Chevroletavtoliga - Автомобильный портал

Оптические явления: примеры. Свет, мираж, северное сияние, радуга. Явления, связанные с преломлением света Световые явления радуга

Когда бы радуга ни возникала, она всегда образуется игрой света на каплях воды. Обычно это дождевые капли, изредка - мелкие капли тумана. На самых мелких каплях, таких, из которых состоят облака, радуга не видна.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды , взвешенных в воздухе. Эти капельки по-разному отклоняют свет разных цветов, в результате чего белый свет разлагается в спектр.

В яркую лунную ночь можно увидеть радугу от Луны . Поскольку человеческое зрение устроено так, что при слабом освещении глаз плохо воспринимает цвета, лунная радуга выглядит белесой; чем ярче свет, тем «цветнее» радуга.

По старому английскому поверью, у подножия каждой радуги можно найти горшок с золотом. Еще и теперь встречаются люди, воображающие, что они действительно могут добраться к подножью радуги и что там виден особый мерцающий свет.

Совершенно очевидно, что радуга не находится в каком-либо определенном месте , подобно реальной вещи; она - не что иное, как свет, приходящий по определенному направлению.

Чаще всего наблюдается первичная радуга , при которой свет претерпевает одно внутреннее отражение. Ход лучей показан на рисунке ниже. В первичной радуге красный цвет находится снаружи дуги, её угловой радиус составляет 40-42°.

Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это вторичная радуга , в которой свет отражается в капле два раза. Во вторичной радуге «перевёрнутый» порядок цветов - снаружи находится фиолетовый, а внутри красный. Угловой радиус вторичной радуги 50-53°.

Порядок цветов во второй радуге обратен порядку в первой; они обращены друг к другу красными полосами.

Схема образования радуги

  1. сферическая капля,
  2. внутреннее отражение,
  3. первичая радуга,
  4. преломление,
  5. вторичная радуга,
  6. входящий луч света,
  7. ход лучей при формировании первичной радуги,
  8. ход лучей при формировании вторичной радуги,
  9. наблюдатель,
  10. область формирования радуги,
  11. область формирования радуги.
  12. область формирования радуги.

Центр окружности, которую описывает радуга, всегда лежит на прямой, проходящей через Солнце (Луну) и глаз наблюдателя, то есть одновременно видеть солнце и радугу без использования зеркал невозможно.

Собственно говоря, радуга представляет собой полную окружность. Мы не можем проследить ее за горизонтом только потому, что мы не видим дождевых капель, падающих под нами.

С самолета или возвышенности можно видеть полную окружность.

«Семь цветов радуги» существуют лишь в воображении. Это - риторический оборот, живущий так долго потому, что мы редко видим вещи такими, каковы они в действительности. На самом деле цвета радуги постепенно переходят один в другой, и лишь глаз непроизвольно объединяет их в группы.

Традиция выделять в радуге 7 цветов пошла от Исаака Ньютона , для которого число 7 имело специальное символическое значение (по то ли пифагорейским, то ли богословским соображениям). Традиция выделять в радуге 7 цветов не всемирна, например, у болгар в радуге 6 цветов.

Для запоминания последовательности цветов в радуге есть мнемонические фразы, первые буквы каждого слова в которых соответствуют первым буквам в названиях цветов (Красный, Оранжевый, Желтый, Зеленый, Голубой, Синий, Фиолетовый

"К аждый о хотник ж елает з нать, г де с идит ф азан" . "Как однажды жак-звонарь головой сломал фонарь" .

Представляем Вам подборку из 20ти наиболее красивых природных феноменов, связанных с игрой света. Поистине явления природы неописуемы - это надо видеть! =)

Разделим условно все световые метаморфозы на три подгруппы. Первая - Вода и Лёд, вторая - Лучи и Тени, и третья - Световые контрасты.

Вода и Лёд

“Окологоризонтальная Дуга”

Этот феномен также известен как “огненная радуга”. Создаётся в небе, когда свет преломляется через ледяные кристаллы в перистых облаках. Явление это очень редкое, поскольку и ледяные кристаллы и солнце должны встать точно по горизонтальной линии, чтобы произошло такое эффектное преломление. Этот особенно удачный пример был запечатлён в небе над Spokane в Вашингтоне, в 2006 году


Ещё пара примеров огненной радуги




Когда солнце светит на альпиниста или другой объект сверху - тень проектируется на туман, создавая любопытно увеличенную треугольную форму. Этот эффект сопровождается своеобразным ореолом вокруг объекта - цветными световыми кругами, которые появляются непосредственно напротив солнца, когда солнечный свет отражается облаком одинаковых капелек воды. Название этот природный феномен получил из-за того, что чаще всего наблюдался именно на достаточно доступных для альпинистов невысоких немецких пиках Брокена, вследствие частых туманов в этом районе





В двух словах - это радуга вверх ногами=) Такой себе огромный разноцветный смайл на небе) Получается такое чудо за счёт преломления солнечных лучей через горизонтальные кристаллы льда в облаках определённой формы. Явление сосредоточено в зените, параллельно горизонту, диапазон цвета - от синего в районе зенита и до красного к горизонту. Феномен этот всегда в форме неполной круглой дуги; полный круг в подобной ситуации - исключительно редкая Дуга Пехотинца, которая впервые была запечатлена на плёнке в 2007 году



Туманная Дуга

Этот странный ореол был замечен с моста Золотых Ворот в Сан-Франциско - выглядел он как полностью белая радуга. Как и радуга этот феномен создаётся благодаря преломлению света через капельки воды в облаках, но, в отличие от радуги - из-за небольшого размера капелек тумана цвета как бы не хватает. Поэтому радуга получается бесцветной - просто белой) Моряки часто именуют их как “морские волки” или “туманные дуги”




Радужный ореол

Когда свет как бы рассеивается обратно (смесь отражения, преломления и дифракции) - назад к его источнику, капелькам воды в облаках, тень объекта между облаком и источником может быть разделена на цветные полосы. Glory переводится ещё как неземная красота - достаточно точное название такому прекрасному природному феномену) В некоторых частях Китая этот феномен даже называют Светом Будды - он часто сопровождается Призраком Брокена. На фото красивые цветные полосы эффектно окружают тень самолета напротив облака



Ореолы - одни из самых известных и частых оптических явлений, возникают они под множеством обликов. Наиболее часто встречается именно феномен солнечного ореола, вызванный преломлением света кристаллами льда в перистых облаках на большой высоте, а специфическая форма и ориентация кристаллов могут создать изменение в появлении ореола. Во время очень холодной погоды ореолы, сформированные кристаллами рядом с землей отражают солнечный свет между ними, посылая его в нескольких направлениях сразу - этот эффект известен как “алмазная пыль”




Когда солнце оказывается точно под правильным углом позади облаков - капельки воды в них преломляют свет, создавая интенсивный тянущийся шлейф. Окраска, как и в радуге, вызванная различными длинами световых волн - различные длины волны преломляются в разной степени, изменяя угол преломления и, следовательно, цвета света в нашем восприятии. На этом фото радужность облака сопровождается резко окрашенной радугой


Ещё несколько фотографий этого явления




Сочетание низкой Луны и темного неба часто создает лунные дуги, по существу радуги, произведенные светом луны. Появляясь в противоположном Луне конце неба, они обычно выглядят как полностью белые из-за слабой окраски, однако фотография с длинной выдержкой может захватить истинные цвета, как на этом фото, сделанном в Йосемитском национальном парке, Калифорния.


Ещё несколько фото лунной радуги



Этот феномен возникает как белое кольцо, окружающее небо, всегда на той же высоте над горизонтом, что и Солнце. Обычно удаётся уловить лишь фрагменты целой картины. Миллионы вертикально расположенных ледяных кристаллов отражают солнечные лучи по всему небу, чтобы получилось это красивое явление.


По бокам получающейся сферы часто появляются так называется ложные Солнца, как например на этом фото


Радуги могут принимать множество форм: многожественные дуги, пересекающиеся дуги, красные дуги, одинаковые дуги, дуги с окрашенными краями, темные полосы, “спицы” и многие другие, но объединяет их то, что все они делятся на цвета - красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Помните из детства "запоминалку" расположения цветов в радуге - Каждый Охотник Желает Знать, Где Сидит Фазан?=) Радуги появляются, когда свет преломляется через капли воды в атмосфере, чаще всего во время дождя, но дымка или туман также могут создать подобные эффекты, и намного более редки, чем можно было бы вообразить. Во все времена множество различных культур приписывали радугам множество значений и объяснений, например древние греки верили, что радуги были дорогой к небесам, а ирландцы считали, что в том месте, где заканчивается радуга - лепрекон закопал свой горшок с золотом=)





Больше информации и красивых фото по радуге можно найти

Лучи и Тени

Корона - это тип плазменной атмосферы, которая окружает астрономическое тело. Cамый известный пример такого явления - корона вокруг Солнца во время полного затмения. Оно простирается в космосе на тысячи километров и содержит ионизированное железо, разогретое почти до миллиона градусов Цельсия. Во время затмения его яркий свет окружает затемненное солнце и кажется будто вокруг светила появляется корона из света




Когда затемнённые области или водопроницаемые препятствия, такие как ветви дерева или облака, фильтруют луч солнца - из лучей получаются целые колонны света, исходящие из единственного источника в небе. Явление это, часто используемое в фильмах ужасов, обычно наблюдается на рассвете или закате и может даже быть засвидетельствовано под океаном, если солнечные лучи проходят через полосы сломанного льда. Эта красивая фотография была сделана в Национальном парке Юты


Ещё несколько примеров





Fata Morgana

Взаимодействие между холодным воздухом около уровня земли и теплым воздухом сразу над ним может действовать как преломляющая линза и перевернуть вверх тормашками изображение объектов на горизонте, по которому фактическое изображение, кажется, колеблется. На этом снимке, деланном в Тюрингии, Германия, горизонт на расстоянии, кажется, вообще исчез, хотя синяя часть дороги - просто отражение неба выше горизонта. Утверждение о том, что миражи - полностью несуществующие изображения, которые являются только людям, затерявшимся в пустыне, является некорректным, вероятно перепутанным с эффектами крайнего обезвоживания, которое может вызвать галлюцинации. Миражи всегда основаны на реальных объектах, хотя верно то, что они могут казаться ближе из-за эффекта миража



Отражение света ледяными кристаллами с почти идеально горизонтальными плоскими поверхностями создает сильный луч. Источником света может быть Солнце, Луна или вообще искусственный свет. Интересная особенность заключается в том, что у столба будет цвет этого источника. На этом фото, сделанном в Финляндии, оранжевый солнечный свет на закате создает такой же оранжевый великолепный столб

Ещё парочка “солнечных столбов”)




Световые контрасты

Столкновение заряженных частиц в верхней атмосфере часто создает великолепные световые картины в полярных областях. Цвет зависит от элементного содержания частиц – большинство полярных сияний кажется зеленым или красным из-за кислорода, однако азот иногда создает глубокую синюю или фиолетовую видимость. На фото - известная Аврора Борилис или Северное сияние, названное так в честь римской богини рассвета Авроры и древнегреческого бога северного ветра Борея





А так Северное сияние выглядит из космоса



Конденсационный (инверсионный) след

Следы пара, которые следуют за самолетом через всё небо - это одни из самых ошеломляющих примеров вмешательства человека в атмосферу. Они созданы или выхлопом самолета или воздушными вихрями от крыльев и появляются только в холодных температурах на большой высоте, конденсируясь в ледяные капельки и воду. На этом фото куча инверсионных следов перекрещивает небо, создавая причудливый образец этого неприродного феномена




Высотные ветра искривляют следы ракет, и их маленькие выхлопные частицы преврящают солнечный свет в яркие переливающиеся цвета, которые иногда те же самые ветра переносят на тысячи километров, пока те окончательно не рассеются. На фото - следы ракеты Минотавр, запущенной с базы ВВС США в Ванденберге, Калифорния


Небо, как и многие другие вещи вокруг нас, рассеивает поляризованный свет, имеющий определенную электромагнитную ориентацию. Поляризация всегда перпендикулярна непосредственно световому пути и если в свете присутствует лишь одно направление поляризации - говорят, что свет линейно поляризован. Эта фотография была сделана с поляризованной линзой фильтра широкого угла, чтобы показать, насколько захватывающе выглядит электромагнитный заряд в небе. Обратите внимание, какой оттенок небо имеет около горизонта, и какой - в самом верху


Технически невидимое невооруженным глазом, это явление можно запечатлеть, оставив камеру как минимум на час, а то и на всю ночь с открытым объективом. Естественное вращение Земли заставляет звезды в небе двигаться через горизонт, создавая за собой замечательные следы. Единственная звезда в вечернем небе, которая всегда находится на одном месте - конечно же Полярная, так как она находится фактически на одной оси с Землёй и её колебания заметны только на Северном полюсе. То же самое было бы верно на юге, но нет никакой звезды, достаточно яркой для того, чтобы наблюдать аналогичный эффект





А вот и фото с полюса)


Слабый треугольный свет, замеченный в вечернем небе и простирающийся к небесам, Зодиакальный свет легко скрывается легким загрязнением атмосферы или лунным светом. Феномен этот вызывается отражением солнечного света от частиц пыли в космосе, известных как космическая пыль, следовательно его спектр абсолютно идентичен спектру Солнечной системы. Солнечное излучение заставляет частицы пыли медленно расти, создавая величественное созвездие изящно разбросанных по небу огоньков




В религиозных представлениях народов древности радуге приписывалась роль моста между землей и небом. В греко-римской мифологии известна даже особая богиня радуги - Ирида. Греческие ученые Анаксимен и Анаксагор считали, что радуга возникает за счет отражения Солнца в темном облаке. Аристотель изложил представления о радуге в специальном разделе своей «Метеорологии». Он считал, что радуга возникает благодаря отражению света, но не просто от всего облака, а от его капель.

В 1637 году знаменитый французский философ и ученый Декарт дал математическую теорию радуги, основанную на преломлении света. Впоследствии эта теория была дополнена Ньютоном на основании его опытов по разложению света на цвета с помощью призмы. Дополненная Ньютоном теория Декарта не могла объяснить одновременного существования нескольких радуг, различной их ширины, обязательного отсутствия в цветных полосах некоторых цветов, влияния размеров капель облака на внешний вид явления. Точную теорию радуги на основе представлений о дифракции света дал в 1836 году английский астроном Д. Эри. Рассматривая пелену дождя как пространственную структуру, обеспечивающую возникновение дифракции, Эри объяснил все особенности радуги. Его теория полностью сохранила свое значение и для нашего времени.

Радуга - это оптическое явление, возникающее в атмосфере и имеющее вид разноцветной дуги на небесном своде. Наблюдается она в тех случаях, когда солнечные лучи освещают завесу дождя, расположенную на противоположной Солнцу стороне неба. Центр дуги радуги находится в направлении прямой, проходящей через солнечный диск (хотя бы и скрытый от наблюдения тучами) и глаз наблюдателя, т.е. в точке, противоположной Солнцу. Дуга радуги представляет собой часть круга, описанного вокруг этой точки радиусом в 42°30" (в угловом измерении).

Наблюдатель иногда может одновременно увидеть несколько радуг - главную, побочную и вторичные. Главная радуга представляет собой цветную дугу на каплях удаляющейся дождевой пелены и возникает она всегда со стороны неба, противоположной Солнцу. При Солнце на горизонте высота верхнего края главной радуги составляет в угловой мере 42°30". При подъеме Солнца над горизонтом видимая часть радуги понижается. Когда Солнце достигает высоты 42°30", для наблюдателя на земной поверхности радуга будет не видна, однако если в момент ее исчезновения подняться на башню или мачту корабля, то радугу можно увидеть снова.

При наблюдении с высокой горы или с самолета радуга может иметь вид полной окружности. Еще Аристотель математически доказал, что Солнце, местонахождение наблюдателя и центр радуги находятся на одной прямой. Поэтому чем выше над горизонтом поднимается Солнце, тем ниже опускается центр радуги. В пересеченной местности радугу можно наблюдать и на фоне ландшафта.

Интересно расположение цветов в радуге. Оно всегда постоянно. Красный цвет главной радуги расположен на ее верхнем крае, фиолетовый - на нижнем. Между этими крайними цветами следуют друг за другом остальные цвета в такой же последовательности, как в солнечном спектре. В принципе в радуге никогда не бывают представлены все цвета спектра. Чаще всего в ней отсутствуют или слабо выражены синий, темно-синий и насыщенный чисто красный цвета. С увеличением размеров капель дождя происходит сужение цветных полос радуги, сами же цвета становятся более насыщенными. Преобладание в явлении зеленых тонов обычно указывает на последующий переход к хорошей погоде. Общая картина цветов радуги имеет размытый характер, так как образуется она протяженным источником света.

Над главной радугой располагается побочная с чередованием цветов, обратным главной. Угловая высота верхнего края побочной радуги составляет 53°32". Кроме того, со стороны фиолетового конца главной радуги иногда можно наблюдать радуги вторичные, преимущественной их окраской является зеленая и розовая. В редких случаях вторичные радуги отмечаются и со стороны фиолетового края побочной радуги. Вторичные радуги более широки в высоких слоях дождевой пелены, где капли дождя имеют меньшие размеры.

При искусственном воспроизведении явления в лаборатории удавалось получать до 19 радуг. Над водоемом могут наблюдаться дополнительные радуги, расположенные друг относительно друга неконцентрично. Для одной из них источником света является Солнце, для другой - его отражение от водной поверхности. В этих условиях могут встречаться и радуги, расположенные «вверх ногами».

Ночью при лунном освещении и туманной погоде в горах и на берегах морей можно наблюдать белую радугу. Такой тип радуги может возникать и при воздействии солнечного света на туман. Она имеет вид блестящей белой дуги, с внешней стороны окрашенной в желтоватый и оранжево-красный цвета, а изнутри - в сине-фиолетовый.

Если радуга образована действием лунного света на капли дождя, то она выглядит белой. В некоторых случаях она кажется белой только вследствие малой интенсивности света. Такого типа радуга при укрупнении капель дождя может перейти в цветную. Наоборот, цветная радуга может потерять окраску, если дождь превратится в мелкокапельный туман. Как правило, при наличии мелких капель окраска радуги выражена слабо.

Радуга наблюдается не только на пелене дождя. В меньших масштабах ее можно увидеть на каплях воды у водопадов, фонтанов и в морском прибое. При этом в качестве источника света могут служить не только Солнце и Луна, но и прожектор.

Строение радуги.

Радуга может рассматриваться как гигантское колесо, которое как на ось надето на воображаемую прямую линию, проходящую через Солнце и наблюдателя.

На рисунке эта прямая обозначена как прямая OO 1 ; O -- наблюдатель, ОСD -- плоскость земной поверхности, ?AOO 1 = j -- угловая высота Солнца над горизонтом. Чтобы найти tg(j), достаточно разделить рост наблюдателя на длину отбрасываемой им тени. Точка O 1 называется противосолнечной точкой, она находится ниже линии горизонта СD. Из рисунка видно, что радуга представляет собой окружность основания конуса, ось которого есть ОO 1 ; j - угол, составляемый осью конуса с любой из его образующих (угол раствора конуса). Разумеется, наблюдатель видит не всю указанную окружность, а только ту часть ее (на рисунке участок СВD), которая находится над линией горизонта. Заметим, что?АОВ = Ф есть угол, под которым наблюдатель видит вершину радуги, а?АОD = a -- угол, под которым наблюдатель видит каждое из оснований радуги. Очевидно, что

Ф + j = g (2.1).

Таким образом, положение радуги по отношению к окружающему ландшафту зависит от положения наблюдателя по отношению к Солнцу, а угловые размеры радуги определяются высотой Солнца над горизонтом. Наблюдатель есть вершина конуса, ось которого направлена по линии, соединяющей наблюдателя с Солнцем. Радуга есть находящаяся над линией горизонта часть окружности основания этого конуса. При передвижениях наблюдателя указанный конус, а значит, и радуга, соответствующим образом перемещаются.

Здесь необходимо сделать два пояснения. Во-первых, когда мы говорим о прямой линии, соединяющей наблюдателя с Солнцем, то имеем в виду не истинное, а наблюдаемое направление на Солнце. Оно отличается от истинного на угол рефракции.

Во-вторых, когда мы говорим о радуге над линией горизонта, то имеем в виду относительно далекую радугу -- когда завеса дождя удалена от нас на несколько километров.

Можно наблюдать также и близкую радугу, на пример, радугу, возникающую на фоне большого фонтана. В этом случае концы радуги как бы уходят в землю. Степень удаленности радуги от наблюдателя не влияет, очевидно, на ее угловые размеры. Из (2.1) следует, что Ф = g - j.

Для основной радуги угол у равен примерно 42° (для желтого участка радуги) а для вторичной этот угол составляет 52°. Отсюда ясно, почему земной наблюдатель не может любоваться основной радугой, если высота Солнца над горизонтом превышает 42°, и не увидит вторичную радугу при высоте Солнца, превышающей 52°.

Образование радуги.

Основная радуга образуется за счёт отражения света в каплях воды. А побочная радуга образуется в результате двукратного отражения света внутри каждой капли. В этом случае лучи света выходят из капли под другими углами, чем те, которые дают основную радугу, и цвета в побочной радуге располагаются в обратной последовательности.

Ход лучей в капле воды: а - при одном отражении, б - при двух отражениях

Можно рассмотреть простейший случай: пусть на капли, имеющих форму шара, падает пучок параллельных солнечных лучей. Луч, падающий на поверхность капли, преломляется внутри нее по закону преломления:

n1 sin б=n2 sin в

где n 1 =1, n 2 =1,33 - соответственно показатели преломления воздуха и воды, б - угол падения, а в - угол преломления света.

Внутри капли идет по прямой. Затем происходит частичное преломление луча и частичное его отражение. Надо заметить, что, чем меньше угол падения, тем меньше интенсивность отраженного луча и тем больше интенсивность преломленного луча. Луч после отражения попадает в другую точку, где также происходит частичное отражение и частичное преломление света. Преломленный луч выходит из капли под некоторым углом, а отраженный может пройти дальше и т. д. Таким образом, луч света в капле претерпевает многократное отражение и преломление. При каждом отражении некоторая часть лучей света выходит наружу и интенсивность их внутри капли уменьшается. Наиболее интенсивным из выходящих в воздух лучей является луч, первым вышедший из капли. Но наблюдать его трудно, так как он теряется на фоне ярких прямых солнечных лучей.

При рассмотрении образования радуги нужно учесть еще одно явление - неодинаковое преломление волн света различной длины, то есть световых лучей разного цвета. Это явление носит название дисперсии. Вследствие дисперсии углы преломления и угла отклонения лучей в капле различны для лучей различной окраски. Чем больше внутренних отражений испытают лучи в капле, тем слабее радуга. Наблюдать радугу можно, если Солнце находится позади наблюдателя. Поэтому самая яркая, первичная радуга формируется из лучей, испытавших одно внутреннее отражение. Они пересекают падающие лучи под углом около 42°. Геометрическим местом точек, расположенных под углом 42° к падающему лучу, является конус, воспринимаемый глазом в его вершине как окружность. При освещении белым светом будет получаться цветная полоса, причем красная дуга всегда выше фиолетовой.

Человек - большой мастер строить воздушные замки на песке. Однако практика показывает: до матушки природы ему далеко. Мастерица от Бога способна на такой обман наших чувств, что дух захватывает! Но как бы волшебно ни выглядели оптические явления, примеры которых мы рассмотрим, они не фантасмагория, а результат течения физических процессов. В неоднородной атмосфере Земли лучи света искривляются, вызывая сонм иллюзий. Но разве можно представить себе мир без грез и видений? Он был бы таким серым…

Свет и цвет

Говоря про свет и формы которых наблюдает не одно поколение людей, подчеркнем, что цвета появляются в атмосфере вследствие того, что белый свет в ходе взаимодействия с материалами в атмосфере разбивается на составные части (спектр). Это взаимодействие осуществляется при помощи одной из трех основных форм: отражения, преломления (рефракции) и дифракции.

Если уж речь зашла о спектре, подумайте о том, как научить своего ребенка запомнить совокупности цветных полос, получающихся при прохождении светового луча через преломляющую среду. Поможет простая фраза: «Каждый (красный) охотник (оранжевый) желает (желтый) знать (зеленый), где (голубой) сидит(синий) фазан (фиолетовый)».

Есть возникновение вторичных волн, распространяющихся от границы двух сред обратно в первую среду. Рефракция - преломление лучей на границе двух сред. Дифракция - отгибание световыми потоками твердых частиц, капель жидкости, а также других материалов, присутствующих в атмосфере. Все это и есть причина процветающего во Вселенной «оптического обмана зрения». Примеров множество: начиная от синего цвета неба, миражей и радуги до ложных солнц и солнечных столбов.

Внутреннее отражение

Оптические явления в физике - важный раздел, достойный глубокого изучения. Так что продолжим. Отражение имеет место, когда падают на гладкую поверхность и возвращаются под углом, равным входящему. Этот феномен объясняет происхождение цвета: некоторые части белого легче абсорбируются и отражаются, чем другие. Например, объект, который, как представляется, имеет зеленый цвет, кажется таковым потому, что поглощает все длины волн белого света, за исключением зеленого, который и находит свое отражение.

Одна из форм - внутреннее отражение - часто присутствует в объяснении оптических явлений. Свет входит в прозрачное физическое тело (материал), например каплю воды, через внешнюю поверхность и отсвечивает уже от внутренней. Затем, во второй раз - от материала. Цвет радуги частично можно объяснить с точки зрения внутреннего отражения.

Радуга-дуга

Радуга - оптическое явление, которое случается, когда солнечный свет и дождь специфическим образом объединяются. Лучи солнечного света разделяются на цвета, которые мы видим в радуге, когда они входят в дождевые капли. Это происходит тогда, когда луч падает на устремленные к Земле «дождинки» под определенным углом, цвета разделяются (белый свет разлагается в спектр), и мы видим яркую, праздничную радугу, напоминающую гигантский полукруглый мост.

Кажется, пестрота из изогнутых полос повисает прямо над головой. Излучающий источник всегда будет позади нас: видеть сразу ясное солнышко и красотку-радугу нельзя (разве что, если использовать для этой цели зеркало). Явление не чуждо Луне. Когда лунная ночь ярка, можно увидеть радужный «веер» и поблизости от Селены.

Когда вокруг почти ничего не видно, работают самые восприимчивые к свету фоторецепторы глаза человека - «палочки». Они чувствительны к изумрудно-зеленой части спектра, других цветов «не видят». В результате радуга выглядит белесой. Когда освещение усиливается, подключаются «колбочки», благодаря этим нервным окончаниям дуга смотрится более цветастой.

Мираж

С Земли мы наблюдаем только часть окружности первичной радуги. Свет при этом претерпевает одно отражение. В горах можно увидеть круглую радугу. А знаете ли вы, что «красавиц» бывает две и даже три? Радуга, взметнувшаяся над радугой, менее яркая и «перевернутая» (ведь это отражение первой). Третья случается там, где воздух кристально чист и прозрачен (например, в горах). Это что касается привычного зрелища.

Мираж - оптическое явление, которое обыденным не назовешь. В России оно относительно редко встречается. Каждый раз, произнося магическое слово, мы вспоминаем легенду о корабле-призраке "Летучий голландец". Согласно сказаниям, за преступления капитана он будет бороздить океанские просторы вплоть до второго пришествия.

А вот еще один «голландец». Летучим стал крейсер «Рипалс», затонувший в декабре 1941 года у берегов Цейлона. Его увидел "совсем рядом" экипаж британского судна "Вендор", находившийся в районе Мальдивских островов. На деле корабли разделяли 900 километров!

Фата Моргана

"Летучий голландец" и другие - оптические явления, примеры из когорты потрясающих миражей «фата-моргана» (названы в честь героини британского эпоса). Необычное оптическое явление есть сочетание сразу нескольких форм. В небе образуется сложное, быстро меняющееся изображение. Глядя на виды того, что находится далеко за горизонтом, кажется, можно сойти с ума, настолько они «осязаемы».

Чудеса, вызванные атмосферными условиями, могут сбить с толку кого угодно. Особенно такие, как появление "слоя воды" в пустыне или на горячей дороге, вызванные преломлением лучей. Не только дети, но и взрослые не могут отделаться от ощущения, что животные, колодцы, деревья, строения реальны. Но, увы!

Свет проходит через слои неравномерно нагретого воздуха, создавая своеобразное изображение 3D. Миражи бывают нижние (отдаленная ровная поверхность обретает вид открытой воды), боковые (возникают рядом с сильно прогретой вертикальной поверхностью), хроно- (воспроизводят события прошлого).

Северное сияние

Размышляя о том, какие бывают оптические явления, невозможно не сказать о северном (полярном) сиянии. Оно имеет две основные формы: красивые сверкающие ленты и пятна, напоминающие облака. Интенсивное сияние, как правило, «ленточное». Случается, что цветные светящиеся полосы перестают существовать, так и не разбившись на составляющие.

В темноте небесного пространства занавес, как правило, тянется по направлению с востока на запад. «Шлейф» может достигать нескольких тысяч километров в ширину, и несколько сотен - в высоту. Это не плотный, а тонкий «заслон», сквозь который сверкают звездочки. Очень красивое зрелище.

Нижний край «кулисы» четок, имеет красноватый или розовый оттенок, верхний как будто растворяется в темноте, благодаря чему хорошо ощущается невыразимая глубина пространства. Обсудим четыре вида полярных сияний.

Однородная структура

Спокойной, простой формы сияние, яркое снизу и растворяющееся вверху, называют однородной дугой; активное, подвижное, с мелкими складками и струйками - лучистой дугой. Сияющие складки, накладывающиеся друг на друга (крупные на мелкие), называются «лучистая полоса».

И четвертый вид - когда область из складок и петель становится очень большой. После окончания активности лента обретает однородную структуру. Есть мнение, что однородность - основное свойство «его сиятельства». Складки возникают лишь в период усиления атмосферной активности.

Есть и другие оптические явления. Примеры не замедлим перечислить ниже. Шквал - сияние, придающее всей полярной шапке беловато-зеленое свечение. Он наблюдается на южном и северном полюсах Земли, в Исландии, Норвегии и т. д. Явление возникает в результате свечения намагниченных верхних слоев атмосферы при взаимодействии с заряженными частицами солнечного ветра (так называют истечение в пространство космоса плазмы из гелия и водорода).

Про можно сказать следующее: они часты в морозные дни, очень эффектны.

Святой Эльм в венцах зеленых лучей и гало

Есть и другие оптические явления. Например, гало, появление которого связано с ледяными кристалликами, образующимися в атмосфере. С радугой его роднит дисперсия (разложение света на составляющие), только уже не в капле, а в твердой структуре льда.

Радуги похожи одна на другую, ведь капли одинаковые, они только и могут, что падать. Гало насчитывает сотню видов, так как кристаллики разные и очень «шустрые»: то парят, то кружатся, то устремляются к Земле.

Мечтая в очередной раз «обмануться», можно полюбоваться на ложное солнце (паргелий) или Последние «сидят» на острых вершинах высоких зданий. Мистика тут ни при чем. Это электрический разряд в атмосфере. Он часто возникает во время грозы или в песчаную бурю (когда частички электризуются).

Фотографы любят ловить «зеленый луч» (вспышка над солнцем и преломление лучей у горизонта). Его лучше всего запечатлевать на открытых пространствах, в безоблачную погоду. Зато венцы (дифракция света) хорошо видны, когда местность заволакивает туман (радужные круги вокруг фары вашего авто - это и есть венцы), а небо затянуто пеленой облаков. В тумане из мелких капелек круги особенно красивы. Когда туман сгущается - они расплываются. Поэтому уменьшение числа радужных колец расценивается как сигнал ухудшения погоды. Какой же это огромный мир - оптические явления! Примеры, разобранные нами - лишь верхушка айсберга. Зная об этих явлениях, мы сможем научно объяснить любую атмосферную иллюзию.

Как средь прозрачных облачных пелен

Над луком лук соцветный и сокружный

Посланницей Юноны вознесен,

И образован внутренним наружный.



Радуга у всех на виду - она обычно наблюдается в виде двух окрашенных дуг (двух соцветных луков, о которых пишет Данте), причем в верхней дуге цвета располагаются в таком порядке сверху вниз: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный, а в нижней дуге наоборот - от красного до фиолетового. Для запоминания их последовательности есть мнемонические фразы, первые буквы каждого слова в которых соответствуют первым буквам названия цвета Например, такой является фраза "Каждый Охотник Желает Знать, Где Сидит Фазан" или другая, не менее известная, "Как Однажды Жан-Звонарь Головою Сшиб Фонарь". Правда, традиция выделять в радуге 7 цветов не всемирна. Например, у болгар в радуге 6 цветов.

Радуга даёт уникальную возможность наблюдать в естественных условиях разложение белого света в спектр.

Радуга обычно появляется после дождя, когда Солнце стоит довольно низко. Где-то между Солнцем и наблюдателем ещё идёт дождь. Солнечный свет, проходя сквозь капли воды, многократно отражается и преломляется в них, как в маленьких призмах, и лучи разного цвета выходят из капель под различными углами. Это явление называется дисперсией (т. е. разложением) света. В результате образуется яркая цветная дуга (а на самом деле крут; целиком его можно увидеть с самолёта).

Иногда наблюдаются сразу две, реже - три разноцветные дуги. Первую радугу создают лучи, отразившиеся внутри капель однократно, вторую - лучи, отразившиеся дважды, и т. д. В 1948 г. в Ленинграде (ныне Санкт-Петербург) среди туч над Невой появилось сразу четыре радуги.

Вид радуги, яркость цветов, ширина полос зависят от размеров и количества водяных капель в воздухе. Яркая радуга бывает летом после грозового дождя, во время которого падают крупные капли. Как правило, такая радуга предвещает хорошую погоду.

В яркую лунную ночь можно увидеть радугу от Луны. Радуга возникает в свете полной луны, когда идет дождь. Поскольку человеческое зрение устроено так, что при слабом освещении наиболее чувствительные рецепторы глаза - "палочки" - не воспринимает цвета, лунная радуга выглядит белесой; чем ярче свет, тем "цветнее" радуга (в её восприятие включаются цветовые рецепторы - "колбочки").

огненная радуга

Ее повезло увидеть жительнице Швеции Мариан Эриксон. Радуга протянулась по ночному небу и стояла при полной луне в течение минуты.

Приметы и легенды.


Когда-то давным-давно человек стал задумываться, почему же на небе появляются радуги. В те времена об оптике даже и не слышали. Потому люди придумывали мифы и легенды, а так же существовало множество примет. Вот некоторые из них:

  • В скандинавской мифологии радуга - это мост Биврёст, соединяющий Мидгард (мир людей) и Асгард (мир богов).
  • В древнеиндийской мифологии - лук Индры, бога грома и молнии.
  • В древнегреческой мифологии - дорога Ириды, посланницы между мирами богов и людей.
  • По славянским поверьям, радуга, подобно змею, пьёт воду из озёр, рек и морей, которая потом проливается дождём.
  • Ирландский лепрекон прячет горшок золота в месте, где радуга коснулась земли.
  • По чувашским поверьям, если пройти сквозь радугу, то можно поменять пол.
  • В Библии радуга появилась после всемирного потопа как символ прощения человечества.
  • Суеверные люди считали, что радуга является плохим предзнаменованием. Они считали, что души умерших переходят в потусторонний мир по радуге, и если появилась радуга, это означает чью-то близкую кончину.

История объяснения радуги.

Уже Аристотель, древнегреческий философ, пытался объяснить причину радуги. А персидский астроном Qutb al-Din al- Shirazi (1236-1311), а возможно, его ученик Kamal al-din al-Farisi (1260-1320), видимо, был первым, кто дал достаточ но точное объяснение феномена.

Общая физическая картина радуги была уже четко описана Марком Антонием де Доминисом (1611).

М.А. де Доминис

На основании опытных наблюдений он пришел к заключению, что радуга получается в результате отражения от внутренней поверхности капли дождя и двукратного преломления - при входе в каплю и при выходе из нее. Рене Декарт дал более полное объяснение радуги в своем труде "Метеоры" в главе "О радуге" (1635).

Рене Декарт

Декарт пишет:

"Во-первых, когда я принял во внимание, что радуга может появляться не только на небе, но также и в воздухе вблизи нас каждый раз, когда в нем находятся капли воды, освещенные солнцем, как это иногда можно видеть в фонтанах, мне легко было заключить, что она зависит от того, каким образом лучи света действуют на эти капли, а от них достигают нашего глаза; далее, зная, что эти капли шарообразны, и видя, что и при больших и при малых каплях радуга появляется всегда одинаковым образом, я поставил себе целью создать очень большую каплю, чтобы иметь возможность лучше ее рассмотреть. Для этого я наполнил водой большой стеклянный сосуд, вполне круглый и вполне прозрачный и пришел к следующему выводу..."

Этот вывод повторяет и уточняет результат, полученный Доминисом. В частности, Декарт обнаружил, что вторая (внешняя) радуга возникает в результате двух преломлений и двух отражений. Он также качественно объяснил появление цветов радуги, сравнивая преломление света в капле с преломлением в стеклянной призме. Рисунок 1, поясняющий ход луч ей в капле, взят из упомянутой выше работы Декарта. Но главная заслуга Декарта заключалась в том, что он колич ественно объяснил это явление, впервые используя закон преломления света:

"Я еще не знал, почему цвета появляются лишь под известными углами, пока не взял перо и не вычислил подробно хода всех лучей, которые падают на различные точ ки водяной капли, чтобы узнать, под какими углами они могут попасть в наш глаз после двух преломлений и одного или двух отражений. Тогда я нашел, что после одного отражения и двух преломлений гораздо больше лучей, которые могут быть видны под углом от 41° до 42° (по отношению к солнечному лучу), чем таких, которые видны под каким-либо меньшим углом, и нет ни одного, который был бы виден под большим. Далее я нашел также, что после двух отражений и двух преломлений оказывается гораздо больше лучей, падающих в глаз под углом от 51° до 52°, чем таких, которые бы падали под каким-либо большим углом, и нет совсем таких, которые падали бы под меньшим".

Таким образом, Декарт не только вычисляет ход лучей, но и определяет угловое распределение интенсивности рассеянного каплями света.

В отношении цветов теория дополнена Исааком Ньютоном.

Исаак Ньютон

Хотя многоцветный спектр радуги непрерывен, по традиции в нем выделяют 7 цветов. Считают, что первым выбрал число 7 Исаак Ньютон, для которого число 7 имело специальное символическое значение (по пифагорейским, богословским или умерологическим соображениям).

В известных "Лекциях по оптике", которые были написаны в 70-х годах XVI века, но опубликованы уже после смерти Ньютона в 1729 году, приведено следующее резюме:
"Из лучей, входящих в шар, некоторые выходят из него после одного отражения, другие - после двух отражений; есть лучи, выходящие после трех отражений и даже большего числа отражений. Поскольку дождевые капли очень малы относительно расстояния до глаза наблюдателя, то не стоит совсем рассматривать их размеры, а только углы, образуемые падающими лучами с выходящими. Там, где эти углы наибольшие или наименьшие, выходящие лучи наиболее сгущены. Так как различные роды лучей (лучи разных цветов) составляют различные наибольшие и наименьшие углы, то лучи, наиболее плотно собирающиеся у различных мест, имеют стремление к проявлению собственных цветов".

Утверждение Ньютона о возможности не учитывать размеры капли, так же как слова Декарта о том, что при больших и малых каплях радуга появляется всегда одинаковым образом, оказалось неточным. Полная теория радуги с учетом дифракции света, которая зависит от соотношения длины волны света и размера капли, была построена лишь в XIX веке Дж.Б. Эри (1836) и Дж.М. Пернтером (1897).

Преломление и отражение луча в капле воды.

Рисунок Декарта, который мы воспроизвели как реликвию, обладает одним "методическим" несовершенством. Неподготовленному читателю может показаться, что обе радуги, внешняя и внутренняя, обусловлены разными способами отражения в одной и той же капле. Лучше было бы изобразить две капли: одну, относящуюся к нижней радуге, другую к верхней, оставив в каждой по одному способу отражения, как это показано на рис. 2. Для простоты восприятия в обоих случаях направление падающего на каплю солнечного луча принято за ось абсцисс. Координату y, характеризующую точку падения луча на каплю, будем называть прицельным параметром.

Из рис. 2, а видно, что падающий луч с одним отражением может быть воспринят наблюдателем, если только точка падения относится к верхней части капли (y > 0). Наоборот, при двух отражениях это окажется возможным для тех лучей, которые падают на нижнюю часть капли (y < 0).

Предположим сначала, что капля находится в вертикальной плоскости, проходящей через положение Солнца и глаз наблюдателя. Тогда падающий, преломленные и отраженные лучи лежат в этой же плоскости. Если α 1 - угол падения, а α 2 - угол преломления, то из рис. 2, а и б угол вышедшего луча по отношению к падающему в первом случае будет равен φ 1 = 4α 2 -2α 1 (1)
а во втором - φ 2 = π - 6α 2 + 2α 1 (2)
причем, согласно закону преломления: sin α 2 = sin α 1 /n
где n в нашем случае показатель преломления воды. Кроме того, принимая условно радиус капли за единицу длины, имеем:

Соответственно в первом и во втором случаях. Поэтому из (1) и (2) получаем
φ 1 =4 arcsin(y/n) - 2 arcsin y, y>0 (3)
φ 2 = π+6 arcsin(y/n) - 2 arcsin y, y<0 (4)

Эти два уравнения являются основными для дальнейшего рассмотрения. Нетрудно построить графики углов φ 1 и φ 2 как функций y. Они представлены на рис. 3 для показателя преломления n=1,331 (красный цвет). Мы видим, что при значении прицельного параметра y≈0,85 достигается максимум угла φ 1 , приблизительно равный 42°, а угол имеет минимум ~53° при y≈-0,95. Покажем, что этим экстремальным точкам соответствует максимум интенсивности отраженного каплей света.

Рассмотрим некоторый малый интервал изменения прицельного параметра (для определенности в первом случае) y, y + Δy. С помощью графика можно найти изменение угла φ на этом интервале Δφ. На рис. 3 видно, что Δφ=Δy*tg β, где β - угол, который касательная к графику в данной точке образует с осью абсцисс. Величина Δy пропорциональна интенсивности света ΔI, падающего на каплю в этом интервале прицельного параметра. Эта же интенсивность света (точнее, пропорциональная ей величина) рассеивается каплей в угловом интервале Δφ. Мы можем написать ΔI ~ Δy =Δy*ctg β. Следовательно, интенсивность рассеянного каплей света, приходящаяся на единицу угла рассеяния, может быть выражена как I(φ) = ΔI/Δφ ~ ctg β (5)

Так как в экстремальных точках ctg β = ∞, то величина (5) обращается в бесконечность. Отметим, что положения этих экстремальных точек для различных цветов несколько отличаются, что и позволяет наблюдать радугу.

Как нарисовать радугу

Теперь мы можем нарисовать схему наблюдения радуги. Такое построение выполнено на рис. 4. Сначала рисуем поверхность Земли и стоящего на ней наблюдателя. Перед наблюдателем находится завеса дождя (закрашенная серым цветом). Затем изображаем солнечные лучи, направление которых зависит от высоты Солнца над горизонтом. Через глаз наблюдателя проводим красные и фиолетовые лучи под указанными выше углами по отношению к солнечным лучам. Можно быть уверенным на основании результатов предыдущего раздела, что эти лучи возникнут в результате рассеяния на соответствующих каплях дождя. При этом, как следует из рис. 2, нижняя радуга обусловлена процессами рассеяния с одним отражением, а верхняя - с двумя отражениями. Обратите внимание на чередование цветов: фиолетовые лучи являются внешними, а красные - внутренними. Очевидно, что лучи других цветов в каждой радуге размещаются между красным и фиолетовым в соответствии со значениями показателей преломления.

Напомним, что мы пока рассматривали изображение радуги в вертикальной плоскости, проходящей через глаз наблюдателя и положение Солнца. Проведем прямую, проходящую через глаз наблюдателя параллельно солнечному лучу. Если вертикальную плоскость поворачивать вокруг указанной прямой, то ее новое положение для наблюдения радуги будет совершенно эквивалентно исходному. Поэтому радуга имеет форму дуги окружности, центр которой находится на построенной оси. Радиус этой окружности (как видно на рис. 4) приблизительно равен расстоянию наблюдателя до завесы дождя.

Отметим, что при наблюдении радуги Солнце не должно стоять слишком высоко над горизонтом - не более чем на 53,48°. Иначе картина лучей на рисунке будет поворачиваться по часовой стрелке, так что даже фиолетовый луч верхней радуги не сможет попасть в глаз наблюдателя, стоящего на Земле. Правда, это окажется возможным, если наблюдатель поднимется на некоторую высоту, например на самолете. Если наблюдатель поднимется достаточно высоко, то он сможет увидеть радугу и в форме полной окружности.

Схема образования радуги

Схема образования радуги
1) сферическая капля 2) внутреннее отражение 3) первичная радуга
4) преломление 5) вторичная радуга 6) входящий луч света
7) ход лучей при формировании первичной радуги

8) ход лучей при формировании вторичной радуги
9) наблюдатель 10) область формирования первичной радуги
11) область формирования вторичной радуги 12) облако капелек

Данное описание радуги следует уточнить c учетом того, что солнечные лучи не строго параллельны. Это связано с тем, что лучи, падающие на каплю от разных точек Солнца, имеют несколько различные направления. Максимальное угловое расхождение лучей определяется угловым диаметром Солнца, как известно равным приблизительно 0,5°. К чему это приводит? Каждая капля испускает в глаз наблюдателя не столь монохроматический свет, как это было бы в случае строгой параллельности падающих лучей. Если бы угловой диаметр Солнца заметно превосходил угловое расстояние между фиолетовым и красным лучами, то цвета радуги были бы неразличимы. К счастью, это не так, хотя, несомненно, перекрывание лучей с разными длинами волн влияет на контрастность цветов радуги. Интересно, что конечность углового диаметра Солнца была уже учтена в работе Декарта.

Похожие публикации