), которая будет рассеиваться на транзисторе?Т1, по формуле P=(Umax - Umin)*1. Здесь Umax - максимальное напряжение на выходе источника питания, В; Umin, - минимальное напряжение на батарее аккумуляторов, В: I - ток зарядки A.

Umin рассчитывают исходя из числа элементов и минимального напряжения на одном аккумуляторе обычно полагают 1В. На основе этого расчета выбирают транзистор и выясняют, нужен ли для него теплоотвод.

Сопротивление резистора R2 (в кило-омах) рассчитывают по формуле R2=U/5 1, где U - минимальное напряжение источни ка питания в вольтах Сопротивление резистора R5 (в омах) рассчитывают по формуле R5=0 25/I, где I - ток зарядки в амперах.

Приведенные на схеме номиналы соответствуют минимальному напряжению источника питания 12В и току зарядки 0,25 А. При напряжении питания 12 В можно заряжетъ батареи не более чем из семи аккумуляторов.

Steven Avritch. A Smart Charger For Nickel-Cadmium Batteries - QST 1994 September p.40-42. Р2001, 1.

Зарядное устройство предназначено для зарядки никель-кадмиевых (NiCd) и никель-металгидридных (NiMH) аккумуляторов типоразмера АА и ААА.Оно не претендует на оригинальность или новизну. Схема зарядного устройства отличается простотой и надежностью. За время эксплуатации более 10 лет отказов в работе не было. В схеме нет каких-либо регулирующих элементов, зарядный ток устанавливается автоматически. Зарядное устройство позволяет заряжать, как один аккумулятор, так и батарею из нескольких аккумуляторов. При этом зарядный ток изменяется незначительно.

Особенность счемы является гальваническая связь с электрической сетью 220 В,что требут собледения мер электробезопасностии. В качестве диодов D1 - D7 используются диоды КД 105 или им подобные. Светодиод D8 - АЛ307 или ему подобный,желаемого цвета свечения. Диоды D1 - D4 могут быть заменены на диодную сборку КЦ405А.Резистором R3 можно подобрать необходимую яркость свечения светодиода.

Конденсатор С1 задает необходимый зарядный ток. Емкость конденсатора расчитывается по следующей эмперической формеле:

В = (220 - Uэдс) / J

где: C1 в мкФ; Uэдс - напряжение на аккумуляторной батареи в В; J - необходимый зарядный ток в А.

Пример - необходимо расчитать емкость конденсатора для зарядки батареи из 8 никель-кадмиевых аккумуляторов емкостью 700 mAh . Зарядный ток (J) будет составлять 0.1 емкости аккумулятора - 0.07 А. Uэдс 1.2 х 8 =9.6 В .Следовательно В = (220 - 9.6) / 0.07 = 3005.7 .Далее А = 3005.7 - 200 = 2805.7 .Емкость конденсатора составит С1 = 3128 / 2805.7 = 1.115 мкФ. Принимается ближайший по номиналу - 1мкФ.

Рабочее напряжение конденсатора должно быть не менее 400 В.Конденсатор должен быть только бумажный, использование электролитических конденсаторов не допускается.

Рассеиваемая мощность резистора R2 определяется величиной зарядного тока. Для зарядного тока 0.07 А она будет 0.98 Вт (P= JxJxR). Выбирается резистор с рассеиваемой мощность 2 Вт.

Конденсатор может быть составлен из нескольких конденсаторов по параллельной, последовательной или смешанной схемам.

Зарядное устройство не боится коротких замыканий. После сборки зарядного устройства можно проверить зарядный ток,подключив вместо аккумуляторной батарей амперметр.

Перед включением зарядного устройства в электрическую сеть необходимо подключить к нему аккумуляторную батарею. Если аккумуляторная батарея подключена с нарушением полярности, то будет светиться светодиод D8 (до подключения зарядного устройства к электрической сети). При правильном подключении аккумуляторной батареи и подключении зарядного устройства к электрической сети светодиод сигнализирует о прохождении зарядного тока через аккумуляторную батарею.
Скачать: Зарядное устройство для NiCd и NiMH аккумуляторов
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.

Похожие публикации