Chevroletavtoliga - Автомобильный портал

Концентраторы и волноводы ультразвуковых колебаний. Ультразвуковая колебательная система. Ультразвуковые концентраторы и волноводы

При монтаже проволочных выводов в СПП для силовой электроники в основном применяется УЗС. Основными параметрами процесса при этом методе микросварки являются: амплитуда колебаний рабочего торца инструмента, которая зависит от электрической мощности преобразователя и конструктивного исполнения колебательной системы; усилие сжатия свариваемых элементов; длительность включения ультразвуковых колебаний (время сварки).

Сущность метода УЗС заключается в возникновении трения на поверхности раздела соединяемыми элементами, в результате чего происходит разрушение оксидных и адсорбированных пленок, образование физического контакта и развитие очагов схватывания между соединяемыми деталями.

Ультразвуковой концентратор является одним из основных элементов колебательных систем микросварочных установок. Концентраторы выполняются в виде стержневых систем с плавно меняющимся сечением, т. к. площадь излучения преобразователя всегда значительно больше площади сварного соединения. Большим, входным, сечением концентратор присоединяется к преобразователю, а к меньшему, выходному, сечению крепится ультразвуковой инструмент. Назначение концентратора – это передача ультразвуковых колебаний от преобразователя в ультразвуковой инструмент с наименьшими потерями и наибольшей эффективностью.

В ультразвуковой технике известно большое количество типов концентраторов. Наибольшее распространение получили следующие: ступенчатый, экспоненциальный, конический, катеноидальный и концентратор типа «цилиндр-катеноида». В колебательных системах установок часто используются конические концентраторы. Это объясняется тем, что они просты в расчете и изготовлении. Однако из пяти вышеперечисленных концентраторов конический обладает наибольшими потерями из-за внутреннего трения, рассеивает наибольшую мощность, а следовательно, больше нагревается. Наилучшей устойчивостью обладают концентраторы с наименьшим значением отношения входного и выходного диаметров для одинакового коэффициента усиления K y . Желательно также, чтобы "полуволновая" длина его была наименьшей. Для целей микросварки обычно применяют концентраторы с 2

Материал концентратора должен обладать высокой усталостной прочностью, малыми потерями, хорошо паяться твердыми припоями, легко обрабатываться и быть сравнительно недорогим.

Расчет ультразвукового концентратора сводится к определению его длины, входных и выходных сечений, формы профиля его боковых поверхностей. При расчете вводят следующие допущения: а) вдоль концентратора распространяется плоская волна; б) колебания носят гармонический характер; в) концентратор колеблется только вдоль осевой линии; г) механические потери в концентраторе невелики и линейно зависят от амплитуды колебаний (деформации).

Теоретический коэффициент усиления К у амплитуды колебаний экспоненциального концентратора определяется из выражения

где D 0 и D 1 – соответственно диаметры входного и выходного сечений концентратора, мм; N – отношение диаметра входного сечения концентратора к выходному.

Длина концентратора рассчитывается по формуле

(2)

где с – скорость распространения ультразвуковых колебаний в материале концентратора, мм/с; f – рабочая частота, Гц.

Положение узловой плоскости х 0 (места крепления волновода) выражается соотношением

(3)

Форма образующей профиля катеноидальной части концентратора рассчитывается по уравнению

(4)

где – коэффициент формы образующей; х – текущая координата по длине концентратора, мм.

В данной работе разработана компьютерная программа для расчета параметров пяти типов ультразвуковых концентраторов: экспоненциального, ступенчатого, конического, катеноидального и концентратора «цилиндр-катеноида», реализованная на языке Паскаль (компилятор Turbo-Pascal-8.0). Исходными данными для расчетов являются: диаметры входного и выходного сечений (D 0 и D 1 ), рабочая частота (f ) и скорость распространения ультразвуковых колебаний в материале концентратора (с). Программа позволяет рассчитать длину, положение узловой плоскости, коэффициент усиления, а также для экспоненциального, катеноидального и концентратора «цилиндр-катеноида» форму образующей с заданным шагом. Структурная схема алгоритма для расчета экспоненциального концентратора представлена на рис. 6.9.

Пример расчета. Рассчитать параметры полуволнового экспоненциального концентратора, если заданы рабочая частота f = 66 кГц; диаметр входного сечения D 0 = 18 мм, выходного D 1 =6 мм; материал концентратора – сталь 30ХГСА (скорость ультразвука в материале с = 5,2·10 6 мм/с).

По формуле (1) определяем коэффициент усиления концентратора .

Рис. 6.9. Структурная схема алгоритма расчета экспоненциального концентратора

В соответствии с выражениями (2) и (3) длина концентратора , положение узловой плоскости мм.

Уравнение (4) для расчета формы профиля концентратора приобретает после подстановок следующий вид:

Расчеты с помощью компьютерной программы профиля образующей экспоненциального концентратора с шагом по параметру х , равным 5 мм, приведены в табл. 6.1. По данным табл. 6.1 конструируется профиль концентратора.

Табл. 6.1. Данные расчета профиля концентратора

х, мм
D х, мм 15,7 13,8 10,6 9,3 8,2 7,2 6,3

В табл. 6.2 приведены результаты расчетов параметров различных типов ультразвуковых концентраторов из стали 30ХГСА (при D 0 = 18 мм; D 1 = 6 мм; f = 66 кГц).

Табл. 6.2. Параметры УЗ концентраторов

* l 1 и l 2 – соответственно длина цилиндрической и катеноидальной части концентратора.

Для передачи ультразвуковых колебаний от преобразователя на рабочий инструмент или в рабочую среду в ультразвуковых установках применяют концентраторы и волноводы; последние имеют постоянную площадь поперечного сечения и цилиндрическую форму.

Волноводы применяют, когда нет необходимости в усилении амплитуды колебаний преобразователя. Концентраторы являются трансформаторами скорости; они имеют переменную площадь поперечного сечения чаще цилиндрической формы. Благодаря такому сечению они преобразуют ультразвуковые колебания малой амплитуды, сообщаемые преобразователем и сосредоточенные на его входном торце, в колебания большей амплитуды выходного торца. Последние сообщаются рабочему органу (инструменту) ультразвуковой установки. Усиление амплитуды происходит из-за разницы площадей входного и выходного торцов концентратора - площадь первого (входного) торца концентратора всегда больше площади второго.

Волноводы и концентраторы должны быть резонансными, т. е. их длина должна быть кратна целому числу полуволн (λ/2). При этом условии создаются наилучшие возможности для согласования их с источником питания, колебательной системой в целом и присоединяемой к ним массой (рабочим инструментом).

Рис. 14. Концентраторы полуволновой длины

В ультразвуковых технологических установках наибольшее применение имеют концентраторы экспоненциальной (рис. 14, а), конической (рис. 14, б) и ступенчатой форм. Последние выполняют с фланцем (рис. 14, в) или без него (рис. 14, г). Встречаются и конические концентраторы с фланцем (например, в преобразователе типа ПМС-15А-18), а также комбинированные концентраторы, у которых ступени выполняют разной формы.

Концентраторы и волноводы могут быть неотъемлемой частью колебательной системы или сменным ее элементом. В первом случае они припаиваются непосредственно к преобразователю. Сменные концентраторы соединяют с колебательной системой (например, с переходным фланцем) посредством резьбы.

У концентраторов площадь поперечного сечения изменяется по определенной закономерности. Основной характеристикой их является теоретический коэффициент усиления К, показывающий, во сколько раз амплитуда колебаний его выходного торца больше амплитуды на входном торце. Этот коэффициент зависит от соотношения N диаметров входного D1 и выходного D2 торцов концентратора: N=D1/D2.

Наибольший коэффициент усиления амплитуды при одном и том же значении N обеспечивается ступенчатым концентратором. У него К=N2. Этим объясняется широкое применение концентраторов ступенчатого типа в различных ультразвуковых установках. Кроме того, эти концентраторы проще других в изготовлении, что подчас является важнейшим условием для успешного применения ультразвуковой обработки . Расчет ступенчатого концентратора гораздо проще, чем концентраторов других типов.

Значение коэффициента усиления амплитуды ступенчатого концентратора принимают с учетом предотвращения возможности возникновения боковых колебаний, что наблюдается при больших коэффициентах усиления (К>8...10), а также его прочностных данных. На практике коэффициент усиления у ступенчатого концентратора принимают равным от четырех до шести.

Резонансную длину ступенчатого концентратора lр определяют из выражения lр=а/2=С/2f, где X - длина волны в стержне постоянного сечения, см; С - скорость продольных волн (для стали С=5100 м/с); f - резонансная частота, Гц.

РАБОТА № 3

Цель работы:

определение оптимальной формы и проведения расчетов параметров и геометрических размеров волноводов - концентраторов для ультразвуковой обработки материалов.

Теоретические положения

Марка материала

Диаметр входного торца волновода D (мм)

Диаметр выходного торца волновода d (мм)

Резонансная длинна L

Узловая плоскость Х 0

Коэффициент усиления К у

Резонансная частота (КГц)

Практическая часть:

Расчет ступенчатого волновода:

f - резонансная частота.

V - скорость звука.

X 0 = L/2; X 0 - положение узловой плоскости - место крепления волновода

K у = N 2 = (D/d) 2 , где D и d диаметр входного и выходного торцов волновода

Сталь: V= 5100

Титан: V= 5072

Решение:

L 1 = 5200/2*27=5100/54=94,4 (мм)

L 2 =5200/54=96,2 (мм)

L 3 =5072/54=93,9 (мм)

X 01 =94.4/2 =47,2 (мм)

X 02 =96,2/2 =48,1 (мм)

X 03 =93,9/2=46,9 (мм)

К у =(1,2) 2 =1,4

Вывод:

В данной работе мы ознакомились с ультразвуковым концентратором со ступенчатым волноводом. Сделали расчет волновода решением дифференциального уравнения,описывающего колебательный процесс при условии,что колебания носят гармонический характер. В процессе работ были найдены диаметры входного и выходного торцов волновода. От его диаметров зависит коэффициент усиления сигнала.

Работа №4

Волноводы – концентраторы - передатчики механической энергии ультразвуковой частоты в зону обработки материалов

Цель работы:

определение оптимальной формы и проведения расчетов параметров и геометрических размеров волноводов- концентраторов для ультразвуковой обработки материалов.

Теоретические положения

Ввод энергии ультразвуковых колебаний в обрабатываемый материал осуществляется комплексом волновод-инструмент. Механизмы взаимодействия с материалом рассматривается ниже, в следующем разделе. В настоящем разделе рассмотрены типовые методики расчета наиболее распространенных форм волноводов и разновидности инструментов, используемых при обработки сварных соединений.

Из ряда параметров, характеризующих свойство волноводов, важнейшими являются колебательная скорость, напряжение и мощность,которые инструмент способен передать в зону обработки. По упрощенной схеме, при заданном значении амплитуды колебательной скорости, расчет волновода сводится к определению его резонансной длинны, входной и выходной площади, и места его крепления.

Формула для расчета волноводов из решений дифференциального уравнения, описывающего колебательный процесс при условии, что колебания носят гармонический характер, фронт волны является плоским и распространяется волна только вдоль оси волновода без потерь.

Лабораторное оборудование и инструменты

При выполнении лабораторного практикума для ознакомления с оборудованием и более полного понимания принципа работы ультразвукового комплекта студентами, на стендах лаборатории имеется широкий выбор разнообразных волноводов (концентраторов), применяющихся с преобразователями различной формы и мощности.

Имеющиеся волноводы представляют группу из 4х наиболее распространенных форм и изготовлены из акустически проницаемых и обладающих необходимыми прочностными характеристиками материалов.

Для удобства восприятия материала, волноводы выполнены с закрепленным на нем рабочим инструментом - наконечником и без него.

Практическая часть:

Расчет конического волновода

L= λ /2 * kl/ , где kl- корни уравнения

tgkl = kl/1 + (kl) 2 N(1-N) 2

2П / λ = k – волновое число

X 0 = 1/k * arctg(kl/a), где a = 1/N-1

K у = √1+ (2П * 1/λ) 2

Решение:

l = 94, 4; λ = 94, 4 * 2= 188, 8

K = 2 * 3, 14 / 188, 8 = 0, 03

Kl = 0, 03 * 94, 4 = 2, 8

tgkl = 2,8 / 1+ (2,8) 2 * 1,2(1-1,2) 2 = 2

а = 1/1,2-1 = 5

Х 0 = 1/0,03 * arctg (2,8/5) = 0,3

К у = √1 + (2*3,14* 1/188,8) 2 = 1

Вывод:

В данной работе мы ознакомились с ультразвуковым концентратором с коническим волноводом. Сделали расчет волновода решением дифференциального уравнения, описывающего колебательный процесс при условии, что колебания носят гармонический характер. В процессе работ были найдены диаметры входного и выходного торцов волновода. От его диаметров зависит коэффициент усиления сигнала.

Данные волноводы широко используются для обработки металлических конструкций в местах сварных соединений, поэтому очень важно правильно рассчитать параметры инструмента для передачи нужной частоты сигнала.

Для расчета ультразвукового трансформатора скорости, роль которого в рассматриваемой схеме выполняет ступенчатый концентратор, воспользуемся общей формой уравнения продольных колебаний (2.1). Поскольку и в данном случае справедливо допущение о том, что концентратор имеет собственную частоту и осуществляет гармонические колебания, решение уравнения (2.1) можно представить в виде

Аналогично для цилиндра, эквивалентного по массе алмазной выглаживающей головки с элементами крепления к концентратору колебаний, можно записать

, (2.18)

где с 4 - скорость звука в материале цилиндра, эквивалентного по массе выглаживающему инструменту с элементами крепления.

Граничные условия для колебательной системы с началом координат в точке O 2 могут быть записаны как


При ; (2.19)

при ; (2.20)

при , (2.21)

где E 4 - модуль упругости на растяжение материала конструктивного элемента выглаживающей головки; S 3 и S 4 - площади поперечного сечения малой по диаметру ступни концентратора и эквивалентного цилиндра соответственно; a 2 - длина ступени малого диаметра концентратора; b - высота эквивалентного цилиндра.

При условии (2.19) из уравнения (2.17) получаем

;

. (2.22)

Учитывая первую часть условия (2.20), из уравнений (2.17) и (2.18) получим

Вторая часть условия (2.20) может быть преобразована к виду

. (2.24)


Длину ступени большего диаметра концентратора определим из выражения (2.27), учитывая, что, вследствие отсутствия на конце ступенчатого концентратора нагрузки в виде алмазной выглаживающей головки с элементами крепления, и :

. (2.28)

Для трансформатора скорости с 1/2 - волновой акустической системой, когда длина одной ступени равняется 1/4 и , имеем

Для цилиндра, эквивалентного по массе выглаживающей головке с элементами крепления, можно записать

. (2.30)

. (2.31)

б) 3/4 - волновой ультразвуковой вибрационный привод

Колебательная система такого привода имеет одну возможную точку крепления, что позволяет уменьшить длину привода на 1/4 акустической волны . Для возможности жесткого крепления пьезоэлектрический составной преобразователь в такой схеме обычно выполняют несимметричным (рис.2.3). При этом ступень меньшего диаметра трансформатора скорости с инструментом выглаживания присоединяют непосредственно к пучности колебаний, которая находиться на торце составного преобразователя. Поэтому эту ступень следует рассматривать в качестве нагрузки пьезоэлектрического преобразователя, что соответственно накладывает особенности на расчет одной из его частотопонижающих накладок.

Для случая гармонических колебаний привода в соответствии с расчетной схемой (рис.2.3) решение общего уравнения (2.1) продольных колебаний можно записать в виде

, (2.32)

. (2.33)

Граничные условия в соответствии расчетной схемой можно представить как

Похожие публикации