Chevroletavtoliga - Автомобильный портал

Измеритель емкости кислотных аккумуляторов. Прибор для измерения емкости аккумулятора. Основные способы. Самодельные измерительные приборы

Каждый автовладелец задается вопросом, какой необходим прибор для измерения емкости аккумулятора. Измерение данной величины зачастую проводится при прохождении планового ТО, однако будет полезным научиться самому ее определять.

Прибор для измерения емкости аккумулятора

Емкость аккумулятора - это параметр, который определяет объем энергии, отдаваемый батареей при определенном напряжении за один час. Измеряется он в А/ч (Ампер в час), и зависит от которую определяют специальным устройством - ареометром. При покупке новой батареи все технические параметры производитель указывает на корпусе. Но эту величину можно определить и самому. Для этого существуют специальные приборы и методы.

Самый простой способ - это взять специальный тестер, например "Кулон". Это современный прибор для измерения емкости автомобильного аккумулятора, а также его напряжения. В этом случае вы затратите минимальное количество времени и получите достоверный результат. Для проверки необходимо подключить прибор к клеммам батареи и в течение нескольких секунд он определит не только емкость, а также напряжение аккумулятора и состояние пластин. Однако существуют и другие емкости АКБ.

Первый метод (классический)

К примеру, мультиметр можно использовать, как прибор для измерения емкости аккумулятора автомобиля, но с его помощью точных показаний вы не получите. Обязательным условием для данного метода (его называют методом контрольной разрядки) является полный заряд батареи. Для начала необходимо подключить к аккумулятору мощный потребитель (вполне подойдет обычная лампочка мощностью 60Вт).


После необходимо собрать цепь, которая состоит из мультиметра, АКБ, потребителя, и подать нагрузку. Если лампочка в течение 2 минут не меняет своей яркости (в противном случае аккумулятор восстановлению не подлежит), снимаем показания прибора в определенные интервалы времени. Как только показатель упадет ниже стандартного напряжения батареи (под нагрузкой она составляет 12В), начнется ее разряд. Теперь, зная промежуток времени, который потребовался на полное опустошение запаса энергии и ток нагрузки потребителя, необходимо перемножить эти значения. Произведение этих величин и является реальной емкостью АКБ. Если полученные значения отличаются от паспортных данных в меньшую сторону, необходима замена батареи. Этот метод дает возможность определить емкость любой АКБ. Недостатком данного метода являются большие затраты времени.

Второй метод

Также можно воспользоваться методом, при котором аккумулятор разряжают через резистор, применяя специальную схему. Используя секундомер определяем время, затраченное на разряд. Так как энергия будет теряться при напряжении в пределах 1 Вольта, мы с легкостью определим воспользовавшись формулой I=UR, где I - сила тока, U - напряжение, R - сопротивление. При этом необходимо избежать полной разрядки батареи, используя, например, специальное реле.

Как сделать прибор самостоятельно

При отсутствии возможности приобретения готового устройства, всегда можно собрать прибор для измерения емкости аккумулятора своими руками.

Для определения степени заряда и емкости АКБ можно воспользоваться В продаже имеется много моделей уже готовых вилок, однако можно собрать ее собственноручно. Далее рассматривается один из вариантов.

В данной модели используется расширенная шкала, благодаря чему достигается высокая точность измерений. Имеется встроенное нагрузочное сопротивление. Шкала разделена на два диапазона (0-10 В и 10-15 В), что дает дополнительное снижение погрешности измерений. Устройство также имеет 3-х вольтовую шкалу и другой вывод измерительного приспособления, давая возможность проверки отдельных банок АКБ. Шкала на 15В достигается благодаря снижению на диоде и стабилитроне напряжения. Величина тока устройства возрастает, если значение напряжения превышает уровень открытия стабилитрона. При подаче напряжения ошибочной полярности защитную функцию выполняет диод.

На схеме: R1- передает стабилитрону требуемый ток; R2 и R3 - резисторы, подобранные для микроамперметра М3240; R4 - определяет ширину узкого диапазона шкалы; R5 - нагрузочное сопротивление, включается тумблером SB1.

Сила тока нагрузки определяется по закону Ома. В расчет принимается нагрузочное сопротивление.

Прибор для измерения емкости аккумулятора АА

Емкость аккумуляторов типа АА измеряется в мА/ч (миллиампер в час). Для измерения таких батарей можно применять специальные зарядные устройства, которые определяют ток, напряжение и емкость батареи. Примером такого устройства является прибор для измерения емкости аккумулятора AccuPower IQ3, который имеет блок питания с диапазоном напряжения от 100 до 240 Вольт. Для измерения потребуется вставить аккумуляторы в устройство, и на дисплее появятся все необходимые параметры.

Определение емкости с помощью зарядного устройства

Также емкость можно определить и с помощью обычного зарядного устройства. Определив величину силы тока заряда (она указывается в характеристиках прибора), необходимо полностью зарядить аккумулятор и засечь затраченное на это время. После, перемножив эти два значения, получаем приблизительную емкость.

Более точные показания можно получить, воспользовавшись еще одним методом, для которого вам потребуется полностью заряженный АКБ, секундомер, мультиметр и потребитель (можно использовать, например, фонарик). Подключаем потребитель к аккумулятору, и при помощи мультиметра определяем ток потребления (чем он меньше, тем более достоверны результаты). Засекаем время, в течение которого светил фонарик, и полученный результат умножаем на ток потребления.

Как пользоваться тестером аккумуляторов?

О чень просто. Вы подключаете зажимы Кулона к аккумулятору, - и через секунду прибор показывает показывает и его напряжение.

Зачем мне Кулон? Я давно работаю с аккумуляторами и могу оценить исправность аккумулятора, измерив напряжение под нагрузкой или даже просто по свечению подключенной к аккумулятору лампочки.

К онечно вы сможете получить качественное представление об аккумуляторе. Но это, примерно как проверять напряжение батарейки языком - даже опытный человек не сможет назвать число - напряжение в вольтах (или, в нашем случае, в ампер-часах). Кроме того, представьте себе, сколько батареек понадобится, чтобы передать ваш опыт сотруднику. А Кулон работает даже в неопытных руках. Поэтому, так же, как для измерения напряжения батарейки вы пользуетесь мультиметром, для вы будете пользоваться Кулоном.

Можно ли использовать Кулон для проверки никель-кадмиевых или литиевых аккумуляторов?

Н ет. Индикатор Кулон предназначен только для проверки свинцовых кислотных аккумуляторов.

Какова погрешность измерения Кулоном?

К улон не является прецизионным измерительным прибором. Он не измеряет , а оценивает ее по отклику аккумулятора на тестовый сигнал. Это индикатор, который служит для того, чтобы отличить хорошие аккумуляторы от аккумуляторов, утративших часть в результате . Погрешность измерения не указана в перечне его технических характеристик и не нормируется. Кулон отрабатывался на традиционных нескольких разных фирм с жидким (впитанным в пластины и сепаратор) электролитом - технология AGM. Для этих аккумуляторов погрешность оценки не превышала 10-15 %. Но в последние годы, некоторые производители аккумуляторов начали выпускать с заметно отличающимися электрическими характеристиками. Таковы, например, аккумуляторы для коротких разрядов (часто позиционируются, как ) или многочисленные "noname" аккумуляторы, которые часто устанавливают в системы сигнализации за их дешевизну (в андежде, что пожар не случится). Поэтому в наши дни на неизвестных аккумуляторах, даже если они сделаны по технологии AGM, погрешность может быть больше. Чтобы уменьшить эту погрешность, пользователь может настроить тестер на проверку определенного типа, фактически заменив заводскую калибровку прибора своей, полученной с его аккумуляторами и в его условиях.

В се измерения и оценки производятся относительно некоторого эталона. Например, вольтметр сравнивает напряжение аккумулятора с напряжением эталонного первичного элемента. А Кулон сравнивает проверяемого аккумулятора с тех свинцовых аккумуляторов, на которых он отрабатывался. Заменив заводскую калибровку своей, вы можете сделать эталонным свой аккумулятор, и все оценки емкости станут более точными. В инструкциях по эксплуатации , предлагаются несколько способов калибровки прибора. Вы должны лишь выбрать и использовать способ, который вам лучше подходит

Как пользоваться , если нет возможности самостоятельно провести калибровку?

Д ля большей части погрешность мала и Кулон может быть использован без всякой подготовки. Если в вашем случае это не так, и нет возможности провести калибровку, вы можете использовать КУЛОН, как прибор для относительных измерений. Например, у вас есть десяток одинаковых аккумуляторов с номинальной 10 А*час. На девяти из них КУЛОН показывает 9 А*час, а на десятом - 3 А*час. Вывод - десятый аккумулятор неисправен и его нужно заменить немедленно.

Д аже если есть только один аккумулятор данного типа, вы можете проверить его Кулоном перед вводом в эксплуатацию. В процессе дальнейшего обслуживания, вы можете с определенной периодичностью (например раз в квартал) записывать показания . Когда Кулон покажет, что стала меньше 70% начальной емкости (этот предел вы может выбрать сами), аккумулятор нужно заменить.

В стать приводится схема измерителя емкости автомобильных аккумуляторов. Основой схемы является микроконтроллер PIC16F873A . Вся информация выводится на светодиодный индикатор с общим катодом.

Вообще я эту схему и программу сочинял по настоятельной просьбе одного из посетителей сайта уже давно, но этот настоятельный посетитель скоропостижно куда-то пропал. Поэтому выкладываю все и для всех.

В принципе схема состоит из уже проверенных рабочих фрагментов из разных устройств, поэтому данное устройство я в «железо» не воплощал. Работа измерителя была симулирована в PROTEUS 7.7 SP2.

Работа схемы

На транзисторе VT1 и ОУ DA1.1 – LM358N собран электронный эквивалент нагрузки со стабилизацией втекающего тока разряда испытуемого аккумулятора.

Уровень тока разряда устанавливают подстроечным резистором R5. Низкоомный резистор R7 является датчиком тока для усилителя DA1.1, с него же снимается сигнал для АЦП микроконтроллера – цифровой амперметр. На ОУ DA1.2 собран компаратор ограничения напряжения разряда аккумулятора. Контролируемое напряжение с разряжаемого аккумулятора через делитель напряжения R8 и R9 подается на инвертирующий вход ОУ DA1.2. Коэффициент деления этого делителя составляет 1:10, это же напряжение через переключатель SA1, контакты 1-3 подается на оцифровку на вход RA1 микроконтроллера DD1. Это цифровой вольтметр. На не инвертирующий вход ОУ DA1.2 подается опорное напряжение с делителя R2 и R3. Резистором R9 производится подстройка показаний цифрового вольтметра. Резистором R3 производится установка напряжения ограничения разрядки аккумулятора. Величину этого напряжения можно посмотреть, переведя переключатель SA1 в нижнее по схеме положение. Транзистор VT2 – это импульсный усилитель звукового сигнала окончания разрядки аккумулятора. Изменяя величину резистора R13, можно изменять громкость звучания громкоговорителя ВА1. Микросхема DA2 – стабилизатор напряжения питания микроконтроллера, а так, как в качестве опорного напряжения при оцифровке сигналов в программе выбрано напряжение питания контроллера, то величина этого напряжения должна быть отрегулирована резистором R11 на уровне 5,12В. Светодиод HL1 это индикатор окончания процесса измерения.

Настройка прибора

Не вставляя запрограммированный микроконтроллер, подаем питание на правильно собранное устройство. Резистором R11 устанавливаем на выходе стабилизатора напряжение 5,12 вольт. Снимаем напряжение питания с платы и вставляем микроконтроллер. Переводим переключатель SA1 в верхнее положение, отключает коллектор транзистора VT1, подаем на разъем подключения аккумулятора контрольное напряжение 12 вольт. Такого же показания добиваемся на индикаторе вольтметра с помощью резистора R9. Переводим переключатель SA1 в нижнее положение, и выставляем напряжение ограничения разрядки, например, 10,5 вольт. При этом напряжение на выходе ОУ DA1.2 должно быть равно нулю. Начинаем плавно уменьшать контрольное напряжение и в районе 10,5 вольт должен сработать компаратор, при этом на его выходе напряжение должно возрасти до, примерно, пяти вольт (логическая единица). Эту единичку зафиксирует контроллер и подаст прерывистый звуковой сигнал, сигнализирующий о конце измерения емкости аккумулятора. Одновременно засветится светодиод HL1.

В цепь разряда аккумулятора включаем контрольный амперметр, устанавливаем нужный ток (ток разряда автомобильных аккумуляторов выбирают в соответствии с формулой С/10, где С – емкость аккумулятора)разряда резистором R5 и сверяем наши показания с контрольными. Точность нашего амперметра в основном зависит от точности величины резистора датчика тока R7. Если показания будут завышенными, то величину резистора R7 надо будет уменьшить.

Работа с прибором.

Берем полностью заряженный аккумулятор и подключаем к устройству. Отсчет времени разряда начинается сразу же. На левом по схеме индикаторе мы увидим значение тока разряда, на среднем — напряжение на разряжаемом аккумуляторе, при условии, что SA1 в верхнем положении. На правом индикаторе со временем будет отображаться текущие значения емкости. Емкость определяется с точностью до десятых долей. Из этого следует, что показания емкости будут меняться каждые 6 минут. После того, как напряжение на аккумуляторе уменьшится до выбранного вами предела, засветится светодиод, прозвучит сигал. Контроллер зафиксирует измеренную емкость, но процесс разряда не прекратится, имейте это ввиду.

Для того, что бы измерить ёмкость какого-нибудь аккумулятора, обычно поступают так: подключают к этому аккумулятору резистор определённого номинала, который разряжает этот аккумулятор, и записывая величины тока, протекающего через резистор и напряжение на нём, дожидаются полной разрядки аккумулятора. По полученным данным строится график разряда, из которого и выясняют ёмкость. Проблема только в том, что по мере снижения напряжения на аккумуляторе ток через резистор так же будет уменьшаться, так что данные придётся интегрировать во времени, поэтому точность такого способа измерения ёмкости аккумулятора оставляет желать лучшего.

Если же разряжать аккумулятор не через резистор, а через источник стабильного тока, то это позволит определить ёмкость аккумулятора с очень большой точностью. Но здесь есть одна проблема - напряжение на аккумуляторе (1,2..3,7 В) недостаточно для работы источника стабильного тока. Но эту проблему можно обойти, добавив в схему измерения дополнительный источник напряжения.

Рис. 1. Схема для измерения ёмкости аккумулятора
V1 - исследуемый аккумулятор; V2 - вспомогательный источник напряжения; PV1 - вольтметр;
LM7805 и R1 - источник стабильного тока; VD1 - защитный диод.

На рисунке 1 изображена принципиальная схема установки для измерения ёмкости аккумулятора. Здесь видно, что измеряемый аккумулятор V1 включён последовательно с источником тока (его образуют интегральный стабилизатор LM7805 и резистор R1) и вспомогательным источником питания V2. Поскольку V1 и V2 соединены последовательно, то сумма их напряжений оказывается достаточной для работы источника тока. Так как минимальное напряжение, необходимое для работы источника тока составляет 7 В (из них 5 В - это напряжение на выходе микросхемы LM7805, т.е. в данном случае это падение напряжения на резисторе R1, и 2 В - это минимально допустимое падение напряжения между входом и выходом LM7805), то для работы источника тока суммы напряжений V1 и V2 хватает с некоторым запасом.

Вместо стабилизатора LM7805 можно использовать другой интегральный стабилизатор, например, LM317 с выходным напряжением 1,25 В и минимальным падением напряжения 3 В. Так как минимальное рабочее напряжение источника тока будет равно 4,25 В, то напряжение второго источника напряжения V2 можно снизить до 5 В. В случае использования стабилизатор LM317 величина тока стабилизации будет определяться по формуле I = 1,25/R1

Тогда для разрядного тока 100 мА величина сопротивления R1 должна быть примерно 12,5 Ом.

Как производить измерение ёмкости аккумулятора

Вначале подбором резистора R1 нужно установить разрядный ток - обычно величину разрядного тока выбирают равной рабочему току разряда аккумулятора. Следует так же иметь в виду, что некоторые модели интегральных стабилизаторов напряжения 7805 могут потреблять небольшой управляющий ток порядка 2...8 мА, так что величину тока в схеме рекомендуется проверять амперметром. Далее полностью заряженный аккумулятор V1 устанавливают в схему, и замкнув выключатель SA1 начинают отсчёт времени до того момента, когда напряжение на аккумуляторе снизится до минимальной величины - для разных типов аккумуляторных батарей эта величина различна, например, для никель-кадмиевых (NiCd) - 1,0 В, для никель-металлогидридных (NiMH) - 1,1 В, для литий-ионных (Li-ion) - 2,5...3 В, для каждой конкретной модели аккумулятора эти данные нужно смотреть в соответствующей документации.

После достижения минимального напряжения на аккумуляторе выключатель SA1 размыкают. Следует помнить, что разряд аккумулятора ниже минимального напряжения может вывести его из строя. Перемножив величину разрядного тока (в Амперах) на время разряда (в часах) получаем ёмкость аккумулятора (А*ч):

C = I * t

Рассмотрим практическое применение этого способа измерения ёмкости аккумулятора на конкретном примере.

Измерение ёмкости аккумулятора NB-11L

Аккумулятор NB-11L (рис. 2.) был приобретён в интернет-магазине DealeXtreme за 3,7 доллара (SKU: 169532). На корпусе аккумулятора указана его ёмкость - 750 мА*ч. На сайте его ёмкость указана уже скромнее - 650 мА*ч. Какая же реальная ёмкость этого аккумулятора?

Рис. 2. Li-ion аккумулятор NB-11L ёмкостью якобы 750 мА*ч
Fits CAN.NB-11L 3.7V 750mAh
Use specified charger only

Что бы подключить проводники к контактам аккумулятора потребуются две скрепки, которые следует изогнуть так, как показано на рисунке 3, и подключить их к "+" и "-" выводам аккумулятора (рис. 4.). Необходимо избегать замыкания контактов, лучше их заизолировать.

Для измерения ёмкости аккумулятора NB-11L его разрядный ток был принят равным 100 мА. Для этого величина резистора R1 была выбрана чуть больше 50 Ом. Мощность, рассеиваемая на резисторе R1 определяется по формуле P = V 2 /R1 , где V - напряжение на резисторе R1. В данном случае P=5 2 /50=0,5 Вт. Стабилизатор LM7805 следует установить на радиатор, если же под рукой нет подходящего радиатора, то микросхему можно частично погрузить в стакан с холодной водой, но так, что бы выводы остались сухими (в случае корпуса TO-220).

После установки полностью заряженного аккумулятора NB-11L в схему и замыкания выключателя SA1 начался отсчёт времени с периодическим контролем напряжения по вольтметру PV1. Данные заносились в таблицу, по которой был построен график разряда аккумулятора NB-11L (рис. 5).

Рис. 5. График напряжения на аккумуляторе NB-11L в процессе его разряда током 100 мА

Отсюда видно, что за 5 часов разряда током 0,1 А напряжение на аккумуляторе снизилось до 3 вольт и стало быстро падать дальше.

C = I * t = 0,1 * 5 = 0,5 А = 500 мА*ч.

Так что реальная же ёмкость аккумулятора NB-11L оказалась в 1,5 раза ниже указанной на нём.

Эта конструкция подключается как приставка к зарядному устройству, разнообразных схем которых в интернете уже описано немало. Она выводит на жидкокристаллический дисплей значение входного напряжения, величину тока зарядки аккумулятора, время зарядки и ёмкость зарядного тока(которая может быть или в Ампер-часах или в миллиампер-часах - зависит только от прошивки контроллера и применённого шунта). (См. Рис.1 и Рис.2 )

Рис.1

Рис.2

Выходное напряжение зарядного устройства не должно быть менее 7 вольт, иначе для данной приставки потребуется отдельный источник питания.

Основу устройства составляет микроконтроллер PIC16F676 и жидкокристаллический 2-строчный индикатор SC 1602 ASLB-XH-HS-G.

Максимальная зарядная ёмкость составляет 5500 ма/ч и 95,0 А/ч соответственно.

Принципиальная схема приведена на Рис 3.

Рис.3. Принципиальная схема приставки для измерения ёмкости зарядки

Подключение к зарядному устройству - на Рис 4 .


Рис.4 Схема подключения приставки к зарядному устройству

При включении микроконтроллер сначала запрашивает требуемую ёмкость зарядки.
Устанавливается кнопкой SB1. Сброс - кнопкой SB2.
На выводе 2 (RA5)устанавливается высокий уровень, который включает реле P1, которое в свою очередь включает зарядное устройство (Рис.5 ).
Если кнопку не нажимать более 5 секунд - контроллер автоматически переходит в режим измерений.

Алгоритм подсчёта ёмкости в данной приставке следующий:
1 раз в секунду микроконтроллер измеряет напряжение на входе приставки и ток, и если величина тока больше единицы младшего разряда - увеличивает счётчик секунд на 1. Таким образом часы показывают только время зарядки.

Далее микроконтроллер высчитывает средний ток за минуту. Для этого показания зарядного тока делятся на 60. Целое число записываются в счётчик, а остаток от деления потом прибавляется к следующему измеренному значению тока,и уже потом эта сумма делится на 60. Сделав, таким образом, 60 измерений за 1 минуту в счётчике будет число среднего значения тока за минуту.
При переходе показаний секунд через ноль среднее значение тока в свою очередь делится на 60(по такому же алгоритму). Таким образом счётчик ёмкости увеличивается 1 раз в минуту на величину одна шестидесятая от величины среднего тока за минуту. После этого счётчик среднего значения тока обнуляется и подсчёт начинается сначала. Каждый раз, после подсчёта ёмкости зарядки, производится сравнение измеренной ёмкости и заданной, и при их равенстве на дисплей выдаётся сообщение - "Зарядка завершена", а во второй строке - значение этой ёмкости зарядки и напряжение. На выводе 2 микроконтроллера (RA5) появляется низкий уровень, что приводит к отключению реле. Зарядное устройство отключится от сети.


Рис.5

Наладка устройства сводится только к установке правильных показаний зарядного тока (R1 R5) и входного напряжения (R4) с помощью эталонного амперметра и вольтметра.

Теперь о шунтах.
Для зарядного устройства на ток до 1000 мА можно использовать блок питания на 15 в, в качестве шунта резистор на 0.5-10 Ом мощностью 5Вт (меньшее значение сопротивления будет вносить меньшую погрешность в измерение, но затруднит точную настройку тока при калибровки прибора), и последовательно с заряжаемым аккумулятором переменное сопротивление на 20-100 Ом, которым и будет выставляться величина зарядного тока.
Для зарядного тока до 10А потребуется изготовить шунт из высокоомной проволоки подходящего сечения на сопротивление 0,1 Ом. Проведённые испытания показали, что даже при сигнале с токового шунта равным 0,1 вольт настроечными резисторами R1 и R3 можно легко установить показания тока в 10 А.

Печатная плата для данного устройства разрабатывалась под индикатор WH1602D. Но можно использовать любой подходящий индикатор, сотвественно перепаяв провода. Плата собрана таких же размеров как и жидкокристаллический индикатор и закреплена сзади. Микроконтроллер устанавливается на панельку и позволяет быстро поменять прошивку для перехода на другой ток зарядного устройства.

Перед первым включением подстроечные резисторы установить в среднее положение.

В качестве шунта для варианта прошивки на малые токи можно применить 2 параллельно соединенных резистора млт-2 1 Ом.

В приставке можно применить индикатор WH1602D , но придется поменять местами выводы 1 и 2. А вообще- лучше свериться с документацией на индикатор.

Индикаторы фирмы МЭЛТ не будут работать, из-за несовместимости работы по 4-х битному интерфейсу.

При желании, можно подключить подсветку индикатора через токоограничительный резистор 100 Ом

Эту приставку можно использовать для определения емкости заряженного аккумулятора.

Рис.6. Определение емкости заряженного аккумулятора

В качестве нагрузки можно использовать любую нагрузку (Лампочку, резистор...), только при включении нужно выставить любую заведомо большую емкость аккумулятора и при этом следить за напряжением аккумулятора, чтобы не допускать глубокой разрядки.

(От автора) Приставка испытывалась с современным импульсным зарядным устройством для автомобильных аккумуляторов,
Данные устройства обеспечивают стабильное напряжение и ток с минимальными пульсациями.
При подсоединении же приставки к старому зарядному устройству (понижающий трансформатор и диодный выпрямитель) мне не удалось настроить показания зарядного тока из-за больших пульсаций.
Поэтому было решено изменить алгоритм измерения зарядного тока контроллером.
В новой редакции контроллер делает 255 измерений тока за 25 милисекунд (при 50Гц - период составляет 20 милисекунд). И из сделанных измерений выбирает самое большое значение.
Также происходит измерение входного напряжения, но выбирается наименьшее значение.
(При нулевом зарядном токе напряжение должно быть равно ЭДС аккумулятора.)
Однако при такой схеме перед стабилизатором 7805 необходимо поставить диод и сглаживающий конденсатор (>200 мкФ)на напряжение не менее выходного напряжения зарядного
устройства. Плохо сглаженное напряжение питания микроконтроллера приводило к сбоям в работе.
Для точной установки показаний приставки рекомендуется использовать многооборотные подстроечные резисторы или ставить дополнительные резисторы последовательно с подстроечными (подобрать экспериментально).
В качестве шунта для приставки на 10 А я пробовал использовать кусок аллюминиевого провода сечением 1,5 мм длиной около 20 см -прекрасно работает.

Похожие публикации