Chevroletavtoliga - Автомобильный портал

Переработка отработанных платино-рениевых катализаторов без разложения основы. Восстановление на никелевых катализаторах Селективная высокотемпературная окислительная отгонка рения

Никелевые катализаторы (катализатор Сабатье, никель Ренея и др.) и катализаторы на основе никеля (медно-никелевые, карбонат никеля и т.д.) широко применяют в синтезе лекарственных субстанций.

Непирофорный никелевый катализатор получают : разложением формиата никеля в среде парафина при температуре 250-270 °С, восстановлением нитрата никеля водородом при высокой температуре (катализатор Сабатье ) и другими методами:

Активность никелевого катализатора Сабатье зависит от температуры его приготовления. Оптимальная температура 300-320 °С.

Восстановление по методу Сабатье и Сендеренаведут в газовой фазе, пропуская над никелем (или через слой катализатора) смесь водорода с парами восстанавливаемого вещества.

Скелетный катализатор никель Ренеяготовят из сплава никеля и алюминия, растворением алюминия в водной щелочи в виде алюмината (20 % раствор щелочи, 50 °С). Никель Ренея имеет специфическую пористую структуру и содержит большое количество сорбированного водорода и гидрида никеля. Он пирофорен (способен к самовозгоранию на воздухе), поэтому его хранят под слоем воды. Активность катализатора зависит от способа получения (концентрации щелочи, температуры, продолжительности выщелачивания и способа промывки) и при хранении катализатора уменьшается.

Восстановление водородом в присутствии никеля Ренея проводят под давлением в автоклавах , как правило, в спиртовой среде. Поскольку катализатор имеет большую плотность и быстро оседает на дно реактора, необходимо хорошее перемешивание . После окончания восстановления, о котором судят по количеству поглощенного водорода, катализатор отделяют фильтрованием, а спирт - отгоняют.

Никелевые катализаторы широко используют для восстановления самых разных соединений. Глубина восстановления зависит от условий ведения процесса и активности катализатора. Так, например, при восстановлении нитробензола водородом в присутствии никеля Ренея под давлением 1 атм. получают анилин, а при 95 атм. циклогексиламин:

Примеры применения катализатора никеля Ренея
в синтезе лекарственных веществ.
Правильно выбранные условия реакции и активность катализатора никеля Ренея позволяют реализовать самые разные процессы.

Восстановление изолированных кратных связей, не затрагивая ароматическую систему и другие функциональные группы, ведут при 1-3 МПа и температуре до 50 °С. Тройную связь можно восстановить до двойной, как, например, в одном из методов получения пирролидона (а ), который является полупродуктом в синтезе ряда лекарственных веществ (пирацетама и др.). В синтезе алкалоидов фенантренизохинолинового ряда, и др. веществ двойные связи легко восстанавливаются до одинарной, при этом сохраняются другие функции (б , в ):



Восстановление карбонильных групп до гидроксильной идет легче в альдегидах, чем в кетонах. В качестве примеров приведены реакции гидрирования, которые используются в одном из методов получения средства против паркинсонизма леводопы (а ) и в синтезе адренергического препарата эпинефрина (б ). Такие группы, как сложноэфирная, в этих условиях не восстанавливаются (в ):

Восстановление азотсодержащих групп до аминов на никеле Ренея идет при давлении около 1-2 МПа и температуре около 100 °С. При этих условиях гидрируют нитрогруппу в производствах рентгеноконтрастных веществ (а ), оксим кетона в синтезе антиаритмического препарата мексилетина (в ), цианогруппу при получении папаверина :

Каталитическое восстановление ароматических нитросоединений проходит гладко и приводит, как правило, к первичному амину. Вместо молекулярного водорода можно использовать и гидразин, который при этом дегидрируется до азота. Преимущество восстановления гидразином состоит в селективности данной реакции. Эта селективность теряется в щелочной среде при повышенной температуре (восстановление по Кижнеру-Вольфу).

Восстановление ароматического кольца ведут при 150 ± 30 °С и давлении выше 7 МПа , например, в синтезе ментола из тимола:

Еще раз следует отметить, что ароматическое кольцо аренов восстанавливается наиболее трудно. Остальные соединения, за исключением карбоновых кислот и спиртов, гидрируются в значительно более мягких условиях.

Восстановительное аминирование (реакция альдегидов и кетонов с аммиаком и водородом в присутствии никеля Ренея) является удобным методом получения аминов и используется в синтезах асалина, изопротана, бутамида, бензамона, фенамина и др.:

В синтезе фенамина метилбензилкетон, 12-15 % водный аммиак и никель Ренея нагревают в автоклаве 1 час при 60-65 °С, пропуская водород под небольшим давлением. Затем водород вытесняют азотом, катализатор отфильтровывают под слоем водного аммиака, фильтрат упаривают и получают техническое основание фенамина. Выход продукта 90-91 %.

В повседневной жизни, когда мы покупаем, например, маргарин, мы даже не догадываемся, что для его производства необходимо провести гидрирование. Согласно химическому определению, гидрирование происходит тогда, когда к органическим соединениям добавляют водород. В этом процессе могут использоваться разные химические компоненты, но самыми важными являются катализаторы. В промышленном производстве с их помощью изготовляются различные топлива для моторов, парафины, спирты и другие продукты. В металлургической промышленности катализатор никелевый и любые его виды можно использовать в процессе низкофазного гидрирования, а также гидрирования, которое происходит в газовой сфере.

Существуют разные виды этого продукта, но самым популярным является катализатор никелевый U-NI-B и U-NI-A, так как имеет множество преимуществ. Во-первых, эти катализаторы используются в промышленном производстве при изготовлении бензольных колец, оксимов, карбонильных групп, нитрилов и других важных компонентов. Катализатор никелевый может работать и при обычном, и при высоком давлении, что не характерно для других катализаторов. Во-вторых, катализатор никелевый очень легко и быстро изготовить. Для других катализаторов процесс изготовления является очень сложным и долгим. Реагенты для его изготовления доступны в продаже. Удивительным является то, что процесс его приготовления настолько прост, что его может приготовить практический любой человек без специального образования. В-третьих, не понадобится много денег, так как катализатор никелевый может быть изготовлен из недорогих реактивов. В-четвертых, катализатор никелевый сохраняет свою активность очень долгое время. Но при этом его надо хранить в специальном растворителе, в котором нет кислорода.

Сам никель является довольно дефицитным продуктом, поскольку он очень популярный в металлургической промышленности. Этот металл имеет множество преимуществ, так как не боится никакой среды. Будь-то газ, пресная или морская вода, разные химические растворы. Благодаря этому никель практически никогда не портится, так как он также не боится коррозии.

Если вам требуется никелевый катализатор, обращайтесь к нам, и мы вам поможем.

Скелетные катализаторы используют в процессах гидрирова­ния Сахаров, жиров, фурфурола, многоядерных хинонов и т. д. Кроме того, они являются составной частью электродов низко­температурных топливных элементов, предназначенных для пре­образования химической энергии в электрическую . Материалами для получения скелетных контактов служат двух - или многокомпонентные сплавы каталитически активных метал­лов с такими веществами, которые можно частично или полностью удалить при обработке растворами сильных электролитов, от­гонке в вакууме или других операциях, основанных на различии их физико-химических свойств. По мере удаления из сплава рас­творимых компонентов происходит перегруппировка атомов оста­ющегося металла в свойственную ему кристаллическую решетку. Так, при выщелачивании АІ из Ni-Аі-сплава атомы никеля пере­страиваются в кубическую гранецентрированную решетку. После удаления из сплава растворимого (например, в щелочи) компо­нента получается почти чистый активный металл в виде мельчай­шего порошка . К каталитически активным относятся пере­ходные металлы; к неактивным - сера, фосфор, алюминий, крем­ний, магний, цинк и ряд других веществ.

Наиболее распространены катализаторы из сплавов никеля с алюминием. Они отличаются высокой активностью, простотой приготовления, хорошей теплопроводностью и высокой механи­ческой прочностью. Эти катализаторы пирофорны, поэтому их

Хранят, транспортируют и работают с ними под слоем жидкости (вода, спирт, метилциклогексан и другие).

В промышленности используют два типа скелетных никелевых катализаторов - катализатор Бага и никель Ренея (пат. США 1563787, 1628191, 1915473). Оба получают из сплава Ni с А1, однако, если никель Ренея представляет собой мелкодисперсный порошок, состоящий из чистого никеля, то ка­тализатор Бага - кусочки никель-алюминиевого сплава (65- 75 % Ni и 35-25 % А1).

Исходные сплавы получают чаще всего пирометаллургическими способами - сплавлением компонентов или алюмотермией. В пос­леднее время используют методы порошковой металлургии - спекание предварительно спрессованных смесей никелевых и алюминиевых порошков в восстановительной или инертной атмо­сфере при 660-700 °С. Реакции между двумя твердыми телами с образованием новой твердой фазы включают процесс диффузии, поскольку реагирующие вещества разделяются образующимся продуктом реакции . Реагирующие вещества сохраняют по­стоянную активность с обеих сторон реакционной поверхности раздела фаз, в связи с чем скорость переноса материала опреде­ляется скоростью нарастания толщины диффузионного слоя про­дукта и выражается формулой

Здесь б-толщина диффузионного слоя продукта; т - время; D - коэф­фициент диффузии; В - постоянная.

Из различных типов печей, пригодных для получения сплава, лучшими являются высокочастотные печи с автоматическим пере­мешиванием компонентов, позволяющие получать катализатор высокого качества.

Для получения активных катализаторов большое значение имеют способ приготовления и состав сплава. При изготовлении никелевого катализатора наиболее приемлемы сплавы, содержа­щие от 40 до 60 % (масс.) активного металла. Повышение содер­жания никеля более 60 % затрудняет разложение сплава щелочью.

Начальные стадии для катализатора Бага и никеля Ренея одинаковы; расплавляют АІ примерно при 660 °С, повышают температуру до 900 - 1200 °С и выдерживают расплав при этой температуре некоторое время, необходимое для удале­ния из металла газов и солей. Далее в расплав вносят никель, при этом температура поднимается до 1900 °С за счет теплоты образования сплава. В процессе сплавления металлов наблюдается смещение их внешних электронных уровней, с чем связывают про - мотирующий эффект вводимой добавки (А1). Особое внимание должно быть обращено на правильный выбор условий охлаждения сплава. При медленном остывании образуется мелкокристалличе­ская структура, что способствует получению (после удаления А1) каталитически активного металла в высокодисперсном состоя­нии. Быстрое же охлаждение благоприятствует образованию крупнокристаллической структуры сплава.

Полученный сплав состоит из Ni3AI, NiAI, Ni2AI3, NiAl3. Считают, что наиболее активные катализаторы дают соединения NiAI 3 и Ni2Al3. Формирование катализатора из Ni2Al3 идет через так называемую скелетную стадию. Часть скелета распадается с образованием мелких частиц никеля. Катализатор же из NiAI3 формируется по растворно-осадительному механизму. В этом слу­чае вместо бидисперсного конгломерата из Ni и недоразрушенного Ni2Al3 получается широкий набор частиц различных диаметров.

Охлажденный катализатор подвергают дроблению. При рав­ных соотношениях Ni и AI сплав хрупок и легко измельчается. С повышением содержания Ni он становится более прочным и дробится с трудом. Для катализатора Бага сплав дробят на куски размером 3-5 мм, для никеля Ренея - до мелкой крошки.

Никель Ренея в промышленных условиях получают в откры­тых аппаратах, снабженных мешалкой и паровой рубашкой . В аппарат заливают 20-30 % раствор NaOH в количестве, превышающем теоретически требуемое для растворения алюми­ния, постепенно вносят измельченный сплав, включают мешалку и ведут процесс выщелачивания при 120 °С, поддерживая постоян­ным объем реагентов. Повышение температуры выщелачивания до 160 °С приводит к увеличению степени дисперсности никеля Ренея. С ростом температуры выщелачивания удельная площадь поверхности катализаторов из NiAl3 монотонно понижается, а из Ni2Al3, наоборот, увеличивается, достигая максимального значения при 100 °С . О количестве выщелоченного алюми­ния судят по объему выделившегося водорода: 2А1 + 2NaOH + 2НаО = 2NaA102 + ЗН2.

Пересчет на сухой газ при нормальных условиях проводят по формуле:

T>0 = 273 (P-PHjO)/. (3.51)

Здесь Gcn - количество сплава, взятое на выщелачивание.

Активность скелетных катализаторов связана с наличием в них водорода в физически адсорбированном и растворенном состояниях . Содержание водорода зависит от температуры выщелачивания:

Температура выщелачивания, °С... . 50 80 100

Объем Н2, см3 на 1 г катализатора. . . 470 160-170 140

Активность, селективность и устойчивость катализаторов за­висят от состояния адсорбированного ими водорода. Важную роль при этом играет выбор метода сушки легкоокисляющихся катали­заторов, в частности скелетного никеля. Рекомендуется тщатель­ная отмывка катализаторов от воды метанолом или другими спиртами алифатического ряда. Наилучшей является сушка ка­тализаторов от воды при низких давлениях и температурах.

После прекращения выщелачивания большую часть раствора сливают, осадок отмывают от щелочи и в виде водной суспензии переводят в специальную емкость. В последнюю добавляют ми­неральное масло, и полностью удаляют воду нагреванием в ва­кууме. Готовый катализатор хранят и транспортируют в виде масляной суспензии. Регенерацию никеля Ренея не производят, срок службы этого катализатора невелик; он быстро отравляется сернистыми, кислородными и азотистыми соединениями. Ка­тализатор Бага можно регенерировать дополнительным выщела­чиванием А1. На скелетных никелевых контактах процессы идут примерно при 100-120 °С и давлении от 2 до 8 МПа в жидкой фазе. Широкие возможности для оптимизации характеристик катализатора Бага, никеля Ренея дает расширение ассортимента неблагородных компонентов исходных сплавов.

Настоящее изобретение относится к катализаторам гидрирования, способу их получения и применению для гидрирования, такого как селективное гидрирование ацетиленовых примесей в неочищенных олефиновых и диолефиновых потоках. Описан селективный катализатор гидрирования для селективного гидрирования ацетиленовых примесей в неочищенных олефиновых или диолефиновых потоках, содержащий только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, нанесенных на носитель, представляющий оксид алюминия, имеющий следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля. Описаны способ получения катализатора, включающий пропитку носителя, представляющего оксид алюминия, имеющего указанные выше физические свойства, растворимыми солями только никеля или никеля и одного или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, из одного или больше растворов с получением пропитанного носителя, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля, и способ селективного гидрирования ацетиленовых соединений, включающий контактирование исходного сырья, содержащего ацетиленовые соединения и другие ненасыщенные соединения, с описанным выше катализатором. Технический эффект- повышение степени извлечения 1,3-бутадиена при полной или почти полной конверсии С4-ацетиленов. 3 н. и 22 з.п. ф-лы, 1 ил., 1 табл.

Рисунки к патенту РФ 2333796

Предпосылки изобретения

Область техники, к которой относится изобретение

Настоящее изобретение относится к новым селективным катализаторам гидрирования и способу получения катализаторов, которые применимы для гидрирования, такого как селективное гидрирование ацетиленовых примесей в неочищенных олефиновых и диолефиновых потоках.

Сущность изобретения

Катализаторы по изобретению содержат только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca, Bi, которые наносят на носитель, имеющий следующие физические свойства: удельная площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å. Примерами предпочтительных носителей являются оксид алюминия, диоксид кремния, оксид циркония, талькит, диоксид кремния-оксид алюминия, уголь и т. д. Предпочтительное содержание никеля в катализаторе составляют от примерно 4 до примерно 20 вес.%.

Краткое описание чертежей

Фигура представляет график сравнения извлечения 1,3-бутадиена с использованием селентивного катализатора гидрирования по настоящему изобретению с обычным катализатором.

Подробное описание изобретения

Металлический никель наносят на пористый носитель, как описано, используя обычный метод пропитки, такой как пропитка по начальному влагопоглощению. Катализатор применяют для селективного гидрирования.

Катализаторы содержат только никель или никель и один или больше элементов, выбранных из Cu, Re, Pd, Zn, Mg, Mo, Ca, Bi, чтобы улучшить активность катализатора, стабильность и извлечение олефинов и диолефинов из неочищенных смешанных потоков.

Оксид алюминия является предпочтительным носителем. Предпочтительный оксид алюминия прокаливают в интервале температур от примерно 750 до примерно 1200°С. Предпочтительный прокаленный оксид алюминия в данном изобретении будет иметь, по меньшей мере, 30%, предпочтительно, по меньшей мере, 50%, пор диаметром больше 100 Å и общий объем пор от примерно 0,4 до примерно 0,9 см 3 /г и КОП (кажущуюся объемную плотность) от примерно 0,35 до примерно 0,75 г/см 3 . Предпочтительный оксид алюминия, раскрытый в данном изобретении, может быть получен несколькими методами, хорошо известными специалистам в области техники приготовления активных оксидов алюминия.

Оксид алюминия может содержать до примерно 2 вес.%, предпочтительно меньше 2 вес.%, щелочного металла. Один из предпочтительных оксидов алюминия, раскрытых в данном изобретении, может быть получен методом маслокапельного гелирования. Примеры метода гелирования раскрыты в патентах США №№ 2620314 (1952) и 4273735 (1981). Оксид алюминия в сферической форме может быть получен из гидроксихлорида алюминия, полученного растворением металлического алюминия в водной соляной кислоте. Зольные материалы сферического оксида алюминия в форме капель гелируют в основной жидкой масляной фазе с последующим старением, промыванием, сушкой и прокаливанием с получением обычно гамма-оксида алюминия в промышленном производстве при повышенной температуре. Альтернативно, предпочтительный сферический оксид алюминия также может быть получен методом масло-капельного гелирования, используя дисперсные бемитные или псевдобемитные алюмооксидные золи (см. патент США № 4179408 (1979)). Алюмооксидные золи получают диспергированием подходящего бемита, псевдобемита или смесей бемитного и псевдобемитного оксидов алюминия в кислотной воде. Псевдобемитный или бемитный сырьевые материалы получают гидролизом алкоксидов алюминия и кристаллизацией или реакцией алюмината натрия с солями алюминия, такими как сульфат алюминия, и кристаллизацией. Различные бемитные оксиды алюминия или диспергированные бемитные алюмооксидные золи являются коммерчески доступными. Для получения предпочтительного сферического оксида алюминия, имеющего пористую структуру, как раскрыто в настоящем изобретении, могут быть использованы Дисперал HP 14/2, Диспал 11N&-80, Диспал 23N4-20, Дисперал HP 14, Дисперал 40, Пурал 200, Пурал 100, Пурал NG и т. д. или их смеси. Предпочтительным оксидом алюминия является переходный оксид алюминия, прокаленный при повышенной температуре в интервале от примерно 750 до примерно 1200°С с получением кристаллических дельта-, каппа-, тета- и альфа-форм или их смесей. Прокаленный оксид алюминия может содержать незначительное количество гамма-оксида алюминия, если прокаливание проводят при нижнем значении температурного интервала, указанного выше.

Предпочтительный оксид алюминия в форме различных экструдатов или таблеток также может быть получен использованием предпочтительного бемитного или псевдобемитного оксида алюминия, описанного выше, и прокаливанием при повышенных температурах от примерно 750 до 1200°С. Площадь поверхности оксида алюминия имеет тенденцию к уменьшению при повторном воздействии повышенных температур из-за медленной кристаллизации в более стабильные кристаллические формы. Это уменьшение площади поверхности ускоряется в присутствии влаги в атмосфере или следовых количеств натрия в оксиде алюминия или под воздействием обоих факторов. Обычно алюмооксидный носитель уровня техники для получения катализаторов получают как гамма-оксид алюминия прокаливанием при температурах от примерно 550 до 700°С.

Физические формы предпочтительных оксидов алюминия в данном изобретении могут быть любые, такие как сферы, экструдаты, таблетки и гранулы, которые предпочтительно имеют диаметры меньше, чем примерно 1/4 дюйма, предпочтительно 1/8 дюйма, и меньше, чем 1/2 дюйма в длину, и предпочтительно меньше, чем 1/4 дюйма в длину для экструдатов или таблеток.

Нанесение никеля на носитель может быть выполнено однократной или многократной пропиткой. Раствор соединения никеля получают растворением соединения никеля или органического соединения никеля в органическом растворителе или воде. Примерами соединений никеля являются соли никеля, такие как нитрат никеля, или органометаллические соединения никеля, такие как ацетат никеля, формиат никеля, ацетилацетонат никеля, алкоксиды никеля и т. д. Продукт пропитки сушат и прокаливают при температуре от 200 до 600°С, предпочтительно от 250 до 500°С.

Если катализаторы гидрирования по изобретению содержат один или больше элементов, выбранных из Cu, Re, Pd, Zn, Mg, Mo, Ca или Bi, в дополнение к никелю, то они предпочтительно используются в следующих количествах: Cu от примерно 0,005 до примерно 10 вес.%; Re от примерно 0,1 до примерно 5 вес.%; Pd от примерно 0,01 до примерно 2 вес.%; Zn от примерно 0,1 до примерно 10 вес.%; Ca от примерно 0,1 до примерно 7 вес.%; Mg от примерно 0,1 до примерно 7 вес.%; Mo от примерно 0,1 до примерно 10 вес.%; и Bi от примерно 0,05 до примерно 7 вес.%.

При получении висмутсодержащего никелевого катализатора носитель перед нанесением никеля предпочтительно пропитывают раствором соединения висмута. Примером соединения висмута является нитрат висмута.

При получении серебросодержащего никелевого катализатора носитель предпочтительно пропитывают смешанным раствором соединения никеля и соединения серебра, такого как нитрат серебра. Необязательно, ряд последовательных пропиток может быть проведен, начиная с первой пропитки носителя соединением серебра. Оценку характеристик катализатора проводят, сравнивая извлечение целевого продукта из данного исходного сырья при данной конверсии ацетиленовых соединений или при конверсии, требуемой чтобы отвечать специфическому качеству продукта относительно уровня техники. Например, если селективно гидрируются С4 ацетиленовые соединения в потоке неочищенного бутадиена, и 1,3-бутадиен (1,3-БД) является целевым продуктом, подлежащим извлечению из сырьевого потока, следующая математическая формула определяет извлечение 1,3-бутадиена

Извлечение 1,3-БД (%)=100-(N F - N P)х100/ N F ,

N F =вес.% 1,3-БД в сырьевом потоке, N P =вес.% 1,3-БД в потоке продукта.

Извлечение С4 ацетиленов (объединенных винилацетилена и этилацетилена) определяется таким же образом.

Полная или почти полная конверсия (остается менее 30 m.g.) С4 ацетиленов с высоким извлечением 1,3-бутадиена приводит к устранению одной из двух установок экстрактивной дистилляции для отделения 1,3-бутадиена из смешанного потока. Результатом является более низкая себестоимость 1,3-бутадиена.

Характеристики катализатора ухудшаются со временем работы по разным причинам. Одной причиной является медленное накопление отравляющих углеродистых материалов на поверхности катализатора. Чтобы продлить катализаторный цикл или продолжительность эксплуатации, может быть использован растворитель для отмывки тяжелых полимеров для замедления скорости накопления отравляющих углеродистых материалов на катализаторе. Следовательно, тяжелые полимеры должны быть растворимыми, по меньшей мере до некоторой степени, в растворителе в условиях селективного гидрирования. Примерами таких растворителей являются циклогексан, метилциклогексан, бензол, толуол, алкилнитрилы, фурфураль, диметилацетамид, диметилформамид, метилпирролидон, формилморфолин и простые эфиры, такие как тетрагидрофуран, или их смеси. Растворитель выделяют из выходящего потока реактора для рециркуляции. Необязательно, растворитель может быть накоплен в системе при запуске установки рециркуляцией тяжелых компонентов исходного сырья, которые обычно являются малой частью сырья и также производятся олигомеризацией и полимеризацией во время селективного гидрирования в каталитической реакционной зоне (зонах). Растворитель подают совместно с исходным сырьем в каталитическую реакционную зону для операции в неподвижном слое. Для операции каталитической дистилляции или экстрактивной каталитической дистилляции растворитель вводят в надлежащую позицию верхней половины колонны. Другой альтернативой осуществления операции является промывка время от времени катализаторов растворителем при надлежащей температуре от 70 (21,1°С) до 450°F (232,2°С) и давлении от 0 до 500 psig, предпочтительно в присутствии водорода. Другим альтернативным вариантом является то, что селективное гидрирование проводят периодически в присутствии избытка водорода в каталитической реакционной зоне в количестве большем, чем нормально требуется для данного периода времени, например нескольких дней, даже если извлечение 1,3-бутадиена за этот период несколько ниже.

Контрольный Пример 1 (обычный катализатор)

Промышленный никелевый катализатор (28 вес.% никеля на оксиде алюминия) испытывали в удалении С4 ацетиленовых примесей в неочищенном сырьевом потоке селективным гидрированием. 40 г катализатора смешивали с 60 мл стеклянных шариков 3-мм диаметра и загружали в вертикальный нержавеющий реактор для восходящего потока (1 дюйм в диаметре х 20 дюймов в длину) с неподвижным слоем. Катализатором является трехдольный экструдат 1,2 мм в диаметре х 2-5 мм. Для контроля температуры реактора устанавливали две термопары на каждом конце слоя катализатора. Катализатор поставляется производителем в активированной и пассивированной форме. Катализатор имеет следующие физические свойства: площадь поверхности по БЭТ 113 м 2 /г, общий объем пор по адсорбции азота 0,438 см 3 /г и средний диаметр пор 151 Å. Катализатор реактивировали при 250°F (121,1°С) в потоке газа 300 см 3 /мин, содержащем 33 об.% водорода в азоте, в течение 1,5 ч и затем при 575°F (301,7°С) в течение 5 ч, пропуская 350 см 3 /мин чистого водорода. Реактор охлаждали до температуры окружающей среды. Селективное гидрирование ацетиленовых примесей в неочищенном сырьевом потоке проводили при скорости подачи углеводородного сырья 6 мл/мин и водорода 44 см 3 /мин в начале реакции и до 21 см 3 /мин в конце при постоянном давлении в реакторе 108 psig. Сырье содержало 3500 вес. м.д. С4 ацетиленов (2940 м.д. винилацетилена и 560 м.д этилацетилена), 330 м.д. метилацетилена, 66,60 вес.% 1,3-бутадиена, 280 вес. м.д 1,2-бутадиена, 160 вес. м.д. пропадиена, 21,6 вес.% бутенов и т.д. Из-за экзотермической теплоты гидрирования температура в конце слоя катализатора была выше, чем в начале. Гидрирование проводили при постоянной температуре 120°F (48,9°С). Полная конверсия С4 ацетиленов требовала 44 см 3 /мин или больше водорода; при полной конверсии извлечение 1,3-бутадиена составило 96,8%. Результат испытаний показан на чертеже. Физические свойства промышленных катализаторов приведены в Таблице 1.

Пример 2 (изобретение)

Никелевый катализатор получали, чтобы продемонстрировать лучшие каталитические характеристики данного изобретения по сравнению с обычным никелевым катализатором Примера 1 (контроль). Катализатор получали двумя пропитками. Гамма-оксид алюминия, использованный для получения никелевого катализатора, представляет собой сферы диаметром 1,68 мм, полученные методом масло-капельного гелирования. Физические свойства оксида алюминия, прокаленного при 750°С в течение 3 часов, суммированы в Таблице 1. Более примерно 95% пор в этом оксиде алюминия имеют диаметр больше 200 Å. Рентгенография этого материала показывает, что это гамма-оксид алюминия. После дополнительного прокаливания при 1100°С в течение 3 ч на воздухе средний диаметр сфер оксида алюминия уменьшался с 1,68 до 1,45 мм. Физические свойства этого прокаленного оксида алюминия приведены в Таблице 1 и его используют как носитель для никеля. Рентгенография этого прокаленного оксида алюминия указывает на тета-оксид алюминия с примесью дельта-оксида алюминия.

Раствор нитрата никеля для первой пропитки получали растворением 103 г NiNO 3 x 6H 2 O в 285 г воды. 300 г прокаленного оксида алюминия помещали в роторный пропитыватель и выливали на него раствор нитрата никеля. После сушки содержимого в роторном пропитывателе при примерно 200°С вдуванием горячего воздуха в роторный пропитыватель высушенный продукт прокаливали при 350°С 2 часа. Другой никелевый раствор готовили для второй пропитки растворением 56 г NiNO 3 x 6H 2 O в 285 г воды. Вторую пропитку проводили также как и первую. Высушенный продукт пропитки прокаливали при 380°С 2 часа. Количество никеля, нанесенного на алюмооксидный носитель, составляет 9,67 вес.% в расчете на полное количество использованного нитрата никеля. Физические свойства этого никелевого катализатора приведены в Таблице 1.

Таблица 1
Носитель,

прокаленный

при 750°С

Носитель,

прокаленный

при 1100°С

Ni катализатор,

прокаленный при 1100°С

Промышленный Ni катализатор
КОП, г/см 3 0,48 0,62 0,71 0,86
БЕТ, м 2 /г 145,0 65,6 66,0 113
Общий объем пор по азоту, см 3 /г 0,925 0,713 0,626 0,438
Средний диаметр пор, Å 216 449 383 151
для пор радиусом меньше 493 Å при P/p o =0,9801

40 г катализатора смешивали с 60 мл стеклянных шариков 3-мм диаметра и загружали в вертикальный нержавеющий реактор для восходящего потока (1 дюйм в диаметре х 20 дюймов в длину) с неподвижным слоем. Катализатором является трехдольный экструдат 1,2 мм в диаметре х 2-5 мм. Для контроля температуры реактора устанавливали две термопары на каждом конце зоны катализатора. Катализатор активировали при 250°F (121,1°С) в потоке газа 300 см 3 /мин, содержащем 33 об.% водорода в азоте, в течение 1,5 ч и затем при 670 (354,4°С) и 770°F (410,0°С) по 3 ч при каждой температуре, пропуская 350 см 3 /мин чистого водорода. Реактор охлаждали до температуры окружающей среды. Селективное гидрирование ацетиленовых примесей в том же сырьевом потоке, что и в Контрольном Примере 1, проводили при скорости подачи углеводородного сырья 6 мл/мин и водорода 31 см 3 /мин в начале реакции и до 17 см 3 /мин в конце при постоянном давлении в реакторе 108 psig и температуре 120°F (48,9°С) в конце слоя катализатора. Из-за экзотермической теплоты гидрирования температура в конце слоя катализатора была выше, чем в начале.

Гидрирование проводили при постоянной температуре 120°F. Полная конверсия С4 ацетиленов требовала 33 см 3 /мин водорода; при полной конверсии извлечение 1,3-бутадиена составило 97,7%. Результат испытаний показан на чертеже. Хорошо видны лучшие характеристики катализатора по изобретению по сравнению с характеристиками катализатора Контрольного Примера.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Селективный катализатор гидрирования для селективного гидрирования ацетиленовых примесей в неочищенных олефиновых или диолефиновых потоках, содержащий только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, нанесенных на носитель, представляющий оксид алюминия, имеющий следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля.

2. Селективный катализатор гидрирования по п.1, в котором указанный оксид алюминия прокаливают в температурном интервале от примерно 750 до примерно 1200°С.

3. Селективный катализатор гидрирования по п.2, в котором указанный оксид алюминия имеет, по меньшей мере, 30% пор диаметром больше 100 Å и общий объем пор от примерно 0,405 до примерно 0,9 см 3 /г и КОП (кажущуюся объемную плотность) от примерно 0,35 до примерно 0,75 г/см 3 .

4. Селективный катализатор гидрирования по п.3, в котором указанный оксид алюминия имеет, по меньшей мере, 50% пор диаметром больше 100 Å.

5. Селективный катализатор гидрирования по п.1, в котором указанный оксид алюминия содержит меньше примерно 2 вес.% щелочного металла.

6. Селективный катализатор гидрирования по п.1, в котором указанный оксид алюминия является переходным оксидом алюминия, содержащим кристаллические дельта-, каппа-, тета- и альфа-формы или их смеси.

7. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,005 до примерно 10 вес.% меди.

8. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 5 вес.% рения.

9. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,01 до примерно 2 вес.% палладия.

10. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 10 вес.% цинка.

11. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 7 вес.% кальция.

12. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 7 вес.% магния.

13. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,1 до примерно 10 вес.% молибдена.

14. Селективный катализатор гидрирования по п.1, в котором указанный катализатор содержит от примерно 0,05 до примерно 7 вес.% висмута.

15. Способ получения селективного катализатора гидрирования для селективного гидрирования ацетиленовых примесей в неочищенных олефиновых или диолефиновых потоках, включающий пропитку носителя, представляющего оксид алюминия, имеющего следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, растворимыми солями только никеля или никеля и одного или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, из одного или больше растворов с получением пропитанного носителя, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля.

16. Способ получения селективного катализатора гидрирования по п.15, в котором пропитанный носитель сушат и прокаливают при температуре от 200 до 600°С.

17. Способ получения селективного катализатора гидрирования по п.15, в котором пропитанный носитель сушат и прокаливают при температуре от 250 до 500°С.

18. Способ селективного гидрирования ацетиленовых соединений, включающий контактирование исходного сырья, содержащего ацетиленовые соединения и другие ненасыщенные соединения, с катализатором, содержащим только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, нанесенных на носитель, представляющий оксид алюминия, имеющий следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м 2 /г, общий объем пор по азоту от 0,4 до примерно 0,9 см 3 /г и средний диаметр пор от примерно 110 до 450 Å, в условиях селективного гидрирования и выделение продукта, имеющего меньше ацетиленовых соединений, чем указанное исходное сырье, где указанный катализатор содержит от примерно 4 до примерно 20 вес.% никеля.

19. Способ селективного гидрирования ацетиленовых соединений по п.18, в котором указанный оксид алюминия прокаливают в температурном интервале от примерно 750 до примерно 1200°С.

20. Способ селективного гидрирования ацетиленовых соединений по п.19, в котором указанный оксид алюминия имеет, по меньшей мере, 30% пор диаметром больше 100 Å и общий объем пор от примерно 0,405 до примерно 0,9 см 3 /г и КОП (кажущуюся объемную плотность) от примерно 0,35 до примерно 0,75 г/см 3 .

21. Способ селективного гидрирования ацетиленовых соединений по п.20, в котором указанный оксид алюминия имеет, по меньшей мере, 50% пор диаметром больше 100 Å.

22. Способ селективного гидрирования ацетиленовых соединений по п.21, в котором указанный оксид алюминия содержит меньше примерно 2 вес.% щелочного металла.

23. Способ селективного гидрирования ацетиленовых соединений по п.21, в котором указанный оксид алюминия является переходным оксидом алюминия, содержащим кристаллические дельта-, каппа-, тета- и альфа-формы или их смеси.

24. Способ селективного гидрирования ацетиленовых соединений по п.18, в котором растворитель подают совместно с исходным сырьем.

25. Способ селективного гидрирования ацетиленовых соединений по п.24, в котором указанный растворитель выбирают из группы, состоящей из циклогексана, метилциклогексана, бензола, толуола, алкилнитрилов, фурфураля, диметилацетамида, диметилформамида, метилпирролидона, формилморфолина, простых эфиров и их смесей.

Доклады БГУИР

2018, № 2 (112) УДК 546.28

2018, No. 2 (112)

РАЗЛОЖЕНИЕ МОНОГИДРИДОВ КРЕМНИЯ И ГЕРМАНИЯ С ИСПОЛЬЗОВАНИЕМ ПЛАТИНО-РЕНИЕВОЙ ШПИНЕЛИ В КАЧЕСТВЕ КАТАЛИЗАТОРА

А.А. КОВАЛЕВСКИЙ, А С. СТРОГОВА, Д.Ф. КУЗНЕЦОВ, Я.С. ВОРОНЕЦ

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

Аннотация. Показана высокая степень интенсификации процесса разложения моногидридов с использованием катализаторов. Установлено, что полнота при разложении моногидридов в присутствии платинорениевой шпинели возрастает на 35-55%.

Ключевые слова: моногидриды, моносилан, катализатор, пленки кремния и германия.

Abstract. High degree of intensification of monohydrides decomposition process with use of catalysts is shown. It is established that the completeness decomposition of monohydrides in the presenceof platinoreniyevy spinel increases for 35-55 %.

Keywords: monohydrides, monosilane, catalyst, films of silicon and germany.

Doklady BGUIR. 2018, Vol. 112, ]Чо. 2, pp. 72-76 Decomposition of silicon and germany monohydrides with use of platinum-rhenium spinel as the catalyst A.A. Kovalevskii, A.S. Strogova, D.F. Kuzniatsou, Y.S. Voronec

Введение

Создание новых видов микроэлектронных устройств, повышение их функциональной сложности и степени интеграции, увеличение срока службы и эксплуатационной надежности при одновременном снижении себестоимости и трудоемкости производства тесно связаны с научно-техническим прогрессом в области химии и технологии электронных материалов. Важнейшими из них являются монокристаллы кремния, германия и диэлектрики на их основе. Несмотря на то, что эти материалы изучены более других полупроводников, многие важные вопросы их синтеза до сих пор не ясны. Промышленное изготовление пленочных структур кремния и германия основано главным образом на реакциях восстановления высших и низших хлоридов кремния и германия в среде водорода и на разложении их гидридов . Дальнейшее развитие кремниевой и германиевой эпитаксиальной технологии связано с переходом на низкотемпературные процессы осаждения, обеспечивающие получение разнообразных пленочных структур и улучшение их качества. Эта проблема решается путем внедрения процессов термического разложения моногидридов в проточных системах. Однако в таких системах потеря непрореагировавшего моногидрида составляет более 40 % . Использование малоэффективных и труднореализуемых физических методов интенсификации химических реакций также не дает экономии исходных материалов. Поэтому следует развивать химические методы интенсификации технологических процессов микроэлектроники, которые отличаются простотой реализации и высокой эффективностью. Один из таких методов - применение катализаторов. Цель статьи -исследование кинетики разложения моногидридов кремния и германия при использовании платинорениевой шпинели в качестве катализатора.

Методика и экспериментальная часть

Катализатор выбирался с учетом энергетического соответствия, при котором адсорбционный потенциал катализатора для эндотермической реакции равнялся половине энергии химических связей реагирующих молекул . Металлическая платина, нанесенная на окись рения и алюминия, является хорошим катализатором дегидрирования моносиланов и моногерманов. В целях повышения активности катализатора его прокаливали при температуре 1273 К в течение 4 ч. Согласно данным рентгенофазового анализа высокая активность платинорениевой шпинели как катализатора обусловлена мелкодисперсной платиной на поверхности носителя, которая образуется в ходе реакции при восстановлении из PtReAl20i2. Катализатор использовался в виде мелкодисперсного порошка с размером гранул 100 мкм. Для подавления дегидратирующей активности окисей рения и алюминия, образующихся при разрушении PtReAl2012, и увеличения селективности процесса в катализатор вводилась модифицирующая добавка окиси церия путем пропитки порошка PtReAl2012 раствором азотнокислого церия с последующей сушкой и прокаливанием при температуре 673 К в течение 4 ч. Окись церия значительно увеличивает механическую прочность гранул катализатора. Пленки осаждались в вертикальном кварцевом реакторе диаметром 160 мм с ВЧ нагревом. В верхней части реактора посредством специальной муфты, работающей по принципу обжима, закреплялась колонка с катализатором с таким расчетом, чтобы расстояние от нее до пьедестала не превышало 150 мм. Колонка по конструкции представляла полый цилиндр с. полочками, которые располагались таким образом, чтобы не создавались застойные зоны поступающей газовой смеси, и устанавливалась на одной оси с кварцевым реактором. Это обеспечивало хорошую доставку реакционного материала к пьедесталу. Расход газовой смеси через колонку и реактор регулировался электронными датчиками, расходомерами и редукторами давления. В качестве исходных компонентов применялись моносилан, моногерман и гелий особой чистоты, а подложек - пластины кремния КЭФ-20 с ориентацией (111), (100) и (110). Температура подложек контролировалась инфракрасным пирометром с точностью ±5°. Толщина пленок замерялась методами косого и сферического шлифов с точностью ±5 нм. Продукты реакции анализировались методом газовой хроматографии. Количество образовавшихся кремния и германия устанавливалось микровзвешиванием в вакууме с помощью микровесов Мак-Бена. Полноту разложения моногидридов а определяли как отношение объема прореагировавшего моногидрида Уп к общему его объему в газовой фазе Коб:а = (Кп/Коб)-100 %.

Объемная скорость газовой смеси, составила 60 дм3-мин-1, объемная доля моносилана в газовой смеси 0,1 %, моногермана 0,2 %. Большая объемная скорость газовой смеси использовалась для уменьшения вторичных процессов, искажающих первичную картину процесса дегидрирования.

Процесс разложения моногидридов на катализаторе проходит следующие стадии: перенос моногидрида к поверхности катализатора, адсорбция ею моногидрида, разложение последнего и десорбция молекул водорода. При адсорбции моногидрида на поверхность катализатора твердое тело контактирует с газовой фазой. За счет существования свободных валентностей на поверхности катализатора газовые молекулы адсорбируются его поверхностью, затем, оставаясь в адсорбированном состоянии, вступают в реакцию друг с другом или молекулами, вылетающими из газовой фазы, после чего продукты реакции десорбируются . Характер и прочность химических связей хемосорбирующихся частиц с поверхностью катализатора и число их, способное адсорбироваться в координационной полусфере одной молекулы катализатора, зависят от конкретной электронной структуры внешних электронных оболочек катализатора, типа кристаллической решетки, электронного строения молекул и характера возможных для молекулы типов связи . Так как при использовании катализаторов разложение моногидридов переносится из газовой фазы на поверхность твердого тела, реакция разложения моносилана и моногермана при этом

описывается уравнением пМеН ^ п1Ме+2п2Н2, где п, п1 и п2 - стехиометрические коэффициенты, показывающие, сколько молекул данного сорта участвует в реакции.

Обозначим через [МеН4], [Ме] и концентрацию молекул SiH4, GeH4, Si, Ge и Н2, адсорбированных на поверхности катализатора. Очевидно, что [МеН4] = [МеН4] (0; [Ме] = [Ме] (0; = (t), где t - время течения реакции. Если оно отсчитывается от момента начала реакции, то выражения [МеЩ(0) - [МеЩ (0; [Ме] (0) - [Ме] (0) - (t) представляют собой числа молекул моногидрида. разложившихся за время t, и числа молекул продуктов реакции кремния, германия и водорода, образовавшихся за это же время. Тогда [МеН.](()) - [МеН4] (t) = [Ме] (0) - [Ме] (t) = (0) - (t) п п1 п2

Значит, скорость реакции определяется скоростью разложения моногидрида или скоростью образования кремния и водорода или германия и водорода соответственно, т. е. _ 1 d [МеН, ](t)_ 1 d [.Ме](t)_ 1 d(t) р п d ^) щ d (t) п2 d (t)

Скорости разложении моногидридов кремния и германия и образования кремния или германия и водорода находятся по уравнениям: v0 _ п / vp, ^ _ п,ур, v02 _ п2Ур соответственно.

В общем виде скорость реакции запишется vp _ Кр [МеН4]т, где Кр - константа скорости

реакции; т - кинетический коэффициент, представляющий собой порядок реакции по моногидриду. В случае разложения моносилана и моногермана кинетический коэффициент совпадает со стехиометрическим и равен единице .

Константа скорости реакции определяется по уравнению Аррениуса : Кр _ К0е"Е/кТ,

где К0 - предэкспоненциальный множитель; Е - энергия активации реакции разложения моногидрида; к - постоянная Больцмана; Т - абсолютная температура.

Значение энергии активации находится по закону Аррениуса из зависимости 1п Кр_ f (1/ Т), которая описывается прямой линией (наклон прямой характеризует Е,

а пересечение с осью ординат - К0 ).

Результаты и их обсуждение

Как показали исследования, платинорениевая шпинель при разложении моносилана снижает энергию активации от 1,5^10-19 до 7,5-10-20 Дж, а при разложении моногермана от 0,9^ 10-19 до 4,3-10-20 Дж. Скорость образования пленок кремния и германия в этом случае при прочих равных условиях и заданной температуре подложки, возрастает в два раза (см. рис. 1, а, б), а увеличение температуры подложки от 723 до 1073 К способствует ускорению реакции разложения при отсутствии и наличии катализаторов (см. рис. 1, в, г). Выход кремния и германия на чистой платинорениевой шпинели возрастает в указанном интервале температур подложек на 35-45 %, а на модифицированной окисью церия - на 40-55 % по сравнению с обычным процессом разложения моногидридов на кремниевых подложках.

Интенсификация процесса разложения моногидридов кремния и германия на подложках происходит, по-видимому, за счет образования в зоне катализатора активных радикалов и комплексов типа МеН3+\ МеН2+2, Н2-Ме = Ме-Н2. В этом случае к подложке переносятся осколки молекул исходных веществ, свободная энергия которых обычно заметно превышает энергию молекул исходного и конечных продуктов. Будучи в переходном состоянии, молекула обладает на поверхности повышенной реакционной способностью. Это может приводить к различным внутримолекулярным превращениям, составляющим часть суммарного каталитического превращения в области подложки. Их вероятность повышается при образовании нестабильных переходных состояний, которые в рассматриваемом случае по отношению к внутренним превращениям адсорбированных молекул и их реакциям с другими молекулами являются активным предадсорбционным состоянием.

Рис. 1. Зависимость скорости образования кремния (а) и германия (б), полноты разложения моносилана (в) и моногермана (г) от температуры подложки Т (температура катализатора 623 К): 1 - без катализатора; 2 - катализатор - платинорениевая шпинель; 3 - катализатор - платинорениевая

шпинель, промотированная окисью церия

Заключение

Использование платинорениевой шпинели, являющейся инициатором реакций разложения моногидридов кремния и германия, приводит к полному превращению моногидридов в кремний, германий и водород. Это перспективно при синтезе полупроводниковых и диэлектрических материалов для нужд микроэлектроники и микроэлектронной аппаратуры, поскольку позволяет получать их при температуре подложки на 200-300 градусов ниже, чем при традиционных технологических процессах разложения моногидридов.

Список литературы

1. Комар О.М., Ковалевский А.А., Строгова А.С. Кремнийгерманиевые наноструктурированные пленки и нанокластеры. LAP LAMBERT Academic Publishing, 2016. 345 с.

2. Колешко В.М.. Ковалевский А.А. Поликристаллические пленки полупроводников в микроэлектронике. Минск: Наука и техника. 1978. 341 с.

3. Баландин А.А. Современное состояние мультиплетной теории гетерогенного катализе. М.: Наука, 1968. 221 с.

4. Комар О.М., Ковалевский А.А., Строгова А.С. Полупроводниковый дисилицид титана: получение, свойства, использование. LAP LAMBERT Academic Publishing, 2015. 214 с.

5. Ковалевский А.А., Борисевич В.М., Долбик А.В. Исследование кинетики процесса осаждения слоев поликристаллического кремния в результате разложения моногидридов при пониженном давлении // Материалы. Технологии. Инструменты. 2007. Т. 12. № 4. С. 65-72.

6. Киреев А.В. Физическая химия. М.: Госхимиздат, 1955. 832 с.

1. Komar O.M., Kovalevskij A.A., Strogova A.S. Kremnijgermanievye nanostrukturirovannye plenki i nanoklastery. LAP LAMBERT Academic Publishing, 2016. 345 s. (in Russ.)

2. Koleshko V.M.. Kovalevskij A.A. Polikristallicheskie plenki poluprovodnikov v mikrojelektronike. Minsk: Nauka i tehnika. 1978. 341 s. (in Russ.)

3. Balandin A.A. Sovremennoe sostojanie mul"tipletnoj teorii geterogennogo katalize. M.: Nauka, 1968. 221 s. (in Russ.)

4. Komar O.M., Kovalevskij A.A., Strogova A.S. Poluprovodnikovyj disilicid titana: poluchenie, svojstva, ispol"zovanie. LAP LAMBERT Academic Publishing, 2015. 214 s. (in Russ.)

5. Kovalevskij A.A., Borisevich V.M., Dolbik A.V. Issledovanie kinetiki processa osazhdenija sloev polikristallicheskogo kremnija v rezul"tate razlozhenija monogidridov pri ponizhennom davlenii // Materialy. Tehnologii. Instrumenty. 2007. T. 12. № 4. S. 65-72. (in Russ.)

6. Kireev A.V. Fizicheskaja himija. M.: Goshimizdat, 1955. 832 s. (in Russ.)

Ковалевский А.А., к.т.н., доцент, ведущий научный сотрудник Белорусского государственного университета информатики и радиоэлектроники.

Строгова А.С., к.т.н., заместитель начальника студенческой науки и магистратуры Белорусского государственного университета информатики и радиоэлектроники.

Кузнецов Д.Ф., проректор по воспитательной работе Белорусского государственного университета информатики и радиоэлектроники.

Воронец Я.С., магистрант Белорусского государственного университета информатики и радиоэлектроники.

Information about the authors

Kovalevskii A.A., PhD, associate professor, leading researcher of Belarusian state university of informatics and radioelectronics.

Strogova A.S., deputy chief of department of student"s science and magistracy of Belarusian state university of informatics and radioelectronics.

Kuzniatsou D.F., vice-rector for personal development of Belarusian state university of informatics and radioelectronics.

Voronec Y.C., master student of Belarusian state university of informatics and radioelectronics.

Адрес для корреспонденции

220013, Республика Беларусь,

г. Минск, ул. П. Бровки, 4,

Похожие публикации