Chevroletavtoliga - Автомобильный портал

Регулятор напряжения на полевике. Фазовый регулятор мощности на ключевом полевом транзисторе. Схема, описание. Как сделать фазовую модель регулятора

Регуляторы мощности переменного тока с фазоимпульсным управлением получили широкое распространение как в устройствах промышленной автоматики, так и в радиолюбительских конструкциях. Регулирующим элементом таких устройств является триодный тиристор, момент (угол) открывания которого регулируется подачей импульса или уровня напряжения на управляющий электрод,

а закрывание происходит в момент уменьшения тока, протекающего через тиристор, до нуля (при активной нагрузке - в момент перехода сетевого напряжения через ноль). Такое управление называется неполным, поскольку можно регулировать только угол открывания тиристора, а момент закрывания не регулируется. Разработанные в последние годы мощные полевые транзисторы с изолированным затвором (MOSFET ) позволяют построить несложный ключ для коммутации переменного тока с полным управлением, т.е. открыванием и закрыванием ключа.

Схема регулятора мощности представлена на рис.1. Силовой ключ выполнен на транзисторах VT1, VT2, включенных встречно-последовательно. Наличие в каждом транзисторе внутреннего защитного диода, включенного параллельно каналу в обратной полярности (анодом к истоку, катодом к стоку), позволяет обеспечивать протекание тока в нагрузке при положительных и отрицательных полупериодах сетевого напряжения.

На трех логических элементах микросхемы DD1 выполнен генератор импульсов с регулируемой скважностью. Частота импульсов - около 2 кГц (значительно выше частоты сетевого напряжения). При наличии высокого уровня на выходе инвертора DD1.3 транзисторный ключ открыт, и ток протекает через нагрузку. При этом в положительный полупериод ток протекает через открытый канал транзистора VT1 и защитный диод транзистора VT2, а в отрицательный полупериод - наоборот, через защитный диод транзистора VT1 и открытый канал транзистора VT2. Если же на выходе DD1.3 - низкий уровень, то оба транзистора закрыты, и нагрузка обесточена. Временные диаграммы работы регулятора показаны на рис.2. Очевидно, что изменение скважности импульсов позволяет изменять мощность нагрузки от нуля до максимального значения, соответствующего полному напряжению сети.

Питание микросхемы DD1 производится от однополупериодного выпрямителя с параметрическим стабилизатором, собранным на элементах R2 VD3, VD4, С2 Следует обратить внимание, что стабилизатора напряжения соединен с истоками полевых транзисторов и с общим проводом микросхемы, поэтому напряжение на затворы транзисторов подается относительно их истоков

Преимущество данного способа регулирования мощности перед фазоимпульсным состоит в том, что коммутация нагрузки происходит со значительно большей частотой, чем в регуляторах на тиристорах, это позволяет регулировать мощность для малоинерционных нагрузок.

Указанные на схеме полевые транзисторы IRF840 имеют следующие параметры: ток стока - 8 А, максимальное напряжение между стоком и истоком - 500 В, сопротивление канала в открытом состоянии - 0,85 Ом, рассеиваемая мощность - 125 Вт. Эти транзисторы можно заменить на IRF740, IRFP450, IRFP460, IRFPC50, IRFPC60, IRFP350, IRFP360 BUZ80. Перед установкой в устройство следует убедиться, что транзистор имеет защитный диод (это легко сделать с помощью омметра). Максимальная мощность нагрузки определяется предельным током открытого транзистора, при этом мощность, выделяющаяся на открытом канале, не должна превышать предельно допустимую Частота генератора в случае необходимости может быть изменена подбором емкости С1.

Литература

1. Колдунов А Транзисторы MOSFET. - Радиомир, 2004, N4 С 26

2 Семенов Б.Ю Силовая электроника для любителеи и профессионалов - М. СОЛОН-Р 2001

А.ЕВСЕЕВ,

И. НЕЧАЕВ, г. Курск

Этот регулятор позволяет управлять количеством тепла, выделяемого электронагревательным прибором. Принцип его работы основан на изменении числа периодов сетевого напряжения, поступающих на нагреватель, причем включение и отключение происходят в моменты, близкие к переходу мгновенного значения сетевого напряжения через ноль. Поэтому регулятор практически не создает коммутационных помех. К сожалению, он не годится для регулировки яркости ламп накаливания, которые будут заметно мигать.

Схема прибора показана на рис. 1.


В качестве коммутирующих элементов в нем применены полевые транзисторы IRF840 с допустимым напряжением сток-исток 500 В, током стока 8 А при температуре корпуса 25 °С и 5 А при температуре 100 °С, импульсным током 32 А, сопротивлением открытого канала 0,85 Ом и рассеиваемой мощностью 125 Вт. Каждый транзистор содержит внутренний защитный диод, включенный параллельно каналу в обратной полярности (катодом к стоку). Это позволяет, соединив два транзистора встречно-последовательно, коммутировать переменное напряжение.

На элементах DD1.1, DD1.2 собран генератор импульсов регулируемой скважности, следующих с частотой приблизительно 1 Гц. На DD1.3, DD1.4 - компаратор напряжения. DD2.1 - D-триггер, a DD1.5, DD1.6 - буферные каскады. Гасящий резистор R2, диоды VD3 и VD4, стабилитрон VD6, конденсатор С2 образуют параметрический стабилизатор напряжения. Диоды VD5, VD7 гасят выбросы напряжения на затворах транзисторов VT1, VT2.

Временные диаграммы сигналов в различных точках регулятора показаны на рис. 2.

Положительная полуволна сетевого напряжения, пройдя через диоды VD3, VD4 и резистор R2, заряжает конденсатор С2 до напряжения стабилизации стабилитрона VD6. Напряжение на аноде диода VD4 представляет собой синусоиду, ограниченную снизу нулевым значением, а сверху - напряжением стабилизации стабилитрона VD6 плюс прямое падение напряжения на самом диоде. Компаратор на элементах DD1.3, DD1.4 делает перепады напряжения более крутыми. Сформированные им импульсы поступают на вход синхронизации (выв. 11) триггера DD2.1, а на его вход D (выв. 9) - импульсы частотой приблизительно 1 Гц с выхода генератора на элементах DD1.1, DD1.2.

Выходные импульсы триггера поданы через соединенные параллельно (для уменьшения выходного сопротивления) элементы DD1.5 и DD1.6 на затворы транзисторов VT1 и VT2. Они отличаются от импульсов генератора "привязкой" перепадов по времени к пересечениям сетевым напряжением уровня, близкого к нулевому, в направлении от плюса к минусу. Поэтому открывание и закрывание транзисторов происходят только в моменты таких пересечений (что и гарантирует низкий уровень помех) и всегда на целое число периодов сетевого напряжения. С изменением переменным резистором R1 скважности импульсов генератора изменяется и отношение длительности включенного и выключенного состояния нагревателя, а следовательно, и среднее количество выделяемого им тепла.

Полевые транзисторы можно заменить другими, подходящими по допустимым напряжению и току, но обязательно с защитными диодами. Микросхемы серии К561 при необходимости заменяют функциональными аналогами серии 564 или импортными. Стабилитрон Д814Д - любым средней мощности с напряжением стабилизации 10...15 В.

Большинство деталей прибора размещено на печатной плате из односторонне фольгированного стеклотекстолита, показанной на рис. 3.

При мощности нагревателя более 500 Вт транзисторы VT1 и VT2 необходимо снабдить теплоотводами.

Плату устанавливают в корпус из изоляционного материала, на стенке которого монтируют розетку XS1 и переменный резистор R1. На ось резистора обязательно насаживают ручку из изоляционного материала.

При налаживании регулятора проверяют напряжение на конденсаторе С2 во всем интервале регулировки мощности. Если оно заметно меняется, номинал резистора R2 придется уменьшить.
Радио №4 2005 год.

Симисторный регулятор мощности.

А.СТАСЬ

Дроссель L1 - любой помехоподавляющий, применяемый в подобного рода устройствах, соответствующий нагрузке. Можно, в принципе, обойтись и без него, особенно если нагрузка носит индуктивный характер. Конденсаторы CI, С2 - на напряжение не ниже 250 В. Диоды VD1...VD4 - любые кремниевые на обратное напряжение не менее 300 В.


Транзисторы VT1, VT2 - тоже, в принципе, любые кремниевые с соответствующим типом проводимости.

Данная схема работает с любыми типами симисторов на соответствующее напряжение. Самый мощный, что удалось испытать, был ТС142-80-10.

Радиолюбитель 8/97

Ступенчатый регулятор мощности.

К. МОВСУМ-ЗАДЕ, г. Тюмень

Предлагаемое устройство отличается доступными деталями при небольшом их числе и некритичности номиналов. Регулирование ступенчатое: 2/2, 2/3, 2/4, 3/7, 3/8, 3/9 и 3/10 полной мощности нагрузки.

Схема регулятора изображена на рис. 1.


Он состоит из узла питания (диоды VD2, VD6, стабилитрон VD1, резистор R3, конденсатор С1), узла управления (резисторы R1, R2, R4, R5, переключатель SA1, десятичный счетчик DD1, диоды VD3-VD5) и силового узла на полевом транзисторе VT1 и диодном мосте VD7-VD10, в него же входит резистор R6.

Предположим, переключатель SA1 установлен в положение 2/3. Во время первого положительного полупериода сетевого напряжения диоды VD2 и VD6 открыты. Ток, протекающий через стабилитрон VD1, формирует на нем импульс амплитудой 15 В с крутыми фронтом и спадом. Этот импульс через диод VD2 заряжает конденсатор С1, а через резистор R1 поступает на вход CN счетчика DD1. По фронту этого импульса на выходе 1 счетчика будет установлен высокий уровень, который через диод VD4 и резистор R4 поступит на затвор полевого транзистора VT1 и откроет его. В результате через нагрузку протекает положительная полуволна тока.

Во время отрицательного полупериода диоды VD2 и VD6 закрыты, но напряжение заряженного конденсатора С1 (далее его подзаряжает каждый положительный полупериод) продолжает питать счетчик DD1, состояние которого не изменяется. Транзистор VT1 остается открытым, и ток через нагрузку продолжает течь.

С началом следующего положительного полупериода уровень на выходе 1 счетчика станет низким, а на выходе 2 - высоким. Транзистор VT2, напряжение затвор-исток которого стало нулевым, будет закрыт, а нагрузка отключена от сети на весь период.

В третьем положительном полупериоде высокий уровень, установленный на выходе 3, поступит через переключатель SA1 на вход R счетчика, который немедленно перейдет в исходное состояние с высоким уровнем на выходе 0 и низким на всех остальных выходах. Напряжение, поступившее через диод VD3 и резистор R4 на затвор транзистора VT1, откроет его. По окончании этого периода цикл повторится. В других положениях переключателя SA1 прибор работает аналогично, изменяется лишь число периодов, в течение которых нагрузка подключена к сети и отключена от нее.

Регулятор почти не создает радиопомех, так как переключение счетчика, а с ним открывание и закрывание транзистора VT1 происходят в моменты, когда мгновенное значение сетевого напряжения очень близко к нулевому - оно не превышает напряжения стабилизации стабилитрона VD1. Резистор R6 подавляет выбросы напряжения, возникающие при коммутации индуктивной нагрузки, что уменьшает вероятность пробоя транзистора VT1.

Регулятор собран на печатной плате из односторонне фольгированного текстолита (рис. 2).

Она рассчитана на резисторы МЛТ и им подобные указанной на схеме мощности, причем номиналы резисторов могут в несколько раз отличаться от указанных. Конденсатор С1 - К50-35 или другой оксидный. Стабилитрон КС515Г можно заменить КС515Ж или КС508Б, диоды КД257Б - импортными 1N5404, а транзистор КП740 - IRF740.

Переключатель SA1 - галетный П2Г-3 11П1Н, из одиннадцати положений которого использовано только семь. Выводы переключателя соединяют гибкими проводами с не имеющими обозначений контактными площадками, расположенными на печатной плате вокруг микросхемы DD1.

Собранный прибор желательно проверить, подключив к сети через разделительный трансформатор с напряжением на вторичной обмотке 20...30 В и заменив реальную нагрузку резистором 1,5...3 кОм. Только убедившись в правильной работе, подключайте его к сети напрямую. После этого прикасаться к каким-либо элементам устройства (кроме изолированной ручки переключателя) опасно - они находятся под сетевым напряжением.

Регулятор проверен с нагрузкой мощностью до 600 Вт. Полевой транзистор VT1 благодаря малому сопротивлению открытого канала нагревается очень незначительно, тем не менее желательно снабдить его небольшим теплоотводом.

ФАЗОВЫЙ РЕГУЛЯТОР МОЩНОСТИ НА КЛЮЧЕВОМ ПОЛЕВОМ ТРАНЗИСТОРЕ ничительного резистора, что снижает быстродействие ключа, так как образуется RC-цепь состоящая из этого сопротивления и емкости затвора, либо выход схемы управления делают более мощным.

Обычно фазовые регуляторы мощности переменного тока строятся на основе тиристора или симистора. Эти схемы уже давно стали типовыми и повторены многократно как радиолюбителями, так и в масштабе производства. Но тиристорным и симисторным регуляторам, равно как и ключам, всегда был свойственен один важный недостаток, ограничение минимальной мощности нагрузки. То есть, типовой тиристорный регулятор на максимальную мощность нагрузки более 100W не может хорошо регулировать мощность маломощной нагрузки, потребляющей единицы и доли ватт. Ключевые полевые транзисторы отличаются тем, что физически работа их канала очень напоминает работу обычного механического выключателя, в полностью открытом состоянии их сопротивление очень мало и составляет доли Ом, а в закрытом состоянии ток утечки составляет микроамперы. И это практически не зависит от величины напряжения на канале. То есть, именно как механический выключатель. Именно поэтому ключевой каскад на ключевом полевом транзисторе может коммутировать нагрузку мощностью от единиц и долей ватт, до максимально допустимого по току значения. Например, популярный полевой транзистор IRF840 без радиатора работая в ключевом режиме может коммутировать мощность практически от нуля до 400W. Кроме того ключевой полевой транзистор обладает очень низким током затвора, поэтому для управления требуется очень низкая статическая мощность.

Правда это омрачается относительно большой емкостью затвора, поэтому в первый момент включения ток затвора может оказаться и довольно большим (ток на заряд емкости затвора). С этим борются включением последовательно затвору токоограСхема регулятора мощности показана на рисунке. Нагрузка питается пульсирующим напряжением, так как подключена через диодный мост VD5-VD8. Для питания электронагревательного прибора (паяльника, лампы накаливания) это подходит. Так как у пульсирующего тока отрицательная полуволна «вывернута» вверх, получаются пульсации с частотой 100 Гц Но они положительные, то есть, график изменения от нуля до полодительного амплитудного значения напряжения. Поэтому регулировка возможна от 0% до 100% Величина максимальной мощности нагрузки в этой схеме ограничена не столько максимальным током открытого канала VT1 (это ЗОА), сколько максимальным прямым током диодов выпрямительного моста VD5-VD8.

При использовании диодов КД209 схема может работать с нагрузкой мощностью до 100W. Если нужно работать с более мощной нагрузкой (до 400W) нужно использовать более мощные диоды, например, КД226Г, Д.

На инверторах микросхемы D1 выполнен формирователь управляющих импульсов, которые открывают транзистор VT1 в определенной фазе полуволны. Элементы D1.1 и D1.2 образуют триггер Шмитта, а остальные элементы D1.3-D1.6 образуют умощненный выходной инвертор. Умощнить выход пришлось чтобы компенсировать неприятности вызванные скачком тока на заряд емкости затвора VT1 в момент его включения.

Система низковольтного питания микросхемы посредством диода VD2 разделена на две части, собственно питающую часть,

Устройство представляет собой бесконтактный прерыватель тока в нагрузке, питающейся напряжением 12-18V, при токе не более 10А. Частоту прерывания можно плавно регулировать в двух пределах «х1» от 0,2Гц до 2 Гц и «х2» от 0,4 Гц до 4 Гц.

Регулятор мощности 12в

Схема отличается точным равенством интервалов выключенного и включенного состояния нагрузки. Представлена схема (рис.1) на сайте состоит из мощного ключа на р-канальных полевых транзисторах VT1 и VT2, включенных параллельно, и источника управляющих импульсов на микросхеме D1. Конечно, можно было источник управляющих импульсов сделать на основе мультивибратора на логических элементах, например, микросхемы К561ЛА7, но в таком случае, чтобы обеспечить симметричность выходных импульсов потребуется еще одна микросхема D триггер или счетчик.

В данном же случае, в одной микросхеме есть как мультивибратор, так и счетчик. К тому же, счетчик 14-разрядный, поэтому мультивибратор может работать на значительно более высокой частоте, чем частота прерывания нагрузки, что благоприятно сказывается на стабильности частоты заданной RC-цепью. Частота мультивибратора задается RC цепью C1R2R3. Плавная регулировка частоты осуществляется переменным резистором R2. Частота импульсов делится счетчиком. В положении переключателя S1 «х1» коэффициент деления составляет 16384, а в положении «х1» 8192.

Далее импульсы с выхода счетчика через переключатель S1 поступают на ключ на мощных полевых транзисторах VT1 и VT2. Транзисторы р-канальные, поэтому открываются они отрицательным относительно истока напряжением. Резистор R4 несет две функции, во первых, он снижает ток заряда емкости затвора полевых транзисторов, снижая этим пиковую нагрузку на выход микросхемы, а во-вторых, он совместно со стабилитроном VD2 ограничивает напряжение на затворах VT1 и VT2 чтобы оно не превышало 12V.

Максимальное напряжение питания микросхемы D1 составляет 15V, а напряжение питания данного устройства может достигать 18V и даже больше. Чтобы ИМС D1 не вышла из строя в этом случае, напряжение на ней ограничивается стабилитроном VD1 и резистором R5. А диод VD3 защищает конденсатор С2 от разрядки в том случае, если при включении нагрузки ключом на VT1 и VT2 будет наблюдаться провал в напряжении питания.

Регулятор на полевых транзисторах

Очень заманчиво в полевых условиях в качестве источника света использовать прожектор или светильник сделанный на базе автомобильной фары. Еще лучше, если яркость этого осветительного прибора можно будет регулировать плавно в очень широких пределах. Ток потребления стандартной лампы автомобильной фары мощностью 65 W составляет 5,5А. А ток 100W лампы уже более 8А. Конечно, можно сделать линейный регулятор на очень мощном транзисторе с огромным радиатором, но куда более эффективным будет регулятор с широтно-импульсным способом регулировки мощности.

В отличие от линейного его выходные транзисторы всегда будут либо закрыты полностью либо открыты полностью, а это значит что сопротивление их каналов в открытом состоянии будет минимальное и, следовательно, мощность на них падать тоже будет минимальная. Отсюда и большой КПД, и более легкий температурный режим. Схема (рис.2) в части выходного каскада и питания аналогична схеме прерывателя тока (рис.1). Различие в схеме управления. Здесь на микросхеме типа К561ЛА7 сделан мультивибратор, скважность выходных импульсов которого можно в очень широких пределах регулировать с помощью переменного резистора R1.

Частота импульсов неизменная и составляет около 400 Гц. Регулируя переменный резистор R1 изменяем соотношение длительностей положительных и отрицательных полуволн за счет различия сопротивлений R составляющих частото-задающей RCцепи, коммутируемых диодами VD4 и VD5. Практически регулировать мощность можно от 90% до 10% от максимального значения. Собственно мультивибратор выполнен на элементах D1.1 и D1.2. С выхода элемента D1.2 импульсы поступают на усилитель мощности, сделанный на оставшихся двух элементах микросхемы D1 D1.3 и D1.4.

Эти элементы соединены параллельно. С их выходов импульсы через резистор R4 поступают на затворы полевых транзисторов. В данной схеме сопротивление R4 уменьшено, чтобы обеспечить больше скорость открывания транзисторов и этим самым снизить их нагрев в момент переходного процесса между закрытым и открытым состоянием. В связи с этим увеличивать напряжение питания схемы выше 15V не рекомендуется, так как это приведет к повышенной нагрузке на выходы элементов D1.3 и D1.4 микросхемы D1.

Регулятор мощности с прерывателем

Если объединить эти два устройства получится схема (рис.З), с помощью которой можно будет не только прерывать ток в нагрузке постоянного тока, но и регулировать мощность этой нагрузки. Например, регулировать яркость и частоту мигания сигнального прожектора. В этом случае две управляющие схемы из схемы прерывателя (рис.1) и схемы регулятора мощности (рис.2) объединяются. Причем первая схема управляет второй. Происходит это следующим образом. Усилитель мощности на элементах D1.3 и D1.4 выполнен на двух соединенных параллельно элементах микросхемы К561ЛА7, то есть, это элементы «2И-НЕ».

Если на один из входов такого элемента подать логический ноль, то на выходе элемента устанавливается логическая единица независимо от того какой логический уровень будет на его втором входе. Схема же выходного ключа выполнена на полевых транзисторах VT1 и VT2. Транзисторы р-канальные, поэтому открываются они отрицательным относительно истока напряжением, то есть, логическим нулем. А при подаче на их затворы логической единицы они закрываются.

Таким образом, выделяем по одному из входов элементов D1.3 и D1.4, соединяем их вместе и через переключатель S1 подаем на них управляющие импульсы от генератора прерывания, выполненного на микросхеме D2. Теперь при единице на выходе S1 нагрузка включается, а при нуле выключается. Чтобы можно устройством пользоваться как в режиме прерывания, так и без прерывания, переключатель S1 сделан на три положения. В положении «0» прерывания не будет, и нагрузка будет работать постоянно.

В этом положении выводы 9 и 13 элементов D1.3 и D1.4 соединяются через переключатель S1 с плюсовым полюсом питания микросхемы, то есть, на них подается логическая единица. В этом режиме прерыватель отключен, и работает только регулятор мощности. Мощность регулируется резистором R1, частота прерывания резистором R6, режим работы переключателем S1. Включенные параллельно транзисторы VT2, VT3 типа IRF9540 можно заменить на IR9Z34, КП785А, КП784А. Микросхему CD4060B заменить можно любым аналогом «хх4060». Микросхему К561ЛА7 можно заменить на К176ЛА7 или CD4011, либо любым аналогом «хх4011».

Стабилитрон КС515А можно заменить на КС215Ж, КС508Б, 1N4744A, TZMC15. Стабилитрон КС213Ж можно заменить на КС213Б, 1N4743A, BZX/BZV55C13. В качестве светодиода HL1 можно использовать любой из серий АП307, КИПМ15, КИПД21, КИПД35, L1503, L383 или другой индикаторный. Принципе, можно вообще отказаться от него, просто тогда не будет индикации включенного состояния нагрузки. При работе с током нагрузки до 10 А полевые транзисторы нужно установить на общий теплоотвод с площадью охлаждающей поверхности не менее 70 см².

Содержание:

Современного человека в быту и на производстве окружает большое количество электротехнических приборов и оборудования. Для устойчивой, стабильной работы всей этой техники требуется бесперебойная подача электроэнергии. Однако из-за скачков сетевого напряжения, приборы довольно часто выходят из строя. Во избежание подобных ситуаций, применяются специальные устройства, в том числе и стабилизатор тока на полевом транзисторе. Его использование гарантирует нормальную работу электротехники, предотвращает аварии и поломки.

Работа стабилизаторов тока

Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.

Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме , удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.

В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.

Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.

Устройство и работа полевого транзистора

Управление полевыми транзисторами осуществляется посредством электрического поля, отсюда и появилось их название. В свою очередь электрическое поле создается под действием напряжения. Таким образом, все полевые транзисторы относятся к полупроводниковым приборам, управляемым напряжением.

Канал этих устройств открывается только с помощью напряжения. При этом, ток не протекает через входные электроды. Исключение составляет лишь незначительный . Отсюда следует, что какие-либо затраты мощности на управление отсутствуют. Однако на практике не всегда используется статический режим, в процессе переключения транзисторов задействована некоторая частота.

В конструкцию полевого транзистора входит внутренняя переходная емкость, через которую протекает некоторое количество тока во время переключения. Поэтому для управления затрачивается незначительное количество мощности.

В состав полевого транзистора входит три электрода. Каждый из них имеет собственное название: исток, сток и затвор. На английском языке эти наименования соответственно будут выглядеть, как source, drain и gate. Канал можно сравнить с трубой, по которой движется водяной поток, соответствующий заряженным частицам. Вход потока происходит через исток. Выход заряженного потока происходит через сток. Для закрытия или открытия потока существует затвор, выполняющий функцию крана. Течение заряженных частиц возможно лишь при условии напряжения, прилагаемого между стоком и истоком. При отсутствии напряжения тока в канале также не будет.

Таким образом, чем больше значение подаваемого напряжения, тем сильнее открывается кран. Это приводит к увеличению тока в канале на участке сток-исток и уменьшению сопротивления канала. В источниках питания применяется ключевой режим работы полевых транзисторов, позволяющий полностью закрывать или открывать канал.

Полевые транзисторы в стабилизаторах тока

Стабилизаторы тока предназначены для поддержания параметров тока на определенном уровне. Благодаря этим свойствам, данные приборы успешно используются во многих электронных схемах. Чтобы понять принцип действия, следует рассмотреть некоторые теоретические вопросы.

Известно, что в идеальном источнике тока присутствует ЭДС, стремящаяся к бесконечности и бесконечно большое внутреннее сопротивление. За счет этого удается получить ток с требуемыми параметрами, независимо от сопротивления нагрузки.

Идеальный источник способен создавать ток, остающийся на одном уровне, несмотря на изменяющееся сопротивление нагрузки в диапазоне от короткого замыкания до бесконечности. Для поддержания значения тока на неизменном уровне, величина ЭДС должна изменяться, начиная от величины больше нуля и до бесконечности. Основным свойством источника, позволяющим получать стабильное значение тока, является изменение сопротивления нагрузки и ЭДС таким образом, чтобы значение тока оставалось на одном и том же уровне.

Но, на практике поддержка источником требуемого уровня тока происходит в ограниченном диапазоне напряжения, возникающего на нагрузке. Реальные источники тока используются вместе с источниками напряжения. К таким источникам относится обычная сеть на 220 вольт, а также аккумуляторы, блоки питания, генераторы, солнечные батареи, поставляющие потребителям электрическую энергию. С каждым из них может быть последовательно включен стабилизатор тока на полевом транзисторе, выход которого выполняет функцию источника тока.

Простейшая конструкция стабилизатора состоит из двухвыводного компонента, с помощью которого происходит ограничение протекающего через него тока, до необходимых параметров, устанавливаемых изготовителем. Своим внешним видом он напоминает диод малой мощности, поэтому данные приборы известны как диодные стабилизаторы тока.

Похожие публикации