Chevroletavtoliga - Автомобильный портал

Как определить неисправный конденсатор на плате. Как проверить конденсатор: проверяем работоспособность конденсатора мультиметром. Проверки сопротивления, как метод выявление вышедших из строя деталей

Конденсатор – это устройство, способное накапливать электрический заряд. Вследствие неисправности он теряет это свойство и становится бесполезным. В этой статье речь пойдет о том, как проверить конденсатор.

Конденсаторы делятся на электролитические, подключаемые в схему лишь определенным образом, и неполярные, порядок подключения выводов которых безразличен. Для начала рассмотрим, как проверить электролитический конденсатор на работоспособность.

Как проверить исправность электролитического конденсатора мультиметром

Сначала нужно провести внешний осмотр конденсатора. Повреждения электролитов нередко приводят к увеличению давления внутри их корпуса. В итоге они взрываются. Сила взрыва невелика, но больший вред окружающему пространству наносит разбрызгивание содержимого детали. Для исключения этого явления современные конденсаторы имеют в верхней части крестообразную насечку. При превышении давления корпус рвется по ее линиям и стравливает давление из корпуса, не давая ему достичь высоких значений. Заключение о неисправности можно смело дать в случаях вспучивания корпуса или его разрыва в месте насечки. В остальных случаях потребуется проверить работоспособность конденсатора.

Такой конденсатор необходимо заменить

Принцип проверки заключается в следующем. Мультиметры и тестеры используют для измерения сопротивления внутренний источник постоянного тока – батарейку. Для проверки исправности конденсатора прибор подключают к его выводам, соблюдая полярность. В первый момент времени прибор будет показывать сопротивление разряженного устройства, которое близко к нулю. Источник постоянного тока прибора начнет заряжать конденсатор, по мере зарядки сопротивление будет увеличиваться. Когда заряд закончится, прибор покажет бесконечно большое сопротивление, лежащее за пределом его измерения.

Перед тем, как проверить конденсатор мультиметром, его необходимо разрядить, замкнув выводы между собой или закоротив любым металлическим предметом: отверткой, пинцетом, ножом. Предел измерения мультиметра выставляется максимально возможным. Плюсовой вывод прибора, имеющий красный цвет и маркировку «Ω», соединяется с выводом радиодетали, обозначенным знаком «+». Минусовой вывод черного цвета, обозначенный на корпусе мультиметра «COM», подключается к другому выводу, и измерение начинается. При этом нужно внимательно следить за показаниями мультиметра, которые должны только увеличиваться, не изменяясь в меньшую сторону.

Должен быть обеспечен надежный контакт между щупами мультиметра и выводами детали, процесс не рекомендуется прерывать. Также нельзя держаться за оба вывода руками: тело человека имеет сопротивление, которое будет шунтировать элемент, мешая ему заряжаться. В конце проверки прибор покажет не бесконечность, а сопротивление тела, и исправность изделия определить будет невозможно.

Возможные результаты проверки конденсатора мультиметром:

  • показания прибора равны нулю и не увеличиваются, любо увеличиваются незначительно. В этом случае у изделия наблюдается пробой (замыкание) обкладок между собой. Его подключение к схеме, где он работает, приведет к короткому замыканию
  • показания прибора увеличиваются, но не достигают бесконечности, останавливаясь на определенном значении сопротивления. В этом случае между обкладками наблюдается ток утечки, а емкость изделия значительно снижается. Элемент будет работать, но неэффективно, выполняя свое функциональное назначение не полностью. Использование его в блоках питания приведет к недостаточной фильтрации выходного напряжения, на звуковых устройствах это сопровождается наличием фона 50 Гц в выходном сигнале. В других узлах это приводит к искажениям сигнала.

Рабочее напряжение мультиметра не превышает 1,5 В, а в схемах, где работают конденсаторы оно намного больше. Если прибор показывает утечку, то при установке изделия на свое место при рабочем напряжении не исключен его полный пробой.

При проверке работоспособности электролитического изделия изменять полярность подключения мультиметра не имеет смысла.

Как проверить исправность обычного конденсатора мультиметром

Перед тем, как проверить обычный конденсатор на исправность, его также нужно разрядить. Метод проверки работоспособности ничем не отличается от предыдущего, кроме того, что заряд произойдет быстрее. Скорость заряда зависит от емкости изделия, при ее уменьшении время заряда тоже уменьшается. Электролитические элементы выпускаются с емкостью от 0,5 мкФ до 1000 мкФ и более, тогда как этот параметр у большинства неполярных не превышает 1 мкФ.

После проверки исправности неполярного конденсатора нужно разрядить его перед впаиванием обратно в схему.

Критерии работоспособности неполярных элементов те же, что и у электролитических.

Как можно проверить конденсатор мультиметром, не выпаивая его

Конденсаторы, особенно электролитические, имеют очень неприятное свойство: при прогреве паяльником при пайке они иногда восстанавливают свои свойства. Поэтому вопрос, как проверять исправность конденсатора, не выпаивая его из схемы, становится иногда очень актуальным. К сожалению, сделать это без интеллектуальных ухищрений невозможно, и универсального метода не существует. Вокруг изделия всегда существуют элементы, шунтирующие его своим сопротивлением, и проверка закончится его измерением.

Поэтому профессионалы после впаивания проверенного конденсатора на место иногда включают ремонтируемое устройство, наблюдая за изменениями в его работе. Если работоспособность его восстановилась или что-то изменилось к лучшему, только что проверенную деталь заменяют на новую.

Сократить время на проверку элементов можно, выпаивая только один из выводов. Но это не может помочь в проверке большинства электролитических конденсаторов, так как конструкция их корпуса не позволяет отпаять только один вывод.

Если проверяемая деталь подключена последовательно с каким-нибудь другим элементом, можно определять ее исправность прямо на плате, выпаяв этот элемент.

Если схема проверяемого устройства сложная, то конденсаторов в ней много. Выпаивать каждый из них для проверки – трудоемкое занятие. К тому же после такого ремонта плата оказывается изрядно перепаханной. В этом случае нужно найти принципиальную схему устройства и проанализировать ее работу. Наличие на схеме контрольных точек с указанными в них напряжениями очень поможет делу. В том, как определять неисправность конденсаторов в этом случае, поможет измерение напряжений на них или на сопряженных с ними узлах схемы. Если напряжение не соответствует ожидаемому, то подозрительный элемент выпаивается и проверяется одним из вышеперечисленных способов.

Как можно проверить конденсатор тестером

Тестер отличается от мультиметра наличием стрелочного измерительного механизма. Он имеет достоинство, позволяющее выполнить процесс диагностики нагляднее. При проверке тестером его стрелка плавно отслеживает изменение сопротивления проверяемой детали, что дает возможность контролировать процесс заряда в подробностях. Будут зафиксированы изменения скорости заряда, рывки, связанные с кратковременными пробоями обкладок, которые при использовании мультиметра невозможно увидеть.

Методика проверки конденсаторов тестером ничем не отличается от той, что применяется для мультиметра.


Как проверять емкость конденсатора

Не всегда исправность конденсаторов можно определить, заряжая его от постороннего источника и контролируя зарядный ток. При небольших значениях емкости (менее 0,5 мкФ) они заряжаются настолько быстро, что за этим не сможет уследить ни один прибор. В таких случаях нужно определить, насколько емкость детали соответствует номинальной. Для этого используются специализированный прибор для проверки конденсаторов: измеритель емкости или LC-метр.

Одна из разновидностей электронных LC-метров

Профессиональные приборы выполняют измерения с большой точностью, но они имеют большие габаритные размеры, дороги и сложны в эксплуатации. Применение их оправдано только при профессиональной деятельности, связанной не только с ремонтом, но и наладкой сложных радиотехнических устройств, требующих точной подгонки емкостей конденсаторов.

Для использования в бытовых условиях используются компактные цифровые измерители емкости, по габаритам не отличающиеся от обычного мультиметра. Они имеют точно такие же щупы для подключения измеряемого элемента, жидкокристаллический дисплей и переключатель пределов измерения. Для проверки конденсаторов сначала узнают его емкость по надписям на корпусе, выбирают соответствующий предел измерения и подключают элемент к прибору. Некоторые модели способны измерять емкость деталей без выпаивания их из схемы.

Как известно, у радиодеталей существует разброс параметров, который регламентируется величиной допуска. Измеренное значение должно укладываться в этот допуск. В этом случае конденсатор считается исправным.

Прошло примерно полтора года, с тех пор, как я начал регулярно заниматься ремонтами электроники. Как оказалось дело это не менее интересное, чем конструирование электронных конструкций. Понемногу появились люди, желающие, кто время от времени, а кто и регулярно, сотрудничать со мной как с мастером. В связи с тем что рентабельность большинства производимых ремонтов не позволяет снимать помещение, иначе аренда съедает большую часть прибыли, работаю в основном на дому либо выезжаю с инструментами к знакомым ИП имеющим скупку бытовой электроники и мастерскую.

Это абсолютно любые схемы с применением стабилизаторов, DC-DC преобразователей питания, импульсные блоки питания для любой техники, от компьютерной - до мобильных зарядок.

Вздувшийся конденсатор

Без этого устройства значительная часть ремонтов выполняемых мною либо вообще не могла бы быть выполнена, либо все же была выполнена, но с большими неудобствами в виде постоянного выпаивания и запаивания обратно электролитических конденсаторов небольшого номинала, с целью измерения эквивалентного последовательного сопротивления с помощью транзистор тестера. Мой же прибор, позволяет измерять этот параметр не выпаивая деталь, просто прикоснувшись пинцетом к выводам конденсатора.

Данные конденсаторы номиналом 0.33-22 мкФ, как известно очень редко имеют насечки в верхней части корпуса, по которым конденсаторы большего номинала, вздуваются и раскрываются розочкой, например всем знакомые конденсаторы на материнских платах и блоках питания. Дело в том, что конденсатор, не имеющий этих насечек для выпускания излишнего образовавшегося давления, визуально, без измерения прибором, даже для опытного электронщика ничем не отличим от полностью рабочего.

Конечно, если домашнему мастеру предстоит разовый ремонт, например компьютерного блока питания АТХ формата, собирать данный прибор не имеет смысла, проще заменить сразу все конденсаторы мелкого номинала на новые, но если вы ремонтируете хотя бы пять блоков питания в полгода вам этот прибор уже желателен к сборке. Какие альтернативы есть, сборке этого измерителя? Покупной прибор стоимостью порядка 2000 рублей, ESR micro.

ESR micro - фото

Из отличий и достоинств покупного прибора могу назвать только то, что у него показания выводятся сразу в миллиОмах, а у моего прибора нужно переводить из миллиВольт в миллиОмы. Что впрочем не вызывает затруднений, достаточно откалибровать прибор по значениям низкоомных точных резисторов и составить для себя таблицу. Поработав с прибором пару месяцев, уже визуально, безо всяких таблиц, просто взглянув на дисплей мультиметра уже видишь нормальное значение ESR конденсатора - на грани либо уже необходима замена. Схема моего прибора, кстати, в свое время была взята из журнала Радио.

Схема принципиальная прибора

Изначально прибор был собран с самодельными щупами - пинцетом, имеющим широкие губки, неудобным при измерении на платах, с плотным монтажом. Затем присмотрел себе на Али экспресс щупы - пинцет для измерения SMD, подключаемые к мультиметру. Заказав пинцет, провод был безжалостно укорочен, для того чтобы точность не сильно пострадала при измерении, из-за длины проводов щупов. Не забывайте, там счет идет на миллиОмы.

Сначала прибор у меня подключался щупами к мультиметру и был выполнен в виде приставки, но постепенно надоело крутить каждый раз ручку мультиметра, вырабатывая тем самым ресурс переключений. Мне тогда как раз товарищ подарил мультиметр, в связи с тем что свой я временно попалил на неразрядившемся электролитическом конденсаторе. Впоследствии прибор был восстановлен, резисторы были перепаяны, а этот мультиметр, у него были отломлены разъемы для подключения щупов на плате, и были кем-то брошены перемычки, но точность измерений уже была не та.

Но для моих целей погрешность 1-2 процента ничего не решала и решил сделать прибор полностью автономным. Для этого скрепил корпус мультиметра и корпус ESR метра на винты, и сделал для большего удобства коммутацию одновременного включения, встроенного мультиметра и ESR метра с помощью выключателя на две группы контактов. Соединения мультиметра и ESR метра, ранее осуществляемые с помощью щупов, были сделаны проводами, внутри соединенных корпусов.

Прибор испытатель конденсаторов - внешний вид

Как показала практика, времени на приведение прибора в боевую готовность, а затем, после проведения измерений, отключения, стало уходить существенно меньше, а соответственно повысилось удобство использования. Из дальнейших доработок планируемых в данном приборе - это перевести его на аккумуляторное питание, от Li-ion аккумулятора от телефона, с возможностью подзарядки от платы адаптера заряда через встроенное Mini USB гнездо, от любого зарядного устройства от смартфона с возможностью подключения USB кабеля.

Как показала практика, ранее мною уже был переделан на аккумуляторное питание с помощью аналогичного способа , также имеющий, как и ESR метр, высокое потребление благодаря установленному в нем графическому дисплею. Ощущения от переделки остались только положительные. За полгода заряжал всего один раз. В устройстве был установлен повышающий DC-DC преобразователь превращающий 3.7 вольта на выходе аккумулятора в 9 вольт, необходимые для работы прибора.

В данном случае, в моем приборе будет двойное преобразование напряжения: сначала с 3.7 вольта в 9 вольт, хотя возможно я выставлю и минимально допустимое для входа стабилизатора 7805 CV напряжение 7.5 вольт, от данного стабилизатора сейчас запитана схема прибора. Сам прибор, как можно видеть на фото, изначально питается от батареи Крона, которая, как известно, имеет относительно небольшую емкость.

Напряжение питания данной микросхемы позволяет питать ее напрямую от 9 вольт, но дело в том, что по мере разряда батареи заметил, что показания при измерении начинают потихоньку уплывать. Для борьбы с этим, и был установлен стабилизатор 7805, который, как известно, выдает у нас стабильные 5 вольт на выходе.

Также в связи с тем, что прибор приходится часто носить с собой в дипломате, на ремонты на выездах, и уже были случаи самопроизвольного включения выключателя, и соответственно высаживании батареи Крона в ноль, что сейчас, при коммутации данным выключателем 2 линий питания, мультиметра и самого прибора, было бы уже более нежелательным, так как в таком случае, придется покупать уже две кроны, стоимостью 45 рублей.

Решено было просто приклеить на термоклей, по краям выключателя, два самореза, от крепления кулера, в компьютерном блоке питания. Микросхема, применяемая в приборе, широко распространенная, и довольно дешевая, я приобретал ее, по стоимости, всего порядка 15-20 рублей.

Весь прибор, обошелся мне, с учетом бесплатного мультиметра, щупов - пинцета , стоимостью 100 рублей, и стоимости деталей для сборки прибора, и батареи крона, всего ушло порядка 150 рублей, итого все необходимое обошлось в смешную сумму 250 рублей.

Пинцет для измерения конденсаторов на плате

Что окупилось уже с применением прибора в ремонтах давно и многократно. Конечно кто нибудь, имеющий возможность и желание приобрести ESR micro, может сказать сейчас, зачем мне эти неудобства, каждый раз переводить из миллиВольт, в миллиОмы, хотя это и не требуется, как я уже выше писал, если на покупном приборе я могу сразу видеть, уже готовые значения.

Таблица значений ESR

Дело в том, что подобные приборы имеют в своем составе микроконтроллер, и при измерении подключаются напрямую, условно говоря “портом” микроконтроллера к измеряемому конденсатору. Что крайне нежелательно, достаточно один раз не разрядить конденсатор после обесточивания схемы перед измерением, путем замыкания его выводов металлическим предметом, например отверткой, как мы рискуем получить нерабочий прибор.

Первая версия щупов

Что при его немаленькой стоимости, согласитесь, не лучший вариант. В моем же приборе, параллельно измеряемому конденсатору подключается резистор 100 Ом, что означает если конденсатор все-же и будет заряжен, то он при подключении щупов начнет разряжаться. В самом же крайнем случае, если микросхема применяемая в моем приборе выгорит, вам для произведения ремонта достаточно будет лишь вынуть микросхему из DIP панельки и воткнуть новую.

Апгрейд прибора

Все, ремонт прибора окончен, можно снова производить измерения. А учитывая низкую стоимость микросхемы это не становится проблемой, достаточно лишь приобрести одну - две микросхемы про запас при закупе деталей для сборки данного ЭПС-метра.

Финальная версия

В целом прибор получился просто шикарным и очень удобным, и даже если бы детали для его сборки стоили в 2 раза больше - я бы все-равно смело мог бы рекомендовать этот ЭПС-метр к сборке всем начинающим мастерам имеющим скромный бюджет, либо желающим сэкономить и не переплачивать лишнего. Всем удачных ремонтов! AKV.

Среди электронных компонентов, наиболее часто встречающихся в рекомендациях по ремонту оборудования наверно более 50% всех случаев поломки случаются из-за неисправности конденсаторов. Как электрический прибор конденсатор участвует во множестве электрических схем. Основа работы такого элемента основана на постепенном накоплении электричества разного потенциала между обкладками и его последующего резкого разряда.

Сегодня наиболее распространенными в схемотехнике являются два вида конденсаторов:

  • электролитические или полярные, называются так, потому что при включении в схему аппаратуры требуют установки согласно полярности: «плюс» к плюсу схемы, а вот «минус» к отрицательному;
  • неполярные все остальные типы конденсаторов.

Конструкция подобного рода электронных компонентов для элементарного представления довольно проста и состоит из двух проводящих электрический ток изолированных диэлектриком обкладок. В качестве диэлектрика используются различные вещества и материалы, не проводящие электрический ток – воздух, керамические пластины, специальная бумага, слюда.

На практике эти электронные компоненты являются небольшими по размерам приборами, но при этом имеют очень большую и довольно чувствительную емкость, поэтому при работе с ними необходимо максимально соблюдать осторожность и внимательность.

Принцип работы

Принцип работы, на котором основана работа этого радиоэлемента заключается в том, что при использовании его в электрических схемах он способен накапливать электрический заряд.

Это свойство, возможно только с переменным электрическим током – поэтому он применяется в схемах, где необходимо разделение двух составляющих тока – постоянной и переменной. А вот в схемах с постоянным электрическим током конденсатор будет выполнять роль диэлектрика, поскольку в таких условиях он не способен накапливать заряд.


Область применения

Конденсаторы применяются в зависимости от своего номинала и маркировки в различных радиосхемах и электронных приборах. Это в основном небольшие по емкости компоненты, выход их строя которых не сопровождается большими и разрушительными последствиями.

Большие по мощности и размерам конденсаторы применяются в основном в качестве пусковых элементов электродвигателей при использовании однофазного подключения в таком случае конденсаторы должны иметь большую емкость и номинал.

Возможные неисправности

Нерабочая электрическая схема прибора или незапускающийся двигатель сам по себе сигнализирует о неисправности одного или нескольких компонентов схемы, а вот конкретно неисправность конденсатора может быть следствием некоторых факторов, влияющих на работоспособность элемента:

  • короткого замыкания внутри между обкладками;
  • порыва внутренней цепи элемента;
  • превышения допустимого тока утечки;
  • уменьшения номинальной емкости данного прибора;
  • физического повреждения корпуса и нарушения его герметичности.

Как определить поломку по внешним признакам

Вышедший из строя электронный компонент, возможно определить, или во всяком случае поставить под сомнение его работоспособность возможно благодаря следующим внешним признакам:

  • нарушение герметичности корпуса – в виде разрыва внешнего корпуса и выступившего электролита;
  • раздутого корпуса элемента с видными повреждениями геометрии (чаще всего они имеют цилиндрическую форму, поэтому выпуклости на внешней оболочке говорят о его неисправности).


Как проверить конденсатор (пусковой/высоковольтный/пленочный и т.д.) мультиметром

Самым простым и надежным способом проверки неисправного конденсатора является проверка его омметром, или специально собранной проверочной схемы. Омметр покажет сопротивление электронного устройства, по которому можно судить о целостности диэлектрика, и делать выводы об исправности элемента.

Другим, не менее эффективным способом проверки работоспособности конденсатора является тестирование его с помощью комбинированного прибора мультиметра. Мультиметры, а особенно те, которые имеют специальный режим проверки емкости позволяют быстро, точно и достоверно протестировать устройства.

Сам процесс можно описать алгоритмом:

  • измерительный прибор переводится в режим омметра;
  • омметр выставляется в верхний режим измерения сопротивления – бесконечность значения;
  • проводится измерение сопротивления устройства на выводах – в случае если прибор показывает низкое значение сопротивления (любое отличное от значения «бесконечность») то тестируемый элемент непригоден к дальнейшей работе, внутри имеется пробой диэлектрика или утечка электролита.

Небольшое отклонение стрелки на циферблате тестера при проверке подобного типа электронных устройств с последующим возвращением в исходное нулевое положение свидетельствует о том, что конденсатор исправен и начал набирать небольшую емкость.

Отклонение стрелки мультиметра на определенную величину с последующим возвращением и фиксацией на каком-либо значении сопротивления говорит о неисправности элемента.

Как проверить не выпаивая

Одним из вариантов проверки работоспособности конденсаторов без демонтажа их из схемы является включение в схему параллельно испытуемому элементу исправного компонента соответствующего номинала. Такой вариант позволяет судить о работоспособности испытуемого электронного устройства и определить вариант его замены.

Данный метод во многом дает позитивный результат при проверке схем с небольшим напряжением, при проверке элементов работающих схем с высоким рабочим напряжением такой вариант недопустим.

Вообще чаще всего в рабочих устройствах выходят из строя в основном электролитические конденсаторы, реже полиэтилентерефталатные в высоковольтных цепях.

Как узнать ёмкость конденсатора

В большинстве случаев емкость прибора указывается в маркировке на корпусе элемента. Однако зачастую существует необходимость определения емкости электронных компонентов с недостаточно четко промаркированными данными.

В таком случае необходимо использование специализированного мультиметра, имеющего в своем арсенале функцию измерения емкости.

В большинстве мультиметров имеется 5 пределов измерения:

  • 20 нФ (20nF)
  • 200 нФ (200nF)
  • 2 мкФ (2uF)
  • 20 мкФ (20uF)
  • 200 мкФ (200uF)

Такой диапазон измерения емкости элементов позволяет проводить тестирование, как неполярных конденсаторов, так и полярных, то есть электролитических. Сам процесс проведения тестирования выглядит так:

  • Контрольные щупы прибора переключаются к специальным гнездам измерения емкости (гнезда Сх).

    Внимание! При работе обязательно соблюдать указанную полярность контрольных щупов!

  • Тестируемый образец полностью разряжается.
  • Контрольные щупы соединяются с местами выводов на тестируемом образце.

Полученное значение и показывает емкость электронного компонента схемы.

В отдельных мультиметрах, вместо специальных гнезд на рабочую панель выведены металлические пластины. Проверка элемента проводится путем присоединения выводов к платинам с соблюдением полярности.


Приступая к проверке элементов необходимо четко понимать, что даже самые современные мультиметры не способны измерять очень большую емкость таких устройств, в большинстве своем максимальным пределом является измерение как полярных, так и неполярных элементов емкостью до 200 мкФ (200uF).

Номинал конденсаторов менее чем 0.25мкФ, с помощью обычного мультиметра могут проверяться только на наличие короткого замыкания. Превышение допустимых значений измерения может привести к выходу из строя прибора, и хотя внутри мультиметра и установлен предохранитель, все равно прибор может быть испорчен безвозвратно.

Не лишне радиолюбителям помнить и о технике безопасности при проверке подобных утройств высоковольтных схемах.

Ремонт бытовой радиоаппаратуры в которой применяются высоковольтные схемы, должен начинаться после выключения прибора и разрядки электронного компонента разрядной цепью из резистора номиналом 2 кОм…1 Мом, которая соединяется с общим проводом схемы или корпусом:

  • в низковольтных цепях с емкостями до 1000 мкФ и напряжением до 400 В достаточно 2 кОм (25 Вт);
  • для цепей с емкостями до 2 мкФ и со средними рабочими напряжениями до 5000 В - 100 кОм (25 Вт);
  • для высоковольтных цепей с емкостями до 2 нФ и рабочими напряжениями до 50 кВ - 1 МОм (10 Вт).

Ну и для любителей экстрима вполне может подойти древнейший способ проверки устройств большой емкости. После полной зарядки, а свойство заряжаться и копить заряд электричества в данном случае будет иметь основное значение, выводы элемента замыкаются на металлическом предмете, при этом желательно не только изолировать сам предмет, но и руки резиновыми перчатками.

Результат должен проявиться в неповторимой искре и одновременном звуковом сопровождении процесс разряда.


В основном, по конструктивному исполнению конденсаторы делятся на два типа: полярные и неполярные.

К полярным конденсаторам относятся конденсаторы которые имеют полярность, грубо говоря, плюс и минус. К ним чаще всего относятся электролитические конденсаторы, но бывают также и электролитические неполярные конденсаторы. Полярные конденсаторы надо паять в схемы только определенным образом: плюсовый контакт конденсатора к плюсу схему, минусовый контакт – к минусу схемы.

Если полярность такого конденсатора нарушить, то он может серьезно пострадать и даже взорваться. Поверьте мне, взрыв конденсатора – это очень зрелищно, но электролит, который там находится, может серьезно повредить вас и ваше окружение. В основном, это только касается советских конденсаторов.

У импортных конденсаторов сверху имеется небольшое вдавление в виде крестика или какой-нибудь другой фигурки. Их толщина меньше, чем остальная толщина крышечки конденсатора. Как мы с вами знаем, где тонко, там и рвется. Это предусмотрено в целях безопасности. Поэтому, если все-таки импортный конденсатор желает взорваться, то его верхняя часть просто-напросто превратится в розочку.

На фото ниже вздутый конденсатор на материнской плате компьютера. Разрыв идет ровно по линии.


Для того, чтобы проверить конденсатор, надо вспомнить общее свойство всех конденсаторов: конденсатор пропускает только переменный ток, постоянный ток он пропускает только в самом начале на несколько долей секунд (это время зависит от его емкости), а потом – не пропускает. Более подробно про это свойство можно прочитать в этой статье. Для того, чтобы проверить конденсатор с помощью мультиметра, должно соблюдаться условие, что его емкость должна быть от 0,25 мкФ.

Как проверить полярный конденсатор

Ну что же, давайте проверим нашего подопечного. Вот собственно и он, самый настоящий импортный электролитический полярный конденсатор:


Для того, чтобы разобраться, где у него минус, а где плюс, производители нанесли маркировку. Минус конденсатора указывает галочка на самом корпусе. Видите эту черную галочку на золотой толстой линии конденсатора? Она указывает на минусовый вывод.

Давайте узнаем, жив или мертв наш пациент? Для начала его надо разрядить металлическим предметом. Я использовал пинцет.


Следующим шагом берем мультиметр и ставим его крутилку на прозвонку или на измерение сопротивления, и щупами дотрагиваемся до выводов конденсатора. Так как у нас мультиметр на прозвонке и на измерении сопротивления выдает постоянный ток, значит, в какой-то момент времени ток будет течь, следовательно, в этот момент сопротивление конденсатора будет минимальным. Далее мы продолжаем держать щупы на выводах конденсатора и, сами того не понимая, заряжаем его. А пока мы его заряжаем, его сопротивление начинает также расти, пока не будет очень большое. Давайте глянем на практике, как все это выглядит.

Вот в этом момент мы только-только коснулись щупами выводов конденсатора.


Держим и видим, что сопротивление у нас растет


и пока не станет очень большим


Очень удобен в проверке конденсаторов аналоговый мультиметр, потому что можно без труда отслеживать плавное движение стрелки, чем мерцание цифр на цифровом мультике.

Если же у нас при прикасании щупов к конденсатору мультиметр начинает пищать и показывать нулевое сопротивление, значит, в конденсаторе произошло короткое замыкание . А если сразу же показывается единичка на мультиметре, значит внутри конденсатора произошел обрыв. Конденсаторы с такими дефектами считаются нерабочими и их можно смело выбрасывать.

Как проверить неполярный конденсатор

Неполярные конденсаторы проверяются еще проще. Ставим предел измерения на мультиметре на Мегаомы и касаемся щупами выводов конденсатора. Если сопротивление меньше 2 Мегаом, то скорее всего конденсатор неисправен.

Конденсаторы полярные и неполярные номиналом меньше, чем 0,25мкФ могут с помощью мультиметра проверяться только на КЗ. Чтобы проверить все-таки их на работоспособность, нужен специальный прибор – LC – метр или универсальный R/L/C/Transistor-metr , но и некоторые мультиметры могут также измерять емкость конденсаторов, имея внутри себя такую функцию. Например, мой мультиметр может без труда определить емкость конденсатора до 200 мкФ. Имейте ввиду, что внутри мультиметра есть . Если он перегорает, то некоторые функции мультиметра теряются. На моем мультиметре при перегорании внутреннего предохранителя не работала функция измерения силы тока и измерение емкости конденсатора.

Что сделать перед проверкой:

  1. С самого начала , тестирующий элемент нужно выпаять из платы, в том случае, если он там находится.
  2. После этого , конденсатор разряжают – нужно его выходящие контакты замкнуть токопроводящим материалом (подойдёт простой металлический пинцет) или подключить к его выводам сопротивление 5-10 кОм для плавной разрядки, если он имеет большую ёмкость (высоковольтный).
  3. Не рекомендуется при этом прикасаться руками к выходным контактам элемента в целях личной безопасности. Всё это делается для того, чтобы не вышел из строя сам измерительный прибор, потому как на обкладках измеряемой детали может быть достаточно высокое напряжение.

Порядок проверки


касание контактов щупами

Мультиметр может выявить такие причины неисправности, как пробой, влекущее за собой разрушение диэлектрика, разделяющего пластины, и ток идёт напрямую, при этом, сам конденсатор, по сути, становится простым проводником. Либо делает это частично, теряя свою ёмкость, становясь дополнительно активным сопротивлением в электрической цепи.

Сам конденсатор в силу своего принципа работы пропускает только переменный ток , а постоянный ни в коем случае, поэтому его сопротивление, замеряемое между выводами, достаточно большое и ограничивается очень малым током утечки через диэлектрик, разделяющий его рабочие пластины, накапливающие в себе заряд.

В неполярных конденсаторах, роль диэлектрика которых играет слюда, керамика, бумага, стекло, воздух ток утечки бесконечно мал, а сопротивление очень большое и при его измерении между выводами цифровым мультиметром прибор покажет бесконечность в виде 1 на цифровом табло. Поэтому, в случае пробоя, его сопротивление, замеряемое на выводах, составляет довольно малую величину - до нескольких десятков Ом.

Протестировать на предмет пробоя неполярный конденсатор можно следующим способом:

  1. Цифровой мультиметр переводим в режим измерения сопротивления, устанавливая его в самый высокий из возможных пределов.
  2. После , подключаем измерительные щупы прибора к оголённым выводам тестируемого элемента.
  3. Если он рабочий , то на дисплее мультиметра будет только знак бесконечности – 1. Это показатель того, что внутреннее сопротивление (сопротивление утечки) свыше 2 Мом. Поэтому пробоя нет и, возможно, проверяемый элемент исправен. В противном случае пробой очевиден. Вследствие чего требуется замена его аналогичным или с более большей ёмкостью, с номинальным напряжением не ниже оригинала.
  4. При проверке нельзя прикасаться руками за оголенные выводы конденсатора или измерительных щупов прибора, потому как будет измерено сопротивление вашего тела, а не измеряемого элемента. Оно будет гораздо меньше, следовательно, результат будет ошибочным.


Полярные электролитические конденсаторы имеют некоторые особенности при замере их внутреннего сопротивления:

  1. Оно обычно не менее 100 кОм. При качественном изготовлении, сопротивление утечки у них может быть не менее 1 мОм. Как и упоминалось выше, перед проверкой измеряемый элемент должен быть полностью разряжен. Как это делается, описано выше.
  2. При замере сопротивления предел измерения на мультиметре устанавливается более 100 кОм. После, соблюдая полярность подключения щупов, производим замер. В силу своей сравнительно большой ёмкости, при проверке будет происходить зарядка конденсатора в течение малого количества времени. Процесс зарядки будет протекать с одновременным возрастанием сопротивления, выведенным на дисплей прибора, после окончания, которого замеряемая величина прекратит свой рост и будет иметь фиксированное и окончательное значение.
  3. Если показатель не более 100 кОм , то с большей долей вероятности это показатель того, что конденсатор рабочий.

При проверке стрелочным мультиметром всё делается аналогичным способом:

  1. Подготавливается конденсатор (фиксируется и разряжается).
  2. Выставляется измеряемый параметр (сопротивление не менее максимального предела).
  3. Делается замер, в некоторых случаях соблюдая полярность.
  4. Фиксируется результат и сравнивается с рабочими значениями.

Особенность измерения этим способом сопротивления в том, что когда он заряжается сам параметр также пропорционально растёт и соответственно стрелочный прибор, указывающий само значение сопротивления, двигается от нулевой отметки до окончательной фиксированной.

Можно было визуально по времени перемещения стрелки оценивать ёмкость измеряемого элемента. Тем самым, чем дольше стрелка шла до конечного значения, тем больше ёмкость конденсатора и наоборот.

Значение внутреннего сопротивления конденсатора является не основным показателем его работоспособности, поэтому серьёзным аргументом может служить только замеренная мультиметром ёмкость.

Проверка на ёмкость

Изменение ёмкости конденсаторов легко обнаружить при её замере мультиметром, имеющий такой режим измерения.

Замер происходит следующим образом:

  1. Измерительные щупы подключаются к разъёмам для измерения ёмкости (условное обозначение Cx) с соблюдением их (щупов) полярности. Обязательна полная разрядка конденсатора перед измерением этого параметра.
  2. Затем , рабочие поверхности щупов присоединяются к выводам измеряемого элемента, также соблюдая полярность в случае снятия показаний с полярного типа измеряемого элемента.
  3. При показании мультиметра равным 0 или значительно отличающимся по значению от указанных на конденсаторе, последний считать не рабочим и требующим замены.

Возможные причины выхода из строя


Несоблюдение основных параметров эксплуатации, таких как:

  1. Номинальное напряжение. При увеличении номинального напряжения, на нём возникает пробой в силу электротехнических характеристик диэлектрика, изолирующего пластины конденсатора.
  2. Расчётная ёмкость. Несоответствие ёмкости (ниже расчётной) влечёт за собой завышение номинального напряжения на рассматриваемом элементе, поэтому при его замене, если нет аналога, ставится элемент с большей ёмкостью.
  3. Полярность в некоторых случаях . Полярность является обязательным параметром электролитических и танталовых конденсаторов в силу особенности конструкции.

Рабочая температура зависит от соблюдения вышеописанных параметров напрямую. Исключением является старение, возникающее у электролитического типа, и расположения элемента на печатной плате, вследствие которого его рабочая температура может быть выше критической вследствие размещённых рядом других единиц электрической цепи, имеющих более высокий температурный режим.

Это причина выхода из строя оксиднополупроводникового элемента, так как он уже сам по себе представляет собой взрывчатку: там есть тантал, который является горючим и окислитель двуокись марганца.

Каждый компонент - это порошок и всё это смешано воедино. Не гремучая ли смесь? Именно поэтому повышение температуры из-за пробоя или несоблюдения полярности может привести к взрыву, способного вывести из строя не только соседние элементы, но и плату полностью.

Назначение конденсатора


По определению, конденсатор – это элемент электрической цепи, который обладает способностью накапливать и отдавать электрический заряд в нужное работе время. Он похож на миниатюрный аккумулятор с той разницей, что его зарядка при подключении напрямую к цепи постоянного тока и полная разрядка при замыкании выводящих контактов происходит практически мгновенно.

Он представляет собой 2 параллельные пластины, находящиеся на очень малом расстоянии друг от друга и изолированных между собой диэлектриком.

Суть работы заключается в том, что при подключении конденсатора к источнику постоянного тока, когда на одну пластину подключают положительную полярность (“+”), а на другую противоположную отрицательную (“-“), будет происходить накопление заряда до определённого предела.

Все это происходит потому, что разноимённые заряды притягиваются, а сами пластины изолированы друг от друга диэлектриком и находятся на очень малом расстоянии. Именно это притяжение и позволяет накапливать заряд конденсатору.

Их существует несколько видов:

  1. Постоянной ёмкости.
  2. Полярный конденсатор со строго закреплёнными за выходами полярности.
  3. Подстроечные (переменной ёмкости).

Вот его несколько основных параметров:

  1. Ёмкость , измеряемая в Фарадах.
  2. Номинальное напряжение.
  3. Рабочая частота.
  4. Полярность (необязательный параметр – зависит от вида).

На эти показатели в основном оказывают влияние:

  1. Площадь пластин.
  2. Их расстояние между собой (чем меньше расстояние, тем ёмкость больше).
  3. Сопротивление диэлектрика (с её увеличением также повышается рассматриваемый параметр).

Конденсаторы широко применяются в:

  1. Радиоэлектронике (различные частотные фильтры, колебательныеLС контуры, получение тока с различными характеристиками).
  2. Электротехнике (для работы электродвигателей).
  3. Некоторые экземпляры с очень большой ёмкостью нужны как вспомогательное устройство для запуска двигателей внутреннего сгорания(пуск двигателя тепловоза на железнодорожном транспорте).

Что такое мультиметр?

Это компактный прибор, позволяющий делать замеры основных параметров как электрической цепи, так и отдельных его элементов для тестирования и выявления неисправностей.

Существуют 2 типа:

Аналоговый


Состоит из следующих элементов:

  1. Стрелочного магнитоэлектрического индикатора.
  2. Добавочных резисторов для снятия показаний напряжения,
  3. Шунтов для измерения тока.

Цифровой


Более сложный и точный прибор (наиболее распространены мультиметры с точностью 1%), состоящий из набора микросхем и цифрового индикатора, который бывает в основном жидкокристаллическим.

Некоторые из замеряемых мультиметром характеристик:

  1. Напряжение (переменного и постоянного тока).
  2. Сила тока (переменного и постоянного).
  3. Сопротивление (со звуковым сигналом, если оно менее 50 Ом).
  4. Ёмкость.
  5. Проверка полупроводников на целостность и полярность.
  6. Температура.

Похожие публикации