Chevroletavtoliga - Автомобильный портал

Одноканальная система с ограниченной очередью. Системы массового обслуживания с неограниченной очередью. Порядок выполнения работы

Рассмотрим многоканальную СМО, на вход которой поступает пуассоновский поток заявок с интенсивностью, а интенсивность обслуживания каждого канала составляет, максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

Все каналы свободны, ;

Занят только один канал (любой), ;

  • - заняты только два канала (любых), ;
  • - заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

Заняты все каналов и одна заявка стоит в очереди,

Заняты все каналов и две заявки стоят в очереди,

Заняты все каналов и все мест в очереди,

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью, тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния, когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного.

Запишем выражения для предельных вероятностей состояний:

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем:

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований.

Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей

Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность -

Среднее число занятых каналов -

Среднее число простаивающих каналов -

Коэффициент занятости (использования) каналов -

Коэффициент простоя каналов -

Среднее число заявок, находящихся в очередях -

В случае если, эта формула принимает другой вид -

Среднее время ожидания в очереди определяется формулами Литтла -

Многоканальная система массового обслуживания с ограниченной очередью

Пусть на вход СМО, имеющей каналов обслуживания, поступает пуассоновский поток заявок с интенсивностью. Интенсивность обслуживания заявки каждым каналом равна, а максимальное число мест в очереди равно.

Граф такой системы представлен на рисунке 7.

Рисунок 7 - Граф состояний многоканальной СМО с ограниченной очередью

Все каналы свободны, очереди нет;

Заняты l каналов (l = 1, n), очереди нет;

Заняты все n каналов, в очереди находится i заявок (i = 1, m).

Сравнение графов на рисунке 2 и рисунке 7 показывает, что последняя система является частным случаем системы рождения и гибели, если в ней сделать следующие замены (левые обозначения относятся к системе рождения и гибели):

Выражения для финальных вероятностей легко найти из формул (4) и (5). В результате получим:

Образование очереди происходит, когда в момент поступления в СМО очередной заявки все каналы заняты, т.е. в системе находятся либо n, либо (n+1),…, либо (n + m - 1) заявок. Т.к. эти события несовместны, то вероятность образования очереди p оч равна сумме соответствующих вероятностей:

Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е.:

Относительная пропускная способность равна:

Среднее число заявок, находящихся в очереди, определяется по формуле (11) и может быть записано в виде:

Среднее число заявок, обслуживаемых в СМО, может быть записано в виде:

Среднее число заявок, находящихся в СМО:

Среднее время пребывания заявки в СМО и в очереди определяется формулами (12) и (13).

Многоканальная система массового обслуживания с неограниченной очередью

Граф такой СМО изображен на рисунке 8 и получается из графа на рисунке 7 при.

Рисунок 8 - Граф состояний многоканальной СМО с неограниченной очередью

Формулы для финальных вероятностей можно получить из формул для n-канальной СМО с ограниченной очередью при. При этом следует иметь в виду, что при вероятность р 0 = р 1 =…= p n = 0, т.е. очередь неограниченно возрастает. Следовательно, этот случай практического интереса не представляет и ниже рассматривается лишь случай. При из (26) получим:

Формулы для остальных вероятностей имеют тот же вид, что и для СМО с ограниченной очередью:

Из (27) получим выражение для вероятности образования очереди заявок:

Поскольку очередь не ограничена, то вероятность отказа в обслуживании заявки:

Абсолютная пропускная способность:

Из формулы (28) при получим выражение для среднего числа заявок в очереди:

Среднее число обслуживаемых заявок определяется формулой:

Среднее время пребывания в СМО и в очереди определяется формулами (12) и (13).

Многоканальная система массового обслуживания с ограниченной очередью и ограниченным временем ожидания в очереди

Отличие такой СМО от СМО, рассмотренной в подразделе 5.5, состоит в том, что время ожидания обслуживания, когда заявка находится в очереди, считается случайной величиной, распределённой по показательному закону с параметром, где - среднее время ожидания заявки в очереди, а - имеет смысл интенсивности потока ухода заявок из очереди. Граф такой СМО изображён на рисунке 9.


Рисунок 9 - Граф многоканальной СМО с ограниченной очередью и ограниченным временем ожидания в очереди

Остальные обозначения имеют здесь тот же смысл, что и в подразделе.

Сравнение графов на рис. 3 и 9 показывает, что последняя система является частным случаем системы рождения и гибели, если в ней сделать следующие замены (левые обозначения относятся к системе рождения и гибели):

Выражения для финальных вероятностей легко найти из формул (4) и (5) с учетом (29). В результате получим:

где. Вероятность образования очереди определяется формулой:

Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е. вероятность отказа в обслуживании:

Относительная пропускная способность:

Абсолютная пропускная способность:

Среднее число заявок, находящихся в очереди, находится по формуле (11) и равно:

Среднее число заявок, обслуживаемых в СМО, находится по формуле (10) и равно:

Назначение сервиса СМО . Онлайн-калькулятор предназначен для расчета следующих показателей одноканальных СМО:
  • вероятность отказа канала, вероятность свободного канала, абсолютная пропускная способность;
  • относительная пропускная способность, среднее время обслуживания, среднее время простоя канала.

Инструкция . Для решения подобных задач в онлайн режиме выберите модель СМО. Укажите интенсивность потока заявок λ и интенсивность потока обслуживания μ . Для одноканальной СМО с ограниченной длиной очереди можно указать длину очереди m , а для одноканальной СМО с неограниченной очередью - число заявок в очереди (для расчета вероятности нахождения этих заявок в очереди). см. пример решения . . Полученное решение сохраняется в файле Word .

Классификация одноканальных систем массового обслуживания

Пример №1 . Авто заправочная станция имеет одну бензоколонку. Предполагается что простейший поток автомашин поступает на станцию с интенсивностью λ=11 автомашин/ч. Время обслуживания заявки случайная величина которая подчиняется экспоненциальному закону с параметром μ=14 автомашин/ч. Определить среднее число автомашин на станции.

Пример №2 . Имеется пункт проведения профилактического осмотра машин с одной группой проведения осмотра. На осмотр и выявление дефектов каждой машины затрачивается в среднем 0,4 часа. На осмотр поступает в среднем 328 машин в сутки. Потоки заявок и обслуживаний - простейшие. Если машина, прибывшая в пункт осмотра не застает ни одного канала свободным, она покидает пункт осмотра необслуженной. Определить предельные вероятности состояний и характеристики обслуживания пункта профилактического осмотра.
Решение. Здесь α = 328/24 ≈ = 13.67, t = 0.4. Эти данные необходимо ввести в калькулятор.

Тема. Теория систем массового обслуживания.

Каждая СМО состоит из какого–то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого–то потока заявок (требований), поступающих в какие-то случайные моменты времени.

Классификация СМО по способу обработки входного потока заявок.

Системы массового обслуживания

С отказами

(без очереди)

С очередью

Неограниченная очередь

Ограниченная очередь

С приоритетом

В порядке поступления

Относительный приоритет

Абсолютный приоритет

По времени обслуживания

По длине очереди

Классификация по способу функционирования:

    открытыми, т.е. поток заявок не зависит от внутреннего состояния СМО;

    закрытыми, т.е. входной поток зависит от состояния СМО (один ремонтный рабочий обслуживает все каналы по мере их выхода из строя).

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди. Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

- все каналы свободны;

- занят один канал, остальные свободны;

- заняты -каналов, остальные нет;

- заняты все -каналов, свободных нет;

есть очередь:

- заняты все n-каналов; одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок в очереди;

- заняты все n-каналов, r-заявок в очереди.

ГСП приведен на рис. 9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 9. Многоканальная СМО с ожиданием

Вероятность отказа.

(29)

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

(30)

Среднее число занятых каналов.

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

(31)

где .

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (23), (24) - (26)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди.

(32)

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди только множителем , т. е.

.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО .

Системы с неограниченной длиной очереди. Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более m-заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятность отказа

Среднее число заявок в очереди получим при из (31):

,

а среднее время ожидания - из (32): .

Среднее число заявок .

Пример 2. Автозаправочная станция с двумя колонками (n = 2) обслуживает поток машин с интенсивностью =0,8 (машин в минуту). Среднее время обслуживания одной машины:

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

СМО с ограниченным временем ожидания. Ранее рассматривались системы с ожиданием, ограниченным только длиной очереди (числом m-заявок, одновременно находящихся в очереди). В такой СМО заявка, разраставшая в очередь, не покидает ее, пока не дождется обслуживания. На практике встречаются СМО другого типа, в которых заявка, подождав некоторое время, может уйти из очереди (так называемые «нетерпеливые» заявки).

Рассмотрим СМО подобного типа, предполагая, что ограничение времени ожидания является случайной величиной.

Пуассоновский «поток уходов» с интенсивностью:

Если этот поток пуассоновский, то процесс, протекающий в СМО, будет марковским. Найдем для него вероятности состояний. Нумерация состояний системы связывается с числом заявок в системе - как обслуживаемых, так и стоящих в очереди:

нет очереди:

- все каналы свободны;

- занят один канал;

- заняты два канала;

- заняты все n-каналов;

есть очередь:

- заняты все n-каналов, одна заявка стоит в очереди;

- заняты все n-каналов, r-заявок стоят в очереди и т. д.

Граф состояний и переходов системы показан на рис. 10.

Рис. 10. СМО с ограниченным временем ожидания

Разметим этот граф, как и раньше; у всех стрелок, ведущих слева направо, будет стоять интенсивность потока заявок . Для состояний без очереди у стрелок, ведущих из них справа налево, будет, как и раньше, стоять суммарная интенсивность потока обслуживании всех занятых каналов. Что касается состояний с очередью, то у стрелок, ведущих из них справа налево, будет стоять суммарная интенсивность потока обслуживания всех n-каналов плюс соответствующая интенсивность потока уходов из очереди. Если в очереди стоят r-заявок, то суммарная интенсивность потока уходов будет равна .

Среднее число заявок в очереди: (35)

На каждую из этих заявок действует «поток уходов» с интенсивностью . Значит, из среднего числа -заявок в очереди в среднем будет уходить, не дождавшись обслуживания, -заявок в единицу времени и всего в единицу времени в среднем будет обслуживаться -заявок. Относительная пропускная способность СМО будет составлять:

Среднее число занятых каналов по-прежнему получаем, деля абсолютную пропускную способность А на Замкнутые СМО

До сих пор мы рассматривали системы, в которых входящий поток никак не связан с выходящим. Такие системы называются разомкнутыми. В некоторых же случаях обслуженные требования после задержки опять поступают на вход. Такие СМО называются замкнутыми. Поликлиника, обслуживающая данную территорию, бригада рабочих, закрепленная за группой станков, являются примерами замкнутых систем.

В замкнутой СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве требования на обслуживание, считается, что оно находится в блоке задержки. В момент реализации оно поступает в саму систему. Например, рабочие обслуживают группу станков. Каждый станок является потенциальным требованием, превращаясь в реальное в момент своей поломки. Пока станок работает, он находится в блоке задержки, а с момента поломки до момента окончания ремонта - в самой системе. Каждый рабочий является каналом обслуживания. = =P 1 + 2 P 2 +…+(n- 1 )P n- 1 +n( 1 -P На вход трехканальной СМО с отказами поступает поток заявок с интенсивностью =4 заявки в минуту, время обслуживания заявки одним каналом t обсл =1/μ =0,5 мин. Выгодно ли с точки зрения пропускной способности СМО заставить все три канала обслуживать заявки сразу, причем среднее время обслуживания уменьшается втрое? Как это скажется на среднем времени пребывания заявки в СМО?

Пример 2 . /μ=2, ρ/ n =2/3<1.

Задача 3:

Два рабочих обслуживают группу из четырех станков. Остановки работающего станка происходят в среднем через 30 мин. Среднее время наладки составляет 15 мин. Время работы и время наладки распределено по экспоненциальному закону.

Найдите среднюю долю свободного времени для каждого рабочего и среднее время работы станка.

Найдите те же характеристики для системы, в которой:

а) за каждым рабочим закреплены два станка;

б) два рабочих всегда обслуживают станок вместе, причем с двойной интенсивностью;

в) единственный неисправный станок обслуживают оба рабочих сразу (с двойной интенсивностью), а при появлении еще хотя бы одного неисправного станка они начинают работать порознь, причем каждый обслуживает один станок (вначале опишите систему в терминах процессов гибели и рождения).

В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).

Рассмотрим простую одноканальную СМО с ограниченной очередью, в которой число мест в очереди т - фиксированная величина. Следовательно, заявка, поступившая в тот момент, когда все места в очереди заняты, не принимается к обслуживанию, не встает в очередь и.покидает систему.

Граф этой СМО представлен на рис. 3.4 и совпадает с графом рис. 2.1 описывающим процесс «рождения--гибели», с тем отличием, что при наличии только одного канала.

Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны

Состояния СМО можно представить следующим образом:

S0 - канал обслуживания свободен,

S, - канал обслуживания занят, но очереди нет,

S2- канал обслуживания занят, в очереди стоит одна заявка,

S3- канал обслуживания занят, в очереди стоят две заявки,

Sm+1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.

Для описания случайного процесса СМО можно воспользоваться изложенными ранее правилами и формулами. Напишем выражения, определяющие предельные вероятности состояний:

Выражение для р0 можно в данном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:

с= (1- с)

Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2).

Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании.

Действительно, выражение для предельной вероятности р0в случае т = 0 имеет вид:

pо = м / (л+м)

И в случае л =м имеет величину р0= 1 / 2.

Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.

Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии Sm+1 и, следовательно, все места в очереди да заняты и один канал обслуживает

Поэтому вероятность отказа определяется вероятностью появлением

Состояния Sm+1:

Pотк = pm+1 = сm+1 * p0

Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением

Q = 1- pотк = 1- сm+1 * p0

абсолютная пропускная способность равна:

Среднее число заявок Lочстоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди

случайная величина к принимает следующие только целочисленные значения:

  • 1 - в очереди стоит одна заявка,
  • 2 - в очереди две заявки,

т-в очереди все места заняты

Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S2. Закон распределения дискретной случайной величины к изображается следующим образом:

Таблица 1. Закон распределения дискретной случайной величины

Математическое ожидание этой случайной величины равно:

Lоч = 1* p2 +2* p3 +...+ m* pm+1

В общем случае при p ?1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:

Lоч = p2 * 1- pm * (m-m*p+1) * p0

В частном случае при р = 1, когда все вероятности pkоказываются равными, можно воспользоваться выражением для суммы членов числового ряда

1+2+3+ m = m(m+1)

Тогда получим формулу

L"оч= m(m+1) * p0 = m(m+1) (p=1).

Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла

Точ = Lоч/А (при р? 1) и Т1оч= L"оч /А(при р = 1).

Такой результат, когда оказывается, что Точ ~ 1/ л, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lоч является функцией от л и м и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более mзаявок.

Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р? 1) к уменьшению Точростом л, поскольку доля таких заявок с ростом л увеличивается.

Если отказаться от ограничения на длину очереди, т.е. устремить m--> >?, то случаи р < 1 и р?1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду

При достаточно большом к вероятностьpk стремится к нулю. Поэтому относительная пропускная способность будет Q= 1, а абсолютная пропускная способность станет равной А --л Q -- л следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:

Lоч =p2 1-p

а среднее время ожидания по формуле Литтла

Точ = Lоч/А

В пределе р << 1 получаем Точ = с / м т.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р? 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t > ?). Предельные вероятности состояний поэтому не могут быть определены: при Q= 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки.

Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем с и м, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.

В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена -- среднее число заявок, находящихся в очереди, равно:

Lсмо= m+1 ;2

Тсмо= Lсмо; при p ?1

A тогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:

Тсмо= m+1 при p ?1 2м

Похожие публикации