Chevroletavtoliga - Автомобильный портал

Механические и скоростные характеристики асинхронного двигателя. Механические характеристики асинхронного двигателя. Режимы работы асинхронного электродвигателя

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу n = f (M2) . Так как при нагрузке момент холостого хода мал, то M2 ≈ M и механическая характеристика представляется зависимостью n = f (M) . Если учесть взаимосвязь s = (n1 - n) / n1 , то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристики получаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Пример расчета механической характеристики асинхронного двигателя

Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с напряжением = 380 В при = 50 Гц. Параметры двигателя: P н= 14 кВт, n н= 960 об/мин, cos φн = 0,85, ηн = 0,88, кратность максимального момента k м= 1,8.

Определить: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критический момент, критическое скольжение и построить механическую характеристику двигателя.

Решение. Номинальная мощность, потребляемая из сети

P1 н = P н / ηн = 14 / 0,88 = 16 кВт.

Номинальный ток, потребляемый из сети

Число пар полюсов

p = 60 f / n1 = 60 х 50 / 1000 = 3,

где n1 = 1000 – синхронная частота вращения, ближайшая к номинальной частоте n н= 960 об/мин.

Номинальное скольжение

s н = (n1 - n н) / n1 = (1000 - 960) / 1000 = 0,04

Номинальный момент на валу двигателя

Критический момент

Мк = k м х Мн = 1,8 х 139,3 = 250,7 Н м.

Критическое скольжение находим подставив М = Мн, s = s н и Мк / Мн = k м.

Для построения механической характеристики двигателя с помощью n = (n1 - s) определим характерные точки: точка холостого хода s = 0 , n = 1000 об/мин, М = 0, точка номинального режима s н = 0,04, n н = 960 об/мин, Мн = 139,3 Н м и точка критического режима s к = 0,132, n к = 868 об/мин, Мк =250,7 Н м.

1

При построении моделей автоматизированного электропривода необходимо учитывать сложность электромеханических процессов, протекающих в двигателе при его работе. Результаты, полученные при математическом расчёте, следует проверять опытным путем. Таким образом, возникает потребность определения характеристик электродвигателей в ходе натурного эксперимента. Сведения, полученные в ходе такого эксперимента, дают возможность апробации построенной математической модели. В статье рассмотрен способ построения механических характеристик асинхронного двигателя с короткозамкнутым ротором, проводится экспериментальная проверка рассчитанной механической характеристики на примере системы, состоящей из асинхронного двигателя, к валу которого в качестве нагрузки подключен двигатель постоянного тока независимого возбуждения, оценивается погрешность расчёта, сделан вывод о возможности применения полученных результатов для дальнейших исследований. При проведении эксперимента используется лабораторный стенд НТЦ-13.00.000.

асинхронный двигатель

двигатель постоянного тока

механическая характеристика

схема замещения

насыщение магнитной системы.

1. Воронин С. Г. Электропривод летательных аппаратов: Учебно-методический комплекс. - Offline версия 1.0. - Челябинск,1995-2011.- ил. 493, список лит. - 26 назв.

2. Москаленко В. В. Электрический привод: учебник для студ. высш. учеб. заве­дений. - М.: Издательский центр «Акаде­мия», 2007. - 368 с.

3. Мощинский Ю. А., Беспалов В. Я., Кирякин А. А. Определение параметров схемы замещения асинхронной машины по каталожным данным // Электричество. - №4/98. - 1998. - С. 38-42.

4. Технический каталог, издание второе, исправленное и дополненное / Владимирский электромоторный завод. - 74 с.

5. Austin Hughes Electric Motors and Drives Fundamentals, Types and Applications. - Third edition / School of Electronic and Electrical Engineering, University of Leeds. - 2006. - 431 р.

Введение

Асинхронный двигатель (АД) - электрический двигатель, нашедший очень широкое применение в различных отраслях промышленности и сельского хозяйства. АД с короткозамкнутым ротором обладает особенностями, обуславливающими его широкое распространение: простота в изготовлении, а это означает низкую начальную стоимость и высокую надежность; высокая эффективность вместе с низкими затратами на обслуживание приводят в итоге к низким общим эксплуатационным расходам; возможность работы непосредственно от сети переменного тока.

Режимы работы асинхронного электродвигателя

Двигатели с короткозамкнутым ротором - асинхронные машины, скорость которых зависит от частоты питающего напряжения, числа пар полюсов и нагрузки на валу. Как правило, при поддержании постоянного напряжения питания и частоты, если игнорируется изменение температуры, момент на валу будет зависеть от скольжения.

Вращающий момент АД можно определить по формуле Клосса:

где , - критический момент, - критическое скольжение.

Кроме двигательного режима асинхронный двигатель имеет ещё три тормозных режима: а) генераторный тормозной с отдачей энергии в сеть; б) торможение противовключением; в) динамическое торможение.

При положительном скольжении машина с короткозамкнутым ротором будет действовать как двигатель, при отрицательном скольжении - как генератор. Из этого следует, что ток якоря двигателя с короткозамкнутым ротором будет зависеть только от скольжения. При выходе машины на синхронную скорость ток будет минимальным.

Генераторное торможение АД с отдачей энергии в сеть наступает при частоте вращения ротора, превышающей синхронную. В этом режиме электродвигатель отдаёт в сеть активную энергию, а из сети в электродвигатель поступает реактивная энергия, необходимая для создания электромагнитного поля.

Механическая характеристика для генераторного режима является продолжением характеристики двигательного режима во второй квадрант осей координат.

Торможение противовключением соответствует направлению вращения магнитного поля статора, противоположному вращению ротора. В этом режиме скольжение больше единицы, а частота вращения ротора по отношению к частоте вращения поля статора - отрицательна. Ток в роторе, а следовательно, и в статоре достигает большой величины. Для ограничения этого тока в цепь ротора вводят добавочное сопротивление.

Режим торможения противовключением наступает при изменении направления вращения магнитного поля статора, в то время как ротор электродвигателя и соединённые с ним механизмы продолжают вращение по инерции. Этот режим возможен также и в случае, когда поле статора не меняет направления вращения, а ротор под действием внешнего момента изменяет направление вращения.

В данной статье рассмотрим построение механической характеристики асинхронного двигателя в двигательном режиме.

Построение механической характеристики с помощью модели

Паспортные данные АД ДМТ f 011-6у1: Uф =220 - номинальное фазное напряжение, В; p=3 - число пар полюсов обмоток; n=880 - скорость вращения номинальная, об/мин; Pн=1400 - мощность номинальная, Вт; Iн=5,3 - ток ротора номинальный, А; η = 0.615 - к.п.д. номинальный, %; cosφ = 0.65 - cos(φ) номинальный; J=0.021 - момент инерции ротора, кг·м 2 ; Ki = 5.25 - кратность пускового тока; Kп = 2.36 - кратность пускового момента; Kм = 2.68 - кратность критического момента.

Для исследования эксплуатационных режимов асинхронных двигателей используются рабочие и механические характеристики, которые определяются экспериментально или рассчитываются на основе схемы замещения (СЗ). Для применения СЗ (рис.1) необходимо знать её параметры:

  • R 1 , R 2 ", R M - активные сопротивления фаз статора, ротора и ветви намагничивания;
  • X 1 , X 2 ", X M - индуктивные сопротивления рассеяния фаз статора ротора и ветви намагничивания.

Эти параметры требуются для определения пусковых токов при выборе магнитных пускателей и контакторов, при выполнении защит от перегрузок, для регулирования и настройки системы управления электроприводом, для моделирования переходных процессов. Кроме того, они необходимы для расчета пускового режима АД, определения характеристик асинхронного генератора, а также при проектировании асинхронных машин с целью сопоставления исходных и проектных параметров .

Рис. 1. Схема замещения асинхронного двигателя

Воспользуемся методикой расчёта параметров схемы замещения для определения активных и реактивных сопротивлений фаз статора и ротора. Значения коэффициента полезного действия и коэффициента мощности при частичных нагрузках, необходимые для расчётов, приведены в техническом каталоге : pf = 0.5 - коэффициент частичной нагрузки, %; Ppf = Pн·pf - мощность при частичной нагрузке, Вт; η _pf = 0.56 - к.п.д. при частичной нагрузке, %; cosφ_pf = 0.4 - cos(φ) при частичной нагрузке.

Значения сопротивлений в схеме замещения: X 1 =4.58 - реактивное сопротивление статора, Ом; X 2 "=6.33 - реактивное сопротивление ротора, Ом; R 1 =3.32 - активное сопротивление статора, Ом; R 2 "=6.77 - активное сопротивление ротора, Ом.

Построим механическую характеристику асинхронного двигателя по формуле Клосса (1).

Скольжение определяют из выражения вида:

где - скорость вращения ротора АД, рад/сек,

синхронная скорость вращения:

Критическая скорость вращения ротора:

. (4)

Критическое скольжение:

Точку критического момента определим из выражения

Пусковой момент определим по формуле Клосса при s=1:

. (7)

По произведенным расчетам построим механическую характеристику АД (рис. 4). Для ее проверки на практике проведем эксперимент.

Построение экспериментальной механической характеристики

При проведении эксперимента используется лабораторный стенд НТЦ-13.00.000 «Электропривод». Имеется система, состоящая из АД, к валу которого в качестве нагрузки подключен двигатель постоянного тока (ДПТ) независимого возбуждения. Необходимо построить механическую характеристику асинхронного двигателя, используя паспортные данные асинхронной и синхронной машин и показания датчиков. Имеем возможность изменять напряжение обмотки возбуждения ДПТ, измерять токи на якоре синхронного и асинхронного двигателя, частоту вращения вала. Подключим АД к источнику питания и будем нагружать его, изменяя ток обмотки возбуждения ДПТ. Проведя эксперимент, составим таблицу значений из показаний датчиков:

Таблица 1 Показания датчиков при нагрузке асинхронного двигателя

где Iв - ток обмотки возбуждения двигателя постоянного тока, I я - ток якоря двигателя постоянного тока, Ω - скорость вращения ротора асинхронного двигателя, I 2 - ток ротора асинхронного двигателя.

Паспортные данные синхронной машины типа 2П H90L УХЛ4: Pн=0,55 - номинальная мощность, кВт; Uном=220 - номинальное напряжение, В; Uв.ном=220 - напряжение возбуждения номинальное, В; Iя.ном=3,32 - номинальный ток якоря, А; Iв.ном=400 - ток возбуждения номинальный, мА; Rя=16,4 - сопротивление якоря, Ом; nн=1500 - скорость вращения номинальная, об/мин; Jдв=0,005 - момент инерции, кг·м 2 ; 2р п =4 - число пар полюсов; 2а=2 - число параллельных ветвей обмотки якоря; N=120 - число активных проводников обмотки якоря.

В ротор ДПТ ток поступает через одну щетку, протекает через все витки обмотки ротора и выходит через другую щетку. Точка контакта обмотки статора с обмоткой ротора - через коллекторную пластину или сегменты, на которые нажимает щетка в это время (щетка обычно более широка, чем один сегмент). Так как каждый отдельный виток обмотки ротора взаимосвязан с сегментом коллектора, ток фактически проходит через все витки и через все коллекторные пластины на его пути через ротор.

Рис. 2. Токи, протекающие в роторе двигателя постоянного тока с двумя полюсами

На рисунке 2 видно, что все проводники, лежащие у полюса N, имеют положительный заряд, в то время как все проводники под полюсом S несут отрицательный заряд. Поэтому все проводники под полюсом N получат нисходящую силу (которая пропорциональна радиальной плотности потока В и току ротора), в то время как все проводники под полюсом S получат равную восходящую силу. В результате на роторе создается вращающий момент, величина которого пропорциональна произведению плотности магнитного потока и тока. На практике плотность магнитного потока не будет абсолютно однородна под полюсом, таким образом, сила на некоторых проводниках ротора будет больше, чем на других. Полный момент, развивающийся на валу, будет равен:

М = К Т ФI, (8)

где Ф - полный магнитный поток, коэффициент K T является постоянным для данного двигателя .

В соответствии с формулой (8) регулирование (ограничение) момента может быть достигнуто за счет изменения тока I или маг-нитного потока Ф. На практике регулирование момента чаще все-го осуществляется за счет регулирования тока. Регулирование тока двигателя производится его системой уп-равления (или оператором) за счет изменения подводимого к дви-гателю напряжения с помощью преобразователей электроэнер-гии или включением в его цепи добавочных резисторов .

Рассчитаем конструктивную постоянную двигателя, входящую в уравнение (8):

. (9)

Установим связь между потоком двигателя и током обмотки возбуждения. Как известно из теории электрических машин, из-за влияния насыщения магнитной системы эта связь нелинейная и имеет вид, показанный на рисунке 3. С целью лучшего использования железа машина проектируется так, чтобы в номинальном режиме рабочая точка находилась на перегибе кривой намагничивания. Примем величину магнитного потока пропорциональной току возбуждения .

Фпр.=Iв, (10)

где Iв - ток возбуждения.

Ф - реальное значение потока; Ф пр. - значение потока, принятое для расчётов

Рис. 3. Соотношение значений магнитного потока, принятого и реального

Так как у АД и ДПТ в проведенном эксперименте один общий вал, можем рассчитать момент, создаваемый ДПТ, и на основе полученных значений и показаний датчика скорости построить экспериментальную механическую характеристику АД (рисунок 4).

Рис.4. Механические характеристики асинхронного двигателя: расчетная и экспериментальная

Полученная экспериментальная характеристика в области низких значений момента расположена ниже характеристики, рассчитанной теоретически, и выше - в области высоких значений. Такое отклонение связано с разностью принятого для расчетов и реального значений магнитного потока (рис. 3). Оба графика пересекаются при Фпр.=Iв. ном.

Введем поправку в расчеты, установив нелинейную зависимость (рис. 5):

Ф=а·Iв, (11)

где а - коэффициент нелинейности.

Рис. 5. Отношение магнитного потока к току возбуждения

Полученная экспериментальная характеристика примет вид, показанный на рис. 6.

Рис.6. Механические характеристики асинхронного двигателя: расчетная и экспериментальная

Рассчитаем погрешность полученных экспериментально данных для случая, в котором магнитный поток линейно зависит от тока возбуждения (10), и случая, в котором эта зависимость нелинейная (11). В первом случае суммарная погрешность составляет 3,81 %, во втором 1,62 %.

Вывод

Механическая характеристика , построенная по экспериментальным данным, отличается от характеристики, построенной с использованием формулы Клосса (1) за счет принятого допущения Фпр.=Iв, расхождение составляет 3,81 %, при Iв=Iв.ном.=0,4 (А) данные характеристики совпадают. При достижении Iв номинального значения наступает насыщение магнитной системы ДПТ, в результате дальнейшее повышение тока возбуждения все меньше сказывается на значении магнитного потока. Поэтому для получения более точных значений момента необходимо вводить коэффициент насыщения, что позволяет повысить точность расчета в 2,3 раза. Механическая характеристика, построенная модельным путем, адекватно отражает работу реального двигателя, её можно брать за основу в дальнейших исследованиях.

Рецензенты :

  • Пюкке Георгий Александрович, д.т.н., профессор кафедры систем управления КамчатГТУ, г. Петропавловск-Камчатский.
  • Потапов Вадим Вадимович, д.т.н., профессор филиала ДВФУ, г. Петропавловск-Камчатский.

Библиографическая ссылка

Лиходедов А.Д. ПОСТРОЕНИЕ МЕХАНИЧЕСКОЙ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ И ЕЁ АПРОБАЦИЯ // Современные проблемы науки и образования. – 2012. – № 5.;
URL: http://science-education.ru/ru/article/view?id=6988 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Анализ работы асинхронного электродвигателя удобно про­водить на основе его механических характеристик, представ­ляющих собой графически выраженную зависимость вида п = f (М ). Скоростными характеристиками в этих случаях пользуются весьма редко, так как для асинхронного электродвига­теля скоростная характеристика представляет собой зависи­мость числа оборотов от тока ротора, при определении которого встречается ряд трудностей, особенно, в случае асинхронных электродвигателей с короткозамкнутым ротором.

Для асинхронных электродвигателей, так же как и для электродвигателей постоянного тока, различают естественные и искусственные механические характеристики. Асинхронный электродвигатель работает на естественной механической ха­рактеристике в том случае, если его статорная обмотка подключена к сети трехфазного тока, напряжение и частота тока которой соответствует номинальным значениям, и если в цепь ротора не включены какие-либо дополнительные сопро­тивления.

На рис. 42 была приведена зависимость М = f (s ), которая позволяет легко перейти к механической характеристике n = f (M ), так как, согласно выражению (82) , от величины скольжения зависит скорость вращения ротора.

Подставив формулу (81) в выражение (91) и решив полу­ченное уравнение относительно п 2 получим следующее уравне­ние механических характеристик асинхронного электродвигателя

Член r 1 s опущен, ввиду его малости. Механические харак­теристики, соответствующие это­му уравнению, приведены на рис. 44.

Для практических построений уравнение (95) неудобно, поэто­му на практике обычно пользу­ются упрощенными уравнениями. Так, в случае работы электродвигателя на естественной ха­рактеристике при вращающем моменте, не превышающем 1,5 его номинального значения, сколь­жение обычно не превышает 0,1. Поэтому для указанного случая в уравнении (95) можно пренебречь членом x 2 s 2 /kr 2 ·M , в результате чего получим следующее упрощенное уравнение естествен­ной характеристики:

являющееся уравнением прямой линии, наклоненной к оси абсцисс.

Хотя уравнение (97) является приближенным, опыт пока­зывает, что при изменениях момента в пределах от М = 0 до М =1,5М н характеристики асинхронных электродвигателей действительно прямолинейны и уравнение (97) дает результа­ты, хорошо согласующиеся с опытными данными.

При введении в цепь ротора дополнительных сопротивлений характеристику п = f (М ) с достаточной для практических це­лей точностью также можно считать прямолинейной в указанных пределах для вращающего момента и производить ее построение по уравнению (97).

Таким образом, механические характеристики асинхронного электродвигателя в диапазоне от М = 0 до М = 1,5 М н при раз­личных сопротивлениях роторной цепи представляют семейство прямых, пересекающихся в одной точке, соответствующей син­хронному числу оборотов (рис. 45). Как показывает уравнение (97), наклон каждой характеристики к оси абсцисс определя­ется величиной активного сопротивления роторной цепи r 2 . Очевидно, чем больше сопротивле­ние, введенное в каждую фазу ро­тора, тем больше наклонена к оси абсцисс характеристика.

Как указывалось, обычно на практике скоростными характери­стиками асинхронных электродвига­телей не пользуются. Расчет же пусковых и регулировочных сопро­тивлений производят с помощью уравнения (97). Построение естест­венной характеристики можно вы­полнить по двум точкам - по синхронной скорости n ­ 1 = 60f /р при ну­левом моменте и по номинальной скорости при номинальном моменте.

Следует иметь в виду, что для асинхронных электродвигателей зависимость момента от тока ротора I 2 носит более слож­ный характер, чем зависимость момента от тока якоря для

электродвигателей постоянного тока. Поэтому скоростная ха­рактеристика асинхронного двигателя неидентична механиче­ской характеристике. Характеристика п = f (I 2 ) имеет вид, показанный на рис. 46. Там же дана характеристика n = f (I 1 ).

Асинхронные двигатели (АД) – самый распространенный вид двигателей, т.к. они более просты и надежны в эксплуатации, при равной мощности имеют меньшую массу, габариты и стоимость в сравнении с ДПТ. Схемы включения АД приведены на рис. 2.14.

До недавнего времени АД с короткозамкнутым ротором применялись в нерегулируемых электроприводах. Однако с появлением тиристорных преобразователей частоты (ТПЧ) напряжения, питающего статорные обмотки АД, двигатели с короткозамкнутым ротором начали использоваться в регулируемых электроприводах. В настоящее время в преобразователях частоты применяются силовые транзисторы и программируемые контроллеры. Способ регулирования скорости получил название импульсного и его совершенствование является важнейшим направлением в развитии электропривода.

Рис. 2.14. а) схема включения АД с короткозамкнутым ротором;

б) схема включения АД с фазным ротором.

Уравнение для механической характеристики АД может быть получено на основании схемы замещения АД. Если в этой схеме пренебречь активным сопротивлением статора, то выражение для механической характеристики будет иметь вид:

,

Здесь М к – критический момент; S к - соответствующее ему критическое скольжение; U ф – действующее значение фазного напряжения сети; ω 0 =2πf/p – угловая скорость вращающегося магнитного поля АД (синхронная скорость); f – частота питающего напряжения; p – число пар полюсов АД; х к – индуктивное фазное сопротивление короткого замыкания (определяется из схемы замещения); S=(ω 0 -ω)/ω 0 – скольжение (скорость ротора относительно скорости вращающегося поля); R 2 1 – суммарное активное сопротивление фазы ротора.

Механическая характеристика АД с короткозамкнутым ротором приведена на рис. 2.15.

Рис. 2.15. Механическая характеристика АД с короткозамкнутым ротором.

На ней можно выделить три характерные точки. Координаты первой точки (S=0; ω=ω 0 ; М=0 ). Она соответствует режиму идеального холостого хода, когда скорость ротора равна скорости вращающегося магнитного поля. Координаты второй точки (S=S к; М=М к ). Двигатель работает с максимальным моментом. При М с >М к ротор двигателя будет принудительно остановлен, что для двигателя является режимом короткого замыкания. Поэтому вращающий момент двигателя в этой точке и называется критическим М к . Координаты третьей точки (S=1; ω=0; М=М п ). В этой точке двигатель работает в режиме пуска: скорость ротора ω=0 и на неподвижный ротор действует пусковой момент М п . Участок механической характеристики, расположенный между первой и второй характерными точками, называется рабочим участком. На нем двигатель работает в установившемся режиме. У АД с короткозамкнутым ротором при выполнении условий U=U н и f=f н механическая характеристика называется естественной. В этом случае на рабочем участке характеристики расположена точка, соответствующая номинальному режиму работы двигателя и имеющая координаты (S н; ω н; М н ).


Электромеханическая характеристика АД ω=f(I ф) , которая на рис.2.15 изображена штриховой линией, в отличие от электромеханической характеристики ДПТ, совпадает с механической характеристикой только на ее рабочем участке. Это объясняется тем, во время пуска из-за изменяющейся частоты э.д.с. в обмотке ротора Е 2 изменяется частота тока и соотношение индуктивного и активного сопротивлений обмотки: в начале пуска частота тока большая и индуктивное сопротивление больше активного; с увеличением скорости вращения ротора ω частота тока ротора, а значит и индуктивное сопротивление его обмотки, уменьшается. Поэтому пусковой ток АД в режиме прямого пуска в 5÷7 раз превышает номинальное значение I фн , а пусковой момент М п равен номинальному М н . В отличии от ДПТ, где при пуске необходимо ограничивать пусковой ток и пусковой момент, при пуске АД пусковой ток необходимо ограничивать, а пусковой момент увеличивать. Последнее обстоятельство наиболее важно, поскольку ДПТ с независимым возбуждением запускается при М с <2,5М н , ДПТ с последовательным возбуждением при М с <5М н , а АД при работе на естественной характеристике при М с <М н .

У АД с короткозамкнутым ротором увеличение М п обеспечивается специальной конструкцией обмотки ротора. Паз для обмотки ротора делают глубоким, а саму обмотку располагают в два слоя. При пуске двигателя частота Е 2 и токи ротора большие, что приводит к появлению эффекта вытеснения тока – ток протекает только в верхнем слое обмотки. Поэтому увеличивается сопротивление обмотки и пусковой момент двигателя М П . Его величина может достигать 1,5М н .

У АД с фазным ротором увеличение М П обеспечивается за счет изменения его механической характеристики. Если сопротивление R П , включенное в цепь протекания тока ротора, равно нулю – двигатель работает на естественной характеристике и М П =М Н . При R П >0 увеличивается суммарное активное сопротивление фазы ротора R 2 1 . Критическое же скольжение S к по мере увеличения R 2 1 тоже увеличивается. Вследствие этого у АД с фазным ротором введение R П в цепь протекания тока ротора приводит к смещению М К в сторону больших скольжений. При S К =1 М П =М К. Механические характеристики АД с фазным ротором при R П >0 называются искусственными или реостатными. Они приведены на рис. 2.16.

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу n = f (M2). Так как при нагрузке момент холостого хода мал, то M2 ≈ M и механическая характеристика представляется зависимостью n = f (M). Если учесть взаимосвязь s = (n1 - n) / n1, то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристики получаются, если включены какие-либо дополнительные элементы: резисторы , реакторы , конденсаторы . При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Основные точки механической характеристики: критическое сколь-жение и частота, максимальный момент, пусковой момент, номинальный момент.

Механическая характеристика - это зависимость вращающего момента от скольжения, или, иначе говоря, от числа оборотов:

Из выражения видно, что эта зависимость очень сложна, поскольку, как показывают формулы)
и , скольжение входит также в выражения для I 2 и cos ? 2 . Механическая характеристика асинхронного двигателя дается обычно графически

Начальная точка характеристики соответствует n = 0 и s = 1: это первое мгновение пуска двигателя. Величина пускового вращающего момента M n - очень важная характеристика эксплуатационных свойств двигателя. Если M n мал, меньше номинального рабочего момента, двигатель может запускаться только вхолостую или при соответственно сниженной механической нагрузке.

Обозначим символом M np противодействующий (тормозной) момент, создаваемый механической нагрузкой на валу, при которой двигатель пускается. Очевидным условием для возможности запуска двигателя является: M n > M np . Если это условие выполнено, ротор двигателя придет в движение, число оборотов его n будет возрастать, а скольжение s уменьшаться. Как видно из изображения выше, вращающий момент двигателя при этом растет от M n до максимального M m , соответствующего критическому скольжению s kp , следовательно, растет и избыточная располагаемая мощность двигателя, определяемая разностью моментов M и M np .

Чем больше разность между располагаемым моментом двигателя (возможным при данном скольжении по рабочей характеристике) М и противодействующим М np , тем легче режим запуска и тем быстрее двигатель достигает установившейся скорости вращения.


Как показывает механическая характеристика, при некотором числе оборотов (при s = s kp ) располагаемый вращающий момент двигателя достигает максимально возможного для данного двигателя (при данном напряжении U ) значения M т . Далее двигатель продолжает увеличивать скорость вращения, но располагаемый вращающий момент его быстро уменьшается. При каких-то значениях n и s вращающий момент двигателя становится равным противодействующему: пуск двигателя заканчивается, число оборотов его устанавливается на значении, соответствующем соотношению:

Это соотношение является обязательным для всех нагрузочных режимов двигателя, то есть для всех значений M np , не выходящих за пределы максимального располагаемого вращающего момента двигателя М т . В этих пределах двигатель сам автоматически приспосабливается ко всем колебаниям нагрузки: если во время работы двигателя его механическая нагрузка увеличивается, на какое-то мгновение M np станет больше момента, развиваемого двигателем. Обороты двигателя начнут снижаться, а момент увеличиваться.

Скорость вращения установится на новом уровне, отвечающем равенству M и M np . При снижении нагрузки процесс перехода к новому нагрузочному режиму будет обратным.

Если нагрузочный момент M np превысит М т , двигатель сразу остановится, так как с дальнейшим уменьшением оборотов вращающий момент двигателя уменьшается.

Поэтому максимальный момент двигателя М т называется еще опрокидывающим или критическим моментом.

Если в формулу момента подставить:

то получим:

Взяв первую производную от М по и приравняв ее к нулю, найдем, что максимальное значение вращающего момента наступает при условии:

то есть при таком скольжении s = s kp , при котором активное сопротивление ротора равно индуктивному сопротивлению

Значения s kp у большинства асинхронных двигателей лежат в пределах 10 - 25%.

Если в написанную выше формулу момента вместо активного сопротивления r 2 подставить индуктивное по формуле

Максимальный вращающий момент асинхронного двигателя пропорционален квадрату магнитного потока (а значит, и квадрату напряжения) и обратно пропорционален индуктивности рассеяния обмотки ротора.

При постоянстве напряжения, подводимого к двигателю, его поток Ф остается практически неизменным.

Индуктивность рассеяния роторной цепи тоже практически постоянна. Поэтому при изменении активного сопротивления в цепи ротора максимальное значение вращающего момента M т изменяться не будет, но будет наступать при разных скольжениях (с увеличением активного сопротивления ротора - при больших значениях скольжения).

Очевидно, что максимум возможной нагрузки двигателя определяется значением его M т . Рабочая часть характеристики двигателя лежит в узком диапазоне чисел оборотов от n , соответствующего M т , до. При n = n 1 (конечная точка характеристики) М = 0, так как при синхронной скорости ротора s = 0 и I 2 = 0.

Номинальный вращающий момент, определяющий значение паспортной мощности двигателя, принимается обычно равным 0,4 - 0,6 от M т . Таким образом, асинхронные двигатели допускают кратковременные перегрузки в 2 - 2,5 раза.

Основным параметром, характеризующим режим работы асинхронного двигателя, является скольжение s - относительная разность частоты вращения ротора двигателя n и его поля n о: s = (n o - n) / n o .

Область механической характеристики, соответствующая 0 ≤ s ≤ 1 - область двигательных режимов, причем при s < s кр работа двигателя устойчива, при s > s кр - неустойчива. При s < 0 и s > 1 момент двигателя направлен против направления вращения его ротора (соответственно рекуперативное торможение и торможение противовключением).

Устойчивый участок механической характеристики двигателя часто описывается формулой Клосса , подстановкой в которую параметров номинального режима можно определить критическое скольжение s кр:

,

где: λ = M kp / M н - перегрузочная способность двигателя.

Механическая характеристика по данным справочника или каталога приближенно может быть построена по четырем точкам (рис. 7.1):

Точка 1 - идеальный холостой ход, n = n o = 60 f / p, М = 0, где: р - число пар полюсов магнитного поля двигателя;

Точка 2 - номинальный, режим: n = n н, М = М н = 9550 P н / n н, где P н - номинальная мощность двигателя в кВт;

Точка 3 - критический режим: n = n кр, М = М кр =λ М н;

Точка 4 - режим пуска: n = 0, М = М пуск = β М н.

При анализе работы двигателя в диапазоне нагрузок до М н и несколько больше устойчивый участок механической характеристики можно приближенно описать уравнением прямой линии n = n 0 - вМ, где коэффициент “в” легко определяется подстановкой в уравнение параметров номинального режима n н и М н.

Конструкция обмоток статора. Однослойные и двухслойные петле-вые обмотки.

По конструкции катушек обмотки подразделяют на всыпные с мягкими катушками и обмотки с жесткими катушками или полукатушками. Мягкие катушки изготовляют из круглого изолированного провода. Для придания требуемой формы их предварительно наматывают на шаблоны, а затем укладывают в изолированные трапецеидальные пазы (см. рис. 3.4, в , г и 3.5, в ); междуфазовые изоляционные прокладки устанавливают в процессе укладки обмотки. Затем катушки укрепляют в пазах с помощью клиньев или крышек, придают им окончательную форму (формируют лобовые части), осуществляют бандажирование обмотки и ее пропитку. Весь процесс изготовления всыпных обмоток можно полностью механизировать.

Жесткие катушки (полукатушки) изготовляют из прямоугольного изолированного провода. Окончательную форму им придают до укладки в пазы; одновременно на них накладывают корпусную и междуфазовую изоляцию. Затем катушки укладывают в предварительно изолированные открытые или полуоткрытые пазы , укрепляют и подвергают пропитке.

1. Однослойные обмотки - наиболее пригодны для механизированной укладки, так как в этом случае обмотка должна быть концентрической и укладываться в пазы статора обеими сторонами катушки одновременно. Однако применение их приводит к увеличенному расходу обмоточного провода из-за значительной длины лобовых частей. Кроме того, в таких обмотках не представляется возможным выполнить укорочение шага, что приводит к ухудшению формы магнит-ного поля в воздушном зазоре, увеличению добавочных потерь, возникновению провалов в механической характеристике и повышению шума. Однако из-за своей простоты и дешевизны такие обмотки широко применяют в асинхронных двигателях небольшой мощности до 10-15 кВт.

2. Двухслойные обмотки - позволяют выполнить укорочение шага обмотки на любое количество зубцовых делений, благодаря чему улучшается форма магнитного поля, создаваемого обмоткой, и подавляются высшие гармонические в кривой ЭДС. Кроме того, при двухслойных обмотках получается более простая форма лобовых соединений, что упрощает изготовление обмоток. Такие обмотки применяют для двигателей мощностью свыше 100 кВт с жесткими катушками, которые укладывают вручную.

Обмотки статора. Однослойные и двухслойные волновые обмотки

В пазах сердечника статора раз-мещается многофазная обмотка, которая подсоединяется к сети переменного тока. Многофазные симметричные обмотки с числом фаз т включают в себя т фазных обмоток, которые соединяются в звезду или многоугольник. Так, например, в случае трехфазной обмотки статора число фаз т = 3 и обмотки могут соединяться в звезду или треугольник. Между собой обмотки фаз смещены на угол 360/т град; для трехфазной обмотки этот угол равен 120°.

Обмотки фаз выполняются из отдельных катушек, соединенных последовательно, параллельно либо последовательно-параллельно. В данном случае под катушкой подразумеваются несколько последовательно соединенных витков обмотки статора, размещенных в одних и тех же пазах и имеющих общую изоляцию относительно стенок паза. В свою очередь витком считаются два активных (т. е. расположенных в самом сердечнике статора) проводника, уложенных в двух пазах под соседними разноименными полюсами и соединенных друг с другом последовательно. Проводники, расположенные вне сердечника статора и соединяющие активные проводники между собой, называются лобовыми частями обмотки. Прямолинейные части катушек обмоток, уложенные в пазы, называются сторонами катушек или пазовыми частями.

Пазы статора, в которые укладываются обмотки, образуют на внутренней стороне статора так называемые зубцы. Расстояние между центрами двух соседних зубцов сердечника статора, измеренное по его поверхности, обращенной к воздушному зазору, называется зубцовым делением или пазовым делением.

Многослойные цилиндрические катушечные обмотки (рисунок 3) наматываются из круглого провода и состоят из многослойных дисковых катушек, расположенных вдоль стержня. Между катушками (через каждую катушку или через две-три катушки) могут быть оставлены радиальные каналы для охлаждения. Такие обмотки применяются на стороне высшего напряжения при S ст ≤ 335 кВ×А, I ст ≤ 45 А и U л.н ≤ 35 кВ.

Однослойные и двухслойные цилиндрические обмотки (рисунок 4) наматываются из одного или нескольких (до четырех) параллельных прямоугольных проводников и применяются при S ст ≤ 200 кВ×А,I ст ≤ 800 А и U л.н ≤ 6 кВ.

Похожие публикации