Chevroletavtoliga - Автомобильный портал

Импульсный бп усилителя нч 2х200. Кит-набор для сборки усилителя мощности звуковой частоты DA H120 (Модернизированный усилитель Дорофеева с импульсным блоком питания). Схема выпрямителей и стабилизаторов напряжения

Усилитель звуковой частоты (УЗЧ), или усилитель низкой частоты (УНЧ) является одним из самых распространенных электронных устройств. Все мы получаем звуковую информацию, используя ту или иную разновидность УНЧ. Не все знают, но усилители низкой частоты используются также в измерительной технике, дефектоскопии, автоматике, телемеханике, аналоговой вычислительной технике и других областях электроники.

Хотя, конечно же, основное применение УНЧ – донести до нашего слуха звуковой сигнал с помощью акустических систем, преобразующих электрические колебания в акустические. И сделать это усилитель должен максимально точно. Только в этом случае мы получаем то удовольствие, которое доставляют нам любимая музыка, звуки и речь.

С появления в 1877 фонографа Томаса Эдисона до настоящего времени, ученые и инженеры боролись за улучшение основных параметров УНЧ: прежде всего за достоверность передачи звуковых сигналов, а также за потребительские характеристики, такие как потребляемая мощность, размеры, простота изготовления, настройки и использования.

Начиная с 1920-ых годов сформировалась буквенная классификация классов электронных усилителей, которая используется и по сей день. Классы усилителей отличаются режимами работы применяемых в них активных электронных приборов – электронных ламп, транзисторов и т.д. Основными «однобуквенными» классами являются A, B, C, D, E, F, G, H. Буквы обозначений классов могут сочетаться в случае совмещения некоторых режимов. Классификация не является стандартом, поэтому разработчики и производители могут использовать буквы достаточно произвольно.

Особое место в классификации занимает класс D. Активные элементы выходного каскада УНЧ класса D работают в ключевом (импульсном) режиме, в отличие от остальных классов, где большей частью используется линейный режим работы активных элементов.

Одним из основных преимуществ усилителей класса D является коэффициент полезного действия (КПД), приближающийся к 100%. Это, в частности, приводит к уменьшению рассеиваемой активными элементами усилителя мощности, и, как следствие, уменьшению размеров усилителя за счет уменьшения размеров радиатора. Такие усилители предъявляют значительно меньшие требования к качеству источника питания, который может быть однополярным и импульсным. Другим преимуществом можно считать возможность применения в усилителях класса D цифровых методов обработки сигнала и цифрового управления их функциями – ведь именно цифровые технологии преобладают в современной электронике.

С учетом всех этих тенденций компания Мастер Кит предлагает широкий выбор усилителей класса D , собранных на одной и той же микросхеме TPA3116D2, но имеющих различное назначение и мощность. А для того, чтобы покупатели не тратили время на поиски подходящего источника питания, мы подготовили комплекты усилитель + блок питания , оптимально подходящие друг к другу.

В этом обзоре мы рассмотрим три таких комплекта:

  1. (Усилитель НЧ D-класса 2х50Вт + источник питания 24В / 100Вт / 4,5A);
  2. (Усилитель НЧ D-класса 2х100Вт + источник питания 24В / 200Вт / 8,8A);
  3. (Усилитель НЧ D-класса 1х150Вт + источник питания 24В / 200Вт / 8,8A).

Первый комплект предназначен, прежде всего для тех, кому необходимы минимальные размеры, стереозвук и классическая схема регулировки одновременно в двух каналах: громкость, низкие и высокие частоты. Он включает в себя и .

Сам двухканальный усилитель имеет беспрецедентно маленькие размеры: всего 60 х 31 х 13 мм, не включая ручек регуляторов. Размеры блока питания 129 х 97 х 30 мм, вес – около 340 г.

Несмотря на небольшие размеры, усилитель отдает в нагрузку 4 ома честные 50 ватт на канал при напряжении питания 21 вольт!

В качестве предварительно усилителя применена микросхема RC4508 – двойной специализированный операционный усилитель для аудиосигналов. Он позволяет идеально согласовать вход усилителя с источником сигнала, имеет крайне низкие нелинейные искажения и уровень шума.

Входной сигнал подается на трехконтактный разъем с шагом контактов 2,54 мм, напряжение питания и акустические системы подключаются с помощью удобных винтовых разъемов.

На микросхему TPA3116 с помощью теплопроводящего клея установлен небольшой радиатор, площади рассеяния которого вполне хватает даже на максимальной мощности.

Обращаем ваше внимание на то, что с целью экономии места и уменьшения размеров усилителя отсутствует защита от неверной полярности подключения источника питания (переполюсовки), поэтому будьте внимательны при подаче питания на усилитель.

С учетом небольших размеров и эффективности сфера применения комплекта весьма широка – от замены устаревшего или вышедшего из строя старого усилителя до очень мобильного звукоусилительного комплекта для озвучивания мероприятия или вечеринки.

Пример использования такого усилителя приведен .

На плате отсутствуют отверстия для крепления, но для этого с успехом можно использовать потенциометры, имеющие крепления под гайку.

Второй комплект включает в себя на двух микросхемах TPA3116D2, каждая из которых включена в мостовом режиме и обеспечивает до 100 ватт выходной мощности на канал, а также с выходным напряжением 24 вольта и мощностью 200 ватт.

С помощью такого комплекта и двух 100-ваттных акустических систем можно озвучить солидное мероприятие даже вне помещения!

Усилитель снабжен регулятором громкости с выключателем. На плате установлен мощный диод Шоттки для защиты от переполюсовки блока питания.

Усилитель снабжен эффективными фильтрами низкой частоты, установленными согласно рекомендациям производителя микросхемы TPA3116, и обеспечивающими совместно с ней высокое качество выходного сигнала.

Питающее напряжение и акустические системы подключаются с помощью винтовых разъемов.

Входной сигнал может быть подан как на трехконтактый разъем с шагом 2,54 мм, так и с помощью стандартного аудиоразъема типа Jack 3,5 мм.

Радиатор обеспечивает достаточное охлаждение обеих микросхем и прижимается к их термопадам винтом, расположенным с нижней части печатной платы.

Для удобства использования на плате также установлен светодиод зеленого свечения, сигнализирующий о включении питания.

Размеры платы, с учетом конденсаторов и без учета ручки потенциометра составляют 105 х 65 х 24 мм, расстояния между крепежными отверстиями - 98,6 и 58,8 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Третий комплект представляет собой l и с выходным напряжением 24 вольта и мощностью 200 ватт.

Усилитель обеспечивает до 150 ватт выходной мощности на нагрузке 4 ома. Основное применение этого усилителя – построение качественного и энергоэффективного сабвуфера.

По сравнению со многими другими специализированными сабвуферными усилителями, MP3116btl отлично раскачивает низкочастотные динамики достаточно большого диаметра. Это подтверждается отзывами покупателей рассматриваемого УНЧ. Звук получается насыщенный и яркий.

Радиатор, занимающий большую часть площади печатной платы обеспечивает эффективное охлаждение TPA3116.

Для согласования входного сигнала на входе усилителя применена микросхема NE5532 – двухканальный малошумящий специализированный операционный усилитель. Он имеет минимальные нелинейные искажения и широкую полосу пропускания.

На входе также установлен регулятор амплитуды входного сигнала со шлицем под отвертку. С его помощью можно подстроить громкость сабвуфера под громкость основных каналов.

Для защиты от переполюсовки питающего напряжения на плате установлен диод Шоттки.

Питание и акустические системы подключаются с помощью винтовых разъемов.

Размеры платы усилителя 73 х 77 х 16 мм, расстояния между крепежными отверстиями – 69,4 и 57,2 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Во все комплекты включены импульсные источники питания компании MEAN WELL.

Основанная в 1982 году, компания является ведущим производителем импульсных источников питания в мире. В настоящее время корпорация MEAN WELL состоит из пяти финансово независимых компаний-партнеров на Тайване, в Китае, США и Европе.

Продукция MEAN WELL характеризуется высоким качеством, низким процентом отказов и длительным сроком службы.

Импульсные источники питания, разработанные на современной элементной базе, удовлетворяют самым высоким требованиям по качеству выходного постоянного напряжения и отличаются от обычных линейных источников малым весом и высоким КПД, а также наличием защиты от перегрузки и короткого замыкания на выходе.

Источники питания LRS-100-24 и LRS-200-24, используемые в представленных комплектах, имеют светодиодный индикатор включения и потенциометр для точной регулировки выходного напряжения. Перед подключением усилителя проверьте выходное напряжения, и при необходимости выставьте его уровень на 24 вольта с помощью потенциометра.

В примененных источниках используется пассивное охлаждение, поэтому они совершенно бесшумны.

Необходимо отметить, что все рассмотренные усилители могут быть с успехом применены для конструирования звуковоспроизводящих систем для автомобилей, мотоциклов и даже велосипедов. При питании усилителей напряжением 12 вольт выходная мощность будет несколько меньше, но качество звука не пострадает, а высокий КПД позволяет эффективно питать УНЧ от автономных источников питания.

Также обращаем ваше внимание на то, что все рассмотренные в этом обзоре устройства можно приобрести по отдельности и в составе других комплектов на сайте .

Представляю вашему вниманию испытанную мной схему достаточно простого импульсного сетевого блока питания УМЗЧ. Мощность блока составляет около 200Вт(но можно разогнать и до 500Вт).

Краткие характеристики:

Входное напряжение — 220В;
Выходное напряжение — +-26В(при полной нагрузке просадка 2-4В);
Частота преобразования — 100кГц;
Максимальный ток нагрузки — 4А.

Схема блока
Блок питания построен на микросхеме IR2153 по схеме strannicmd



Конструкция и детали.

Блок питания собран на печатной плате из одностороннего стеклотекстолита. Рисунок печатной платы в Sprint-Layout под утюг найдете в конце статьи.
Входной дроссель из любого блока питания компьютера или монитора, входной конденсатор применен из расчета 1мкф на 1Вт.Далее плоский низкочастотный диодный мост GBUВ приблизительно на 3А в качестве ключей можно применить IRF 840, IRFI840GLC, IRFIBC30G, VT1 – BUT11, VT3 – c945, выходные диодные сборки лучше применить пошустрее в этой схеме я поставил Шотки MBR 1545, выходные дроссели сделаны из кусочков феррита длинной 4см и?3мм, 26 витков проводом ПЕВ-1, но я так думаю что можно применить и дроссель групповой стабилизации на кольце из распыленного железа(сам не пробовал).
Основную часть деталей можно найти в компьютерных БП.

Печатная плата

БП в сборе

Трансформатор

Трансформатор под свои нужды, можно рассчитать
Данный трансформатор намотан на одном кольце К32Х19Х16 из феррита марки М2000НМ (колечко синего цвета), первичная обмотка намотана равномерно по всему кольцу и составляет 34 витка провода МГТФ 0,7. Перед намоткой вторичных обмоток нужно обмотать первичную обмотку фторопластофой лентой. Обмотка II равномерно намотана сложенным вдвое проводом ПЭВ-1 0,7 и составляет 6+6 витков с отводом от середины. Обмотка III (самопитание IRки) равномерно намотана 3+3 витка витой парой (одна пара проводов) с отводом от средины.

Наладка БП

ВНИМАНИЕ!!! ПЕРВИЧНЫЕ ЦЕПИ БП НАХОДЯТСЯ ПОД СЕТЕВЫМ НАПРЯЖЕНИЕМ, ПОЭТОМУ НУЖНО СОБЛЮДАТЬ МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ НАЛАДКЕ И ЭКСПЛУАТАЦИИ.
Первый запуск блока желательно производить подключив его через токоограничивающий резистор в место предохранителя, представляющий из себя лампу накаливания мощностью 60Вт и напряжением 220В, а IR-ку питать от отдельного блока питания 12В(обмотка самопитания отключена). При включенном БП через лампу сильно не грузите его. Как правило, правильно собранный БП в наладке не нуждается. При первом включении через лампу БП лампа должна загорется и сразу же потухнуть (моргнуть), если же так то все нормально и можно проверить питание на выходе. Все ок! тогда отключаем лампу, ставим предохранитель и подключаем самопитание микросхемы, при запуске БП светодиод который стоит между первой и третей ногой должен моргнуть и блок питания запустится.

Казалось бы что может быть проще, подключить усилитель к блоку питания , и можно наслаждаться любимой музыкой?

Однако, если вспомнить, что усилитель по сути модулирует по закону входного сигнала напряжение источника питания, то станет ясно, что к вопросам проектирования и монтажа блока питания стоит подходить очень ответственно.

Иначе ошибки и просчёты допущенные при этом могут испортить (в плане звука) любой, даже самый качественный и дорогой усилитель.

Стабилизатор или фильтр?

Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания. Причина этого заключается в том, что дешевле и проще спроектировать усилитель, который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор. Сегодня уровень подавления пульсаций типового усилителя составляет порядка 60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения. Использование в усилительных каскадах источников постоянного тока, дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.

Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.

Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:

Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.

Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц:(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.

Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.

Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.

Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.

В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.

Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.

Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:

Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в 1,4 раза.

Пиковая мощность

Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов. Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор. Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.

Стабилизированный блок питания такого эффекта не даёт.

Параллельный или последовательный стабилизатор?

Бытует мнение, что параллельные стабилизаторы лучше в аудиоустройствах, так как контур тока замыкается в локальной петле нагрузка-стабилизатор (исключается источник питания), как показано на рисунке:

Тот же эффект дает установка разделительного конденсатора на выходе. Но в этом случае ограничивает нижняя частота усиливаемого сигнала.


Защитные резисторы

Каждому радиолюбителю наверняка знаком запах горелого резистора. Это запах горящего лака, эпоксидной смолы и... денег. Между тем, дешёвый резистор может спасти ваш усилитель!

Автор при первом включении усилителя в цепях питания вместо предохранителей устанавливает низкоомные (47-100 Ом) резисторы, которые в несколько раз дешевле предохранителей. Это не раз спасало дорогие элементы усилителя от ошибок в монтаже, неправильно выставленного тока покоя (регулятор поставили на максимум вместо минимума), перепутанной полярности питания и так далее.

На фото показан усилитель, где монтажник перепутал транзисторы TIP3055 с TIP2955.

Транзисторы в итоге не пострадали. Все закончилось хорошо, но не для резисторов, и комнату проветривать пришлось.

Главное — падение напряжения

При проектировании печатных плат блоков питания и не только не надо забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют замкнутые контуры или длинные цепи, то в из-за протекающего тока на них получается падение напряжения и потенциал в разных точках оказывается разным.

Для минимизации разности потенциалов принято общий провод (землю) разводить в виде звезды — когда к каждому потребителю идёт свой проводник. Не стоит термин «звезда» понимать буквально. На фото показан пример такой правильной разводки общего провода:


В ламповых усилителях сопротивление анодной нагрузки каскадов довольно высокое, порядка 4кОм и выше, а токи не очень велики, поэтому сопротивление проводников не играет существенной роли. В транзисторных усилителях сопротивления каскадов существенно ниже (нагрузка вообще имеет сопротивление 4Ом), а токи гораздо выше, чем в ламповых усилителях. Поэтому влияние проводников тут может быть весьма существенным.

Сопротивление дорожки на печатной плате в шесть раз выше, чем сопротивление отрезка медного провода такой же длинны. Диаметр взят 0,71мм, это типичный провод, который используется при монтаже ламповых усилителей.

0.036 Ом в отличие от 0.0064 Ом! Учитывая, что токи в выходных каскадах транзисторных усилителей могут в тысячу раз превышать ток в ламповом усилителе, получаем, что падение напряжения на проводниках может быть в 6000! раз больше. Возможно, это одна из причин, почему транзисторные усилители звучат хуже ламповых. Это также объясняет, почему собранные на печатных платах ламповые усилители часто звучат хуже прототипа, собранного навесным монтажом.

Не стоит забывать закон Ома! Для снижения сопротивления печатных проводников можно использовать разные приёмы. Например, покрыть дорожку толстым слоем олова или припаять вдоль дорожки лужёную толстую проволоку. Варианты показаны на фото:

Импульсы заряда

Для предотвращения проникновения фона сети в усилитель нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов в усилитель. Для этого дорожки от выпрямителя должны идти непосредственно на конденсаторы фильтра. По ним циркулируют мощные импульсы зарядного тока, поэтому ничего другого к ним подключать нельзя. цепи питания усилителя должны подключаться к выводам конденсаторов фильтра.

Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке:

Увеличение по клику

На рисунке показан вариант печатной платы:

Пульсации

Большинство нестабилизированных источников питания имеют после выпрямителя только один сглаживающий конденсатор (или несколько включенных параллельно). Для улучшения качества питания можно использовать простой трюк: разбить одну ёмкость на две, а между ними включить резистор небольшого номинала 0,2-1 Ом. При этом даже две ёмкости меньшего номинала могут оказаться дешевле одной большой.

Это дает более плавные пульсации выходного напряжения с меньшим уровнем гармоник:


При больших токах падение напряжения на резисторе может стать существенным. Для его ограничения до 0,7В параллельно резистору можно включить мощный диод. В этом случае, правда, на пиках сигнала, когда диод будет открываться, пульсации выходного напряжения опять станут «жесткими».

Продолжение следует...

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Вольный перевод: Главного редактора «РадиоГазеты»

BM2033
Усилитель НЧ 100 Вт (TDA7294, готовый блок)
1405 руб.

Предлагаемый блок - это надежный мощный усилитель НЧ, обладающий малыми габаритами, минимальным числом внешних пассивных элементов обвязки, широким диапазоном питающих напряжений и сопротивлений нагрузки. Усилитель можно использовать как на открытом воздухе, так и в помещении в составе Вашего музыкального аудиокомплекса. Усилитель хорошо зарекомендовал себя как УНЧ для сабвуфера.
Внимание! Данный усилитель требует ДВУПОЛЯРНОГО источника питания и, если Вы планируете его использовать в автомобиле от аккумулятора, то в таком случае понадобятся ДВА АККУМУЛЯТОРА или один аккумулятор совместно с NM1025 .

Технические характеристики BM2033
Параметр Значение
Uпит. постоянное ДВУПОЛЯРНОЕ, В ±10...40
Uпит. ном. постоянное ДВУПОЛЯРНОЕ, В ±40
Iпотр. макс. при Uпит. ном. 100 Вт / 36 В = 2,5 А
Iпокоя, мА 60
Рекомендуемый сетевой источник питания
в комплект не входит
трансформатор с двумя
вторичными обмотками ТТП-250 +
диодный мост KBU8M +
ECAP 1000/50V (2 шт.),
либо два блока питания S-100F-24 (не для макс. мощности)
либо NT606 (не для макс. мощности)
Рекомендуемый радиатор, в комплект не входит.
Размер радиатора достаточен, если
при работе установленный на нем элемент
не нагревается более 70 °С (при касании рукой - терпимо)
205AB0500B , 205AB1000B
205AB1500B , 150AB1500MB
Устанавливать через изолятор КПТД !
Режим работы АВ класс
Uвх., В 0,25...1,0
Uвх.ном., В 0,25
Rвх., кОм 100
Rнагр., Ом 4...
Rнагр.ном., Ом 4
Рмах. при Кгарм.=10%, Вт 1 х 100 (4 Ом, ±29 В),
1 х 100 (6 Ом, ±33 В),
1 х 100 (8 Ом, ±38 В)
Тип микросхемы УМЗЧ TDA7294
fраб., Гц 20...20 000
Динамический диапазон, Дб
КПД при f=1кГц, Pном.
Ксигн./шум, дБ
Защита от короткого замыкания Да
Защита от перегрузки по току
Защита от перегрева Да
Габаритные размеры, ДхШхВ, мм 43 x 33
Рекомендуемый корпус
в комплект не входит
Температура эксплуатации, °С 0...+55
Относительная влажность эксплуатации, % ...55
Производство Контрактное производство
в России
Гарантийный срок эксплуатации 12 месяцев с даты покупки
Срок эксплуатации 5 лет
Вес, г
Комплект поставки BM2033 Описание BM2033

УНЧ выполнен на интегральной микросхеме TDA7294. Эта ИМС представляет собой УНЧ класса АВ. Благодаря широкому диапазону питающих напряжений и возможности отдавать ток в нагрузку до 10 А, микросхема обеспечивает одинаковую максимальную выходную мощность на нагрузках от 4 Ом до 8 Ом. Одной из основных особенностей этой микросхемы является применение полевых транзисторов в предварительных и выходных каскадах усиления.
Конструктивно усилитель выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в корпус, для этого зарезервированы монтажные отверстия по краям платы под винты 2.5 мм.
Микросхему усилителя необходимо установить на теплоотвод (в набор не входит) площадью не менее 600 см2. В качестве радиатора можно использовать металлический корпус или шасси устройства, в которое производится установка УНЧ. При монтаже рекомендуется использовать теплопроводную пасту типа КТП-8, для повышения надежности работы ИМС.

Использование SW1 в BM2033

Для "мягкого" выключения звука используется нога 10 (MUTE) микросхемы.
Для "мягкого" выключения усилителя в Дежурный Режим используется нога 9 (STAND-BY) микросхемы.
В данном исполнении в усилителе используется одновременное управление двумя режимами (MUTE и STAND-BY).
SW1 разомкнут - звук включен, усилитель включен
SW1 замкнут - MUTE - без звука, STAND-BY - режим ожидания
Усилитель работает, когда напряжение на ноге 9 и на ноге 10 больше + 3,5 вольт. Такие уровни позволяют управлять усилителем от обычных цифровых микросхем.
Если напряжение на соответствующем выводе меньше, чем +1,5 вольта относительно земли (на самом деле относительно вывода 1, соединенного с землей), то режим включен - микросхема молчит, или вообще отключена. Если напряжение больше +3,5 В, то режим отключен.

Порядок настройки BM2033

Правильно собранный УНЧ не требует настройки. Однако перед его использованием необходимо проделать несколько операций:
1. Проверьте правильность подключения источника сигнала, нагрузки и управляющих сигналов MUTE/ST-BY (при отказе использования штатного переключателя SW1).
2. Подайте напряжение питания, полезный сигнал, а затем замкните SW1 для запуска микросхемы.
Блок настроен и полностью готов к эксплуатации.

Назначение клемных контактов ВМ2033

Х1 - Вход. Сюда подайте сигнал от предварительного усилителя, выхода AUX магнитолы.
Х2 - GND (общий). На Х1,Х2 подайте усиливаемый сигнал.
Х3 - Подключите красный положительный провод питания +48В
Х4 - GND (общий). Подключите зеленый провод питания (средняя точка соединения однополярных источников питания).
Х5 - Положительный выход "+" на динамик.
Х6 - Отрицательный выход "-" на динамик. Внимание: это не -48В (не минус двуполярного питания!) К Х5,Х6 подключите динамик.
Х7 - Подключите черный отрицательный провод питания -48В.

Схема монтажная BM2033
Схема электрическая принципиальная BM2033
Схема подключений BM2033 после темброблока ВМ2111
Использование BM2033 совместно с NM1025
Информация о требуемом двуполярном источнике питания для BM2033

В качестве стереоусилителя мы не рекомендуем использовать очень мощные схемы, требующие двуполярного питания по причине отсутсвия в наличии источников двуполярного питания. Если Вы приняли решение купить мощный усилитель BM2033 (1 x 100 Вт) или BM2042 (1 x 140 Вт) , то это значит, что Вы готовы к покупке мощного блока питания, стоимость которого может превышать стоимость самого усилителя в несколько раз .
В качестве источника питания можно использовать IN3000S (+6...15В/3А) , либо IN5000S (+6...15В/5А) , либо PS-65-12 (+12В/5,2А) , либо PW1240UPS (+12В/4А) , либо PW1210PPS (+12В/10,5А) , либо LPS-100-13.5 (+13,5V/7,5A) , либо LPP-150-13.5 (+13,5В/11,2А) .
Усилители BM2033 (1 x 100 Вт) и BM2042 (1 x 140 Вт) требуют двуполярного источника питания , которое, к сожалению, в готовом виде у нас отсутствует. Как вариант, его можно обеспечить последовательно соединенными однополярными источниками питания из перечисленных выше источников. В этом случае стоимость источника питания возрастает в два раза .

Как ни странно, но у многих пользователей проблемы начинаются уже при покупке источника двуполярного питания либо самостоятельного его изготовления. При этом часто допускают две самые распространенные ошибки:
- Используют источник однополярного питания
- При покупке или изготовлении принимают во внимание действующее значение напряжения вторичной обмотки трансформатора , которое написано на корпусе трансформатора и которое показывает вольтметр при измерении.


Описание схемы источника двуполярного питания для BM2033

1.1 Трансформатор - должен иметь ДВЕ ВТОРИЧНЫЕ ОБМОТКИ . Либо одна вторичная обмотка с отводом от средней точки (встречается очень редко). Итак, если у вас трансформатор с двумя вторичными обмотками, то их необходимо соединить как показано на схеме. Т.е. начало одной обмотки с концом другой (начало обмотки обозначается черной точкой, на схеме это показано). Перепутаете, ничего не будет работать. Когда соединили обе обмотки, проверяем напряжение в точках 1 и 2. Если там напряжение, равное сумме напряжений обеих обмоток, то вы соединили все правильно. Точка соединения двух обмоток и будет "общим" (земля, корпус, GND, называйте как хотите). Это первая распространенная ошибка, как мы видим: обмоток должно быть две, а не одна.
Теперь вторая ошибка: В даташите (тех. описание микросхемы) на микросхему TDA7294 указано: для нагрузки 4Ома рекомендуется питание +/-27. Ошибка в том, что люди часто берут трансформатор с двумя обмотками 27В, ЭТОГО ДЕЛАТЬ НЕЛЬЗЯ!!! Когда вы покупаете трансформатор, на нем пишут действующее значение , и вольтметр вам тоже показывает действующее значение. После того, как напряжение выпрямляется, им заряжаются конденсаторы. А заряжаются они уже до амплитудного значения которое в 1.41 (корень из 2ух) раза больше действующего значения. Стало быть, чтобы на микросхеме было напряжение 27В, то обмотки трансформатора должны быть на 20В (27 / 1,41 = 19,14 Т.к. на такое напряжение трансформаторы не делают, то возьмем ближайшее: 20В). Суть думаю ясна.
Теперь о мощности: для того, чтобы TDA выдала свои 70Вт, ей необходим трансформатор мощностью минимум 106Вт (КПД у микросхемы 66%), желательно больше. Например для стерео усилителя на TDA7294 очень хорошо подойдет трансформатор мощностью 250Вт

1.2 Выпрямительный мостик - Тут как правило вопросов не возникает, но все же. Я лично предпочитаю ставить выпрямительные мосты, т.к. не надо возиться с 4мя диодами, так удобнее. Мостик должен обладать следующими характеристиками: обратное напряжение 100В, прямой ток 20А. Ставим такой мостик и не паримся, что в один "прекрасный" день он сгорит. Такого мостика хватает на две микросхемы и емкость конденсаторов в БП 60"000мкФ (когда конденсаторы заряжаются, через мостик проходит очень высокий ток)

1.3 Конденсаторы - Как видно, в схеме БП используется 2 типа конденсаторов: полярные (электролитические) и неполярные (пленочные). Неполярные (С2, С3) необходимы для подавления ВЧ помех. По емкости ставьте что будет: от 0,33мкФ до 4мкФ. Желательно ставить наши К73-17, довольно неплохие конденсаторы. Полярные (С4-С7) необходимы для подавления пульсации напряжения, да и к тому же отдают свою энергию при пиках нагрузки усилителя (когда трансформатор не может обеспечить требуемый ток). По емкости до сих пор люди спорят, сколько все таки нужно. Я на опыте понял, что на одну микросхему, достаточно 10000 мкФ в плечо. Напряжение конденсаторов: выбирайте сами, в зависимости от питания. Если у вас трансформатор на 20В, то выпрямленное напряжение будет 28,2В (20 х 1,41 = 28,2), конденсаторы можно поставить на 35В. С неполярными то же самое. Вроде бы ничего не упустил...
В итоге у нас получился БП содержащий 3 клеммы: "+" , "-" и "общий" С БП закончили, переходим к микросхеме.

2) Микросхемы TDA7294 и TDA7293

2.1.1 Описание выводов микросхемы TDA7294
1 - Сигнальная земля


4 - Тоже сигнальная земля
5 - Вывод не используется, можете его смело отламывать (главное не перепутайте!!!)

7 - "+" питания
8 - "-" питания


11 - Не используется
12 - Не используется
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.1.2 Описание выводов микросхемы TDA7293
1 - Сигнальная земля
2 - Инверсный вход микросхемы (в стандартной схеме сюда подключается ОС)
3 - Неинверсный вход микросхемы, сюда подаем аудиосигнал, через разделительный конденсатор С1
4 - Тоже сигнальная земля
5 - Клиппметр, в принципе абсолютно ненужная функция
6 - Вольтодобавка (Bootstrap)
7 - "+" питания
8 - "-" питания
9 - Вывод St-By. Предназначен для перевода микросхемы в дежурный режим (т.е. грубо говоря усилительная часть микросхемы отключается от питания)
10 - Вывод Mute. Предназначен для ослабления входного сигнала (грубо говоря, отключается вход микросхемы)
11 - Вход оконечного каскада усиления (используется при каскадировании микросхем TDA7293)
12 - Сюда подключается конденсатор ПОС (С5) когда напряжение питания превышает +/-40В
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.2 Разница между микросхемами TDA7293 и TDA7294
Такие вопросы встречаются постоянно, итак, вот основные отличия TDA7293:
- Возможность параллельного включения (фигня полная, нужен мощный усилитель - собирайте на транзисторах и будет вам счастье)
- Повышенная мощность (на пару десятков ватт)
- Повышенное напряжение питания (иначе предыдущий пункт был бы не актуален)
- Еще вроде говорят что она вся сделана на полевых транзисторах (а толку то?)
Вот вроде бы все отличия, от себя лишь добавлю что у всех TDA7293 наблюдается повышенная глючность - слишком часто горят.

Часто задаваемые вопросы по BM2033

- Как подключить светодиод для контроля пуска усилителя ВМ2033?
- Светодиод следует подключить параллельно любому плечу источника питания. Не забудьте установить последовательно светодиоду токоограничивающий R=1 кОм.

ВМ2033 - просто сказка! Заменил им сгоревший канал в старом "Cтарт 7235". Качает раза в 1,5-2 мощнее прежнего, при том что греется меньше. Сейчас хочу им же заменить оконечники в "Вега122". Огорчила только одна мелочь - из-за своей невнимательности прикрутил микросхему напрямую к радиатору. В результате - пришлось перепаивать саму микросхему и востанавливать перегоревшую дорожку.

Усилитель 2 по 200 Ватт. Схема.

В этой статье представлена схема одного канала усилителя, способного на нагрузке 4 Ома развить мощность 200 Ватт. Усилитель, собранный по данной схеме, кроме высокой выходной мощности обладает достаточно низким уровнем шумов. Принципиальная схема изображена на рисунке ниже:

Входной каскад усилителя собран на транзисторах А1015. Перед тем как впаивать их на плату не поленитесь проверить их коэффициент передачи тока на соответствие параметрам, указанным в даташите на этот транзистор. Ссылка на даташит ниже:

На выходе усилителя параллельно резистору 10 Ом стоит катушка. Ее намотка осуществляется на оправку 9,5 мм в диаметре, мотается 10 витков провода ПЭВ-2 1,0 мм. Катушка бескаркасная.

Схема блока питания для этого усилителя изображена на следующем рисунке:

При питании усилителя от такого источника максимум, что вы сможете выжать, это примерно Ватт 150 на канал. Для получения мощности 200Ватт на канал необходимо использовать трансформатор с двумя симметричными обмотками по 40 вольт, и способных выдерживать ток нагрузки порядка 10 ампер. Но это еще не все. Необходимо так же будет заменить транзисторы пред-оконечного и оконечного каскада на более мощные, то есть: транзисторы D1047 заменить на 2SC5200, транзисторы B817E заменить на 2SA1943, транзисторы TIP41 меняются на MUE15032, а TIP42 на MUE15033. Применение указанных на принципиальной схеме номиналов элементов и использование менее мощного трансформатора производилось с целью удешевления конструкции в целом.

Печатная плата (на плате размещены оба канала усилителя, а так же выпрямительные диоды и емкости блока питания):

Вид на печатную плату со стороны элементов:

Схема внешних подключений к плате усилителя:

Похожие публикации