Chevroletavtoliga - Автомобильный портал

Принцип суперпозиции. I.Сложение волн.Принцип суперпозиции Интерференция механических волн определение

Волновая природа света наиболее ярко проявляется в явлениях интерференции и дифракции света, в основе которых лежит сложение волн . Явление интерференции и дифракции имеют, помимо их теоретического значения, широкое применение их на практике.

Этот термин в 1801 году предложил английский учёный Юнг. В буквальном переводе он означает вмешательство, столкновение, встреча.

Для наблюдения интерференции необходимы условия её возникновения, их два:

      интерференция возникает лишь тогда, когда налагающие волны имеют одинаковую длину λ (частоту ν);

      неизменность (постоянство) разности фаз колебаний.

Примеры сложения волн :

Источники, обеспечивающие явление интерференции, называются когерентными , а волны –когерентными волнами .

Для выяснения вопроса о том, что будет в данной точке max илиmin , нужно знать в каких фазах волны встретятся, а для знания фаз необходимо знатьразность хода волн . Что это такое?

    при (r 2 –r 1) =Δr, равной целому числу длин волн или четному числу полуволн, в точке М будет усиление колебаний;

    при d, равной нечетному числу полуволн в точке М будет ослабление колебаний.

Сложение световых волн происходит аналогично.

Сложение электромагнитных волн одной частоты колебаний, идущих от различных источников света, называется интерференцией света .

Для электромагнитных волн при их наложении применим принцип суперпозиции, фактически впервые сформулированный итальянским учёным эпохи Возрождения Леонардо да Винчи:

Подчеркните, что принцип суперпозиции точно справедлив лишь для волн бесконечно малой амплитуды.

Монохроматическая световая волна описывается уравнением гармонических колебаний:

,

где y – величины напряжённостей и, векторы которых колеблются во взаимоперпендикулярных плоскостях.

Если имеются две волны одинаковой частоты:

и
;

приходящие в одну точку, то результирующее поле равно их сумме (в общем случае – геометрической):

Если ω 1 = ω 2 и (φ 01 – φ 02) =const, волны называютсякогерентными .

Величина А в зависимости от разности фаз лежит в пределах:

|А 1 – А 2 | ≤ А ≤ (А 1 + А 2)

(0 ≤ А ≤ 2А, если А 1 =А 2)

Если А 1 = А 2 , (φ 01 – φ 02) = π или (2k+ 1)π,cos(φ 01 – φ 02) = –1, то А = 0, т.е. интерферирующие волны полностью гасят друг друга (minосвещённости, если учесть, что Е 2 J, гдеJ– интенсивность).

Если А 1 = А 2 , (φ 01 – φ 02) = 0 или 2kπ, то А 2 = 4А 2 , т.е. интерферирующие волны усиливают друг друга (имеет местоmaxосвещённости).

Если (φ 01 – φ 02) – изменяется хаотически со временем, с очень большой частотой, то А 1 = 2А 1 , т.е. равна просто алгебраической сумме обоих амплитуд волн, излучаемых каждым источником. В этом случае положенияmax иmin быстро меняют своё положение в пространстве, и мы будем видеть некоторую среднюю освещённость с интенсивностью 2А 1 . Эти источники –некогерентные .

Любые два независимых источника света – некогерентны.

Когерентные волны можно получить от одного источника, путём разбиения пучка света на несколько пучков, имеющих постоянную разность фаз.

Интерференция волн (от лат. inter — взаимно, между собой и ferio — ударяю, пора-жаю) — взаимное усиление или ослабление двух (или большего числа) волн при их наложении друг на друга при одновременном распространении в пространстве.

Обычно под интерференционным эффектом понимают тот факт, что результирующая интен-сивность в одних точках пространства получается больше, в других — меньше суммарной интен-сивности волн.

Интерференция волн — одно из основных свойств волн любой природы: упругих, электромаг-нитных, в том числе и световых, и др.

Интерференция механических волн.

Сложение механических волн — их взаимное наложение — проще всего наблюдать на по-верхности воды . Если возбудить две волны, бросив в воду два камня, то каждая из этих волн ведет себя так, как будто другой волны не существует. Аналогично ведут себя звуковые волны от разных независимых источников. В каждой точке среды колебания , вызванные волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраичес-кую сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Если одновременно в двух точках О 1 и О 2 возбудить в воде две когерентные гармонические вол-ны , то будут наблюдаться гребни и впадины на поверхности воды, не меняющиеся со временем, т. е. возникнет интерференция .

Условием возникновения максимума интенсивности в некоторой точке М , находящейся на расстояниях d 1 и d 2 от источников волн О 1 и О 2 , расстояние между которыми l d 1 и l ≪ d 2 (рис. ниже), будет:

Δd = kλ,

где k = 0 , 1 , 2 , а λ длина волны .

Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн и при условии, что фазы колебаний двух источников совпадают.

Под разностью хода Δd здесь понимают геометрическую разность путей, которые проходят вол-ны от двух источников до рассматриваемой точки: Δd = d 2 - d 1 . При разности хода Δd = разность фаз двух волн равна четному числу π , и амплитуды колебаний будут складываться.

Условием минимума является:

Δd = (2k + 1)λ/2.

Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн и при условии, что фазы колебаний двух источников совпадают.

Разность фаз волн в этом случае равна нечетному числу π , т. е. колебания происходят в противофазе, следовательно, гасятся; амплитуда результирующего колебания равна нулю.

Распределение энергии при интерференции.

Вследствие интерференции происходит перераспределение энергии в пространстве. Она концентрируется в максимумах за счет того, что в минимумы не поступает совсем.

Не так давно мы довольно подробно обсуждали свойства световых волн и их интерференцию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом предполагалось, что частоты источников одинаковы. В этой же главе мы остановимся на некоторых явлениях, возникающих при интерференции двух источников с различными частотами.

Нетрудно догадаться, что при этом произойдет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку сигналы приходят с одинаковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке то туда, то сюда, скажем сначала он делает ее нулевой, затем - равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

Итак, теперь известен ответ: если взять два источника, частоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсивностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!

Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку . Пусть от одного источника приходит волна , а от другого - волна , причем обе частоты и не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от времени, как это показано на фиг. 48.1, то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина - практически нуль, а когда гребни снова совпадают, вновь получается большая волна.

Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.

Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полезные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что

и что вещественная часть экспоненты равна , а мнимая часть равна . Если мы возьмем вещественную часть , то получим , а для произведения

мы получаем плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,

Если теперь изменить знак величины , то, поскольку косинус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности

После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

Теперь можно обернуть это выражение и получить формулу для , если просто положить , а , т. е. , а :

Но вернемся к нашей проблеме. Сумма и равна

Пусть теперь частоты приблизительно одинаковы, так что равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность гораздо меньше, чем и , поскольку мы предположили, что и приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной первоначальным, но что «размах» ее медленно меняется: он пульсирует с частотой, равной . Но та ли это частота, с которой мы слышим биения? Уравнение (48.0) говорит, что амплитуда ведет себя как , и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза большую. Иначе говоря, модуляция амплитуды в смысле ее интенсивности происходит с частотой , хотя мы и умножаем на косинус половинной частоты.

Уравнение стоячей волны.

В результате наложении двух встречных плоских волн с одинаковой амплитудой возникающий колебательный процесс называется стоячей волной . Практически стоячие волны возникают при отражении от преград. Напишем уравнения двух плоских волн, распространяющихся в противоположных направлениях (начальная фаза ):

Сложим уравнения и преобразуем по формуле суммы косинусов: . Т.к. , то можно записать: . Учитывая, что , получим уравнение стоячей волны : . В выражении для фазы не входит координата, поэтому можно записать: , где суммарная амплитуда .

Интерференция волн - такое наложение волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других, в зависимости от соотношения между фазами этих волн. Необходимые условия для наблюдения интерференции:

1) волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);

2) волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции. Иными словами, складываемые волны должны иметь одинаковые волновые векторы. Волны, для которых выполняются эти два условия, называются когерентными. Первое условие иногда называют временной когерентностью , второе - пространственной когерентностью . Рассмотрим в качестве примера результат сложения двух одинаковых однонаправленных синусоид. Варьировать будем только их относительный сдвиг. Если синусоиды расположены так, что их максимумы (и минимумы) совпадают в пространстве, произойдет их взаимное усиление. Если же синусоиды сдвинуты друг относительно друга на полпериода, максимумы одной придутся на минимумы другой; синусоиды уничтожат друг друга, то есть произойдет их взаимное ослабление. Складываем две волны:

здесь х 1 и х 2 - расстояния от источников волн до точки пространства, в которой мы наблюдаем результат наложения. Квадрат амплитуды результирующей волны дается выражением:

Максимум этого выражения есть 4A 2 , минимум - 0; всё зависит от разности начальных фаз и от так называемой разности хода волн D:

При в данной точке пространства будет наблюдаться интерференционный максимум, при - интерференционный минимум.Если же мы сдвинем точку наблюдения в сторону от прямой, соединяющей источники, мы попадем в область пространства, где интерференционная картина меняется от точки к точке. В этом случае мы будем наблюдать интерференцию волн с равными частотами и близкими волновыми векторами.



Электромагнитные волны. Электромагнитное излучение - распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей). Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников - движущихся зарядов, затухая наиболее медленно с расстоянием. Электромагнитное излучение подразделяется на радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение. Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.

Какова природа света. Интерференция света. Когерентность и монохроматичность световых волн. Применение интерференции света. Дифракция света. Принцип Гюйгенса – Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии. Дисперсия света. Электронная теория дисперсии света. Поляризация света. Естественный и поляризованный свет. Степень поляризации. Поляризация света при отражении и преломлении на границе двух диэлектриков. Поляроиды

Какова природа света. Первые теории о природе света - корпускулярная и волновая - появились в середине 17 века. Согласно корпускулярной теории (или теории истечения) свет представляет собой поток частиц (корпускул), которые испускаются источником света. Эти частицы движутся в пространстве и взаимодействуют с веществом по законам механики. Эта теория хорошо объясняла законы прямолинейного распространения света, его отражения и преломления. Основоположником данной теории является Ньютон. Согласно волновой теории свет представляет собой упругие продольные волны в особой среде, заполняющей все пространство - светоносном эфире. Распространение этих волн описывается принципом Гюйгенса. Каждая точка эфира, до которой дошел волновой процесс, является источником элементарных вторичных сферических волн, огибающая которых образует новый фронт колебаний эфира. Гипотеза о волновой природе света высказана Гуком, а развитие она получила в работах Гюйгенса, Френеля, Юнга. Понятие упругого эфира привело к неразрешимым противоречиям. Например, явление поляризации света показало. что световые волны поперечны. Упругие поперечные волны могут распространяться только в твердых телах, где имеет место деформация сдвига. Поэтому эфир должен быть твердой средой, но в то же время не препятствовать движению космических объектов. Экзотичность свойств упругого эфира являлась существенным недостатком первоначальной волновой теории. Противоречия волновой теории были разрешены в 1865 году Максвеллом, который пришел к выводу, что свет - электромагнитная волна. Одним из аргументов в пользу данного утверждения является совпадение скорости электромагнитных волн, теоретически вычисленных Максвеллом, со скоростью света, определенной экспериментально (в опытах Ремера и Фуко). Согласно современным представлениям, свет имеет двойственную корпускулярно-волновую природу. В одних явлениях свет обнаруживает свойства волн, а в других - свойства частиц. Волновые и квантовые свойства дополняют друг друга.

Интерференция волн .
– это явление наложения когерентных волн
- свойственно волнам любой природы (механическим, электромагнитным и т.д.

Когерентные волны - это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз. При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний (смещения) этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.
При наложении когерентных волн возможны два предельных случая:
1) Условие максимума: Разность хода волн равна целому числу длин волн (иначе четному числу длин полуволн).
где . В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.

2) Условие минимума: Разность хода волн равна нечетному числу длин полуволн. где . Волны приходят в рассматриваемую точку в противофазе и гасят друг друга. Амплитуда колебаний данной точки равна нулю. В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина. При интерференции волн амплитуда колебаний каждой точки не меняется во времени и остается постоянной. При наложении некогерентных волн нет интерференционной картины, т.к. амплитуда колебаний каждой точки меняется со временем.

Когерентность и монохроматичность световых волн. Интерференцию света можно объяснить, рассматривая интерференцию волн. Необходимым условием интерференции волн является их когерентность , т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Этому условию удовлетворяют монохроматические волны - неограниченные в пространстве волны одной определенной и строго постоянной частоты. Taк как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны. В двух самостоятельных источниках света атомы излучают независимо друг от друга. В каждом из таких атомов процесс излучения конечен и длится очень короткое время (t » 10 –8 с). За это время возбужденный атом возвращается в нормальное состояние и излучение им света прекращается. Возбудившись вновь, атом снова начинает испускать световые волны, но уже с новой начальной фазой. Так как разность фаз между излучением двух таких независимых атомов изменяется при каждом новом акте испускания, то волны, спонтанно излуча­емые атомами любого источника света, некогерентны. Таким образом, волны, испуска­емые атомами, лишь в течение интервала времени 10 –8 с имеют приблизительно постоянные амплитуду и фазу колебаний, тогда как за больший промежуток времени и амплитуда, и фаза изменяются.

Применение интерференции света. Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны l 0 . Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн. Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики ) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло–воздух, сопровождается отражением »4% падающего потока (при показа­теле преломления стекла »1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора. Для устранения указанных недостатков осуществляют так называемое просветле­ние оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух–пленка и пленка–стекло возникает интерференция когерентных лучей. Толщину пленки d и показатели преломления стекла n с и пленки n можно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна . Расчет показывает, что амплитуды от­раженных лучей равны, если Так как n с, n и показатель преломления воздуха n 0 удовлетворяют условиям n с >n >n 0 , то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. i= 0), , где nd - оптическая толщина пленки. Обычно принимают m =0, тогда

Дифракция света. Принцип Гюйгенса – Френеля. Дифракция света - отклонение световых волн от прямолинейного распространения, огибание встречающихся препятствий. Качественно явление дифракции объясняется на основе принципа Гюйгенса-Френеля. Волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат интерференции. Пример. Плоская световая волна, падающая на непрозрачный экран с отверстием. За экраном фронт результирующей волны (огибающая всех вторичных волн) искривляется, в результате чего свет отклоняется от первоначального направления и попадает в область геометрической тени. Законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны: Дифракция происходит в том случае, когда размеры препятствий соизмеримы с длиной волны: L ~ Л. Дифракционная картина, полученная на экране, расположенном за различными преградами, представляет собой результат интерференции: чередование светлых и темных полос (для монохроматического света) и разноцветных полос (для белого света). Дифракционная решетка - оптический прибор, представляющий собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Число штрихов у хороших дифракционных решеток доходит до нескольких тысяч на 1 мм. Если ширина прозрачной щели (или отражающих полос) а, а ширина непрозрачных промежутков (или рассеивающих свет полос) b, то величина d = а + b называется периодом решетки.

Часто в веществе в один и тот же момент времени распространяется несколько волн. В таком случае любая частица вещества, которая попадает в это сложное поле волны, совершает колебания, являющиеся результатом каждого из рассматриваемых волновых процессов. Суммарное смещение частицы вещества в произвольный момент времени - это геометрическая сумма смещений, которые вызваны каждым из отдельных процессов колебания. Каждая волна распространяется в веществе так, будто других волновых процессов не существует. Закон сложения волн (колебаний) называют принципом суперпозиции или принципом независимого наложения волн друг на друга. В качестве примера независимого сложения колебаний можно привести сложение колебаний волн звука при игре оркестра. Слушая который, можно различить звучание отдельных инструментов. Если бы принцип суперпозиции не выполнялся, то музыка стала бы не возможна.

Определение интерференции волн

ОПРЕДЕЛЕНИЕ

Сложение колебаний, при котором они взаимно усиливают или ослабляют друг друга, называют интерференцией .

В переводе с французского interferer означает вмешиваться.

Интерференция волн возникает тогда, когда колебания в волнах происходят при одинаковых частотах, одинаковых направлениях смещения частиц и постоянстве разности фаз. Или, иначе говоря, при когерентности источников волн. (В переводе с латинского языка cohaerer - находиться в связи). В том случае, если один поток бегущих волн, создающих последовательно во всех точках исследуемой части поля волны одинаковые колебания, налагается на когерентный поток подобных волн, создающий колебания волны с такой же амплитудой, то интерференция колебаний ведет к неизменному во времени расчленению поля волны на:

  1. Области усиления колебаний.
  2. Области ослабления колебаний.

Геометрическое расположение места интерференционного усиления колебаний определяет разность хода волн (). Наибольшее усиление колебаний располагается там, где:

где n - целое число; - длина волны.

Максимальное ослабление колебаний происходит там, где:

Явление интерференции можно наблюдать у любых видов волн. Это явление, например, можно наблюдать для волн света. Для определённой величины разности хода прямого и отраженного луча света, попадая в одну точку, рассматриваемые лучи способны полностью погасить друг друга.

Примеры решения задач

ПРИМЕР 1

Задание Два колебания происходят в соответствии с уравнениями: и . Покажите, как получить условие максимума и минимума интенсивности при наложении двух данных волн.
Решение Если рассматривается сложение колебаний в одном направлении, тогда смещение, которое получает точка в каждом колебании, будет складываться алгебраически. И результирующее смещение равно:

Изобразим векторную диаграмму сложения двух колебаний одинаковой частоты (таких, которые заданы по нашему условию (рис.1)).

Суммарное смещение x (1.1) получается проектированием на вертикальный диаметр векторов — амплитуд и . Для любого момента времени смещение x - проекция вектора , который равен:

Следовательно, имеем:

Из рис.1 следует, что:

Энергия суммарного гармонического колебания равна сумме энергий колебаний если:

Выражение (1.6) выполняется, если (в соответствии с (1.5)) фазы суммируемых колебаний отличаются на величину , где

Если разность фаз составляет:

То считают, что колебания находятся в противофазе, тогда:

В случае, при котором :

Похожие публикации