Chevroletavtoliga - Автомобильный портал

Фильтр второго порядка для трехполосной акустики. Расчет кроссовера для акустики своими силами. Важные характеристики АС

9. ДВУХ- И ТРЕХПОЛОСНЫЕ СИСТЕМЫ ГРОМКОГОВОРИТЕЛЕЙ

Двух- и трехполосные системы громкоговорителей (агрегаты) да­ют возможность воспроизводить более широкую полосу частот со значительно меньшими частотными и нелинейными искажениями, чем это могли бы сделать широкополосные громкоговорители. К этому надо добавить, что двух- и трехполосные системы обеспечивают улучшение акустических показателей звуковоспроизводящего звена более дешевым образом, ибо широкополосная головка всегда будет стоить много дороже узкополосных. Разделение полного диапазона частот на две и три частотных полосы показано на рис. 55. Видны нижняя (f н ) и верхняя (f в ) границы воспроизводимой полосы ча­стот и частоты раздела (f Р , f P 1 и f P 2 ).

Рис. 55. Условное разделение воспроизводимой полосы ча­стот при двухполосной и трех­полосной акустических систе­мах

( f н и f в - соответственно низшая и высшая граничные частоты; f p , f pl и f р2 - частоты разделения).

Приведенные характеристики представляют собой уровни напряжения на выходе соответствующих разделительных фильтров. Более дорогой является трехполосная си­стема, она способна обеспечить воспроизведение более широкой по­лосы частот (особенно вниз) и с лучшей равномерностью частотной характеристики. Дпухполосные системы получили более широкое распространение. Выбор числа полос следует производить на основе акустических данных имеющихся в наличии головок и требований к неравномерности частотной характеристики системы. Частоты раз­дела выбирают, исходя из условий получения лучшей частотной ха­рактеристики системы (агрегата), т.е. меньших частотных искаже­ний. Это определяется частотными характеристиками головок. Известно также, что частотные искажения громкоговорителя минимальны до критической частоты диффузора , после которой он перестает колебаться, как поршень. Некоторое влияние на выбор частоты раздела могут оказать запасы мощностей у имеющих­ся головок. Кривые требующегося соотношения мощностей головок, приведенные на рис. 32, показывают, что при повышении частоты раздела, высокочастотная головка разгружается и увеличивается нагрузка низкочастотной головки. В некоторых случаях не рекомен­дуют частоту раздела выбирать между 1-4 кгц, так как это может несколько ухудшить слуховые ощущения из-за возможной заметности двух источников звука, работающих одновременно на частоте раздела, которая в этом случае была бы в области наибольшей чув­ствительности нашего слуха. Снижение частоты раздела уменьшает, кроме того, и интермодуляционные искажения. Таким образом, наи­более подходящими частотами раздела могут быть частоты, лежащие в области 400-800 гц и 4-5 кгц. Простейшим способом создания двухполосного агрегата является подключение одной или двух высо­кочастотных головок через разделительный конденсатор к имеюще­муся громкоговорителю.

Большинство диффузорных громкоговорителей мощностью 6- 10 ватт хорошо работают в диапазоне низших и средних частот, т.е. воспроизводят довольно широкую полосу частот. Большинство наи­более мощных наших громкоговорителей (5ГД-3РР3, 6ГД-1, 8ГД-РР3, 10ГД-28 и др.) имеют частоту основного резонанса в лучшем случае 45-50 гц (очень редко 42-40 гц), а снижение отдачи на высших частотах начинается с 5-6 кгц. Таким образом, рабочая полоса, в которой эффективней могут работать эти громкоговорители, простирается от 40-45 гц до 5 кгц. Для воспроизведения области частот выше 5 кгц должны применяться дополнительные небольшие громкоговорители, рассчитанные на воспроизведение полосы до 16- 20 кгц (например, 1ГД-1РР3, 1ГД-2, 1ГД-3). Частота раздела при указанных выше мощных головках должна быть около 5 кгц.

Рис. 56. Схемы присоединения громкоговорителей, воспроизводящих верхнюю полосу частот (условно показано по одной головке в каждой полосе).

а - при приблизительно равном сопротивлении громкоговорителей; б - при

различном сопротивлении; в - то же, но с отдельными трансформаторами в каждой полосе.

На рис. 56 показаны возможные схемы присоединения дополни­тельных высокочастотных головок. Мощность этих головок при такой частоте раздела может быть менее 0,1 от мощности основного громкоговорителя. Присоединение дополнительных головок не нарушит согласования нагрузки с выходным каскадом и даже улучшив его, так как на высших частотах растет полное сопротивление основного громкоговорителя и нагрузка усилителя падает.

Схема на рис. 56. а предназначена для присоединения высокочастотной головки, полное сопротивление которой приблизительно равно полному сопротивлению основного громкоговорителя. Схемы (рис, 56, б, в ) позволяют применять громкоговорители со значительно отличающимися полными сопротивлениями. Согласование нагрузки достигается или с помощью отводов в выходном трансформатор или отдельным трансформатором (автотрансформатором). Технически легче сделать два хороших выходных трансформатора, работающих каждый в узкой полосе частот, чем один высококачественный широкополосный. Это особенно важно при более мощном усилителе.

В этих схемах условно показано по одной головке в каждой полосе, тогда как в действительности могут быть подключены две го­ловки и более. Конечно, все головки должны быть правильно сфазированы и должно быть учтено их общее сопротивление. Емкость разделительного конденсатора определяется частотой раздела и мо­дулем полного сопротивления высокочастотной головки. На частоте раздела емкостное сопротивление конденсатора должно равняться модулю полного сопротивления головки, т. е.

где f Р - частота раздела; | Z ГР | - модуль полного сопротивления го­ловки на частоте раздела.

Рис. 57. Основные схемы разделительных фильтров.

Рис. 58. График для расчета величины разделительной емкости C в схемах на рис. 56 и емкости С 1 , в схемах на рис. 57, а, б.

Разделительный конденсатор, емкость которого рассчитана по этой формуле, дает затухание перед частотой раздела в 6 дб на ок­таву (0,5 f Р ).

Простейшим фильтром, при помощи которого к низкочастотной головке подводится напряжение только низших частот, а к высоко­частотной головке - только высших частот, являются схемы, приве­денные на рис. 57, а,б. Они рассчитаны на головки с одинаковым полным сопротивлением и имеют одинаковое входное сопротивление, равное полному сопротивлению одной головки, несмотря на то, что в первой схеме головки соединены последовательно, а во второй - параллельно. Емкость конденсатора и индуктивность дросселя определяются из условия, что их емкостное или индуктивное сопротив­ление равно на частоте раздела полному сопротивлению головки, поэтому к каждой головке будет приложена половина выходной мощности усилителя; таким образом,

Отсюда легко получаются расчётные формулы

Формула для расчета емкости конденсатора получилась одина­ковой с формулой для расчета емкости разделительного конденсатора высокочастотной головки, что совершенно закономерно, так как они отвечают одинаковым условиям.

Для удобства расчета фильтра на рис. 58 приведены кривые, позволяющие определить значения емкости и индуктивности в зависимости от модуля полного сопротивления головки для двух частот раздела.

Описанный фильтр дает затухание вблизи частоты раздела 6 дб на октаву (0,5 f p и 2 f p ). Однако предпочтительнее фильтры, обладающие более крутым срезом частотной характеристики затухания вблизи частоты раздела, т. е. большим затуханием на октаву. Это желательно для сокращения области частот, в которой одновременно работают (излучают) и низкочастотные и высокочастотные головки. Такие фильтры имеют схемы, приведенные на рис. 57, в, г: они дают затухание около 12 дб на октаву и также рассчитаны на головки с одинаковыми полными сопротивлениями. Входное сопротивление фильтров равно полному сопротивлению одной головки; условие расчета этих фильтров то же, что и у предыдущих: на частоте раздела подводимая мощность делится поровну между головками. В этом случае в последовательной схеме (рис. 57, в ) емкость и индуктивность определяются формулами

а в параллельной схеме (рис. 57, г )

До сих пор говорилось о фильтрах, рассчитанных на головки с одинаковым полным сопротивлением (в своих полосах частот). Очень часто используют головки с разным входным сопротивлением.

Если сопротивления звуковых катушек громкоговорителей раз­личны, их следует уравнять с помощью согласующего трансформато­ра. Такой трансформатор (или автотрансформатор) лучше приме­нять для высокочастотной группы и в зависимости от соотношения сопротивления звуковых катушек использовать либо на повышение (если сопротивление НЧ группы меньше), либо на понижение. Его коэффициент трансформации вычисляют по формуле

где | Z H | и | Z В | - модули полных сопротивлений низкочастотной и высокочастотной головок.

Рис. 59. Схема присоединения громкоговорителей с разными сопротивлениями через фильтры нижних и верхних частот.

Рис. 60. Схема для расчета коэффициен­тов трансформации.

Когда такое уравнение полных сопротивлений головок почему-либо невозможно, то можно подключить громкоговорители к разным отводам выходного трансформатора так, как это показано на рис. 59 (для случая, когда | Z Н | меньше, чем | Z В |). При этом номиналы эле­ментов разделительных фильтров рассчитываются, как для обычных простых фильтров нижних и верхних частот;

Здесь может быть уместно привести формулу для расчета ко­эффициента трансформации каждой отдельной обмотки или отдельного трансформатора (рис. 60, а ), учитывающего как полные сопро­тивления разных головок, так и их номинальные мощности:

где и - число витковпервичной и вторичной обмоток; P У - мощность усилителя; Z H - сопротивление нагрузки усилителя; P ГР - мощность громкоговорителя; Z ГР - полное сопротивление громкоговорителя (среднее значение).

Правильность рассчитанных коэффициентов трансформации мож­но проверить подсчетом общего сопротивления нагрузки по фор­муле

(R должно быть равно | Z H |).

У фабричных выходных трансформаторов, имеющих отводы для включения разных сопротивлений нагрузки (громкоговорителя), обычно обозначают выводы, как показано на рис. 60, б . Но эти же отводы позволяют присоединить нагрузку иного сопротивления на отдельные части обмотки. Определить сопротивление этих нагрузок для верхней секции и подобным же образом для остальных можно по формуле

Перейдем к расчету трехполосных систем. Несмотря на то, что приведенные выше расчетные формулы относятся к двухполосным системам, ценная особенность фильтров, схемы которых изображе­ны на рис. 57, в, г , состоит в том, что их входное сопротивление рав­но полному сопротивлению головки и позволяет успешно использо­вать такие фильтры и в трехполосной схеме. Единственным условием является то, чтобы все три головки имели одинаковые сопротивления в своих полосах частот. Схема фильтров для трехполосной системы показана па рис. 61, а. Она содержит две пары фильтров параллель­ного включения, соответствующих схеме на рис. 57, г . Первую пару фильтров ( L 2 и С 2) рассчитывают по приведенным выше формулам для более низкой частоты раздела (f Р1 ) и к одному из них (низко­частотному) присоединяют низкочастотную головку. Вторую пару фильтров присоединяют к высокочастотному фильтру первой ступе­ни, пропускающему сигналы с частотами выше частоты раздела. Эту пару фильтров (L " 2 и С" 2 ) рассчитывают по тем же формулам, что и первую пару, но для более высокой частоты раздела (f Р2 ). Таким образом, вторая пара фильтров делит область частот, находящую­ся выше первой частоты раздела (f Р1 ), на две полосы с частотой раздела f Р2 между ними. Не представляет трудностей составить такую же систему из двух пар фильтров последовательного включения, которые рассчитывают аналогичным образом, но по формулам, от­носящимся к схеме на рис. 57, в ; такая схема представлена на рис. 61, б. Она может представить интерес только тем, что в ней нужны другие значения емкостей конденсаторов и индуктивностей дросселей, которые можно легче купить или сделать, чем те, которые требуются для параллельных схем.


Рис. 61. Схема включения фильтров в трехполосной системе громкоговорителей.


Рис. 62. Упрощенные схемы фильтров для трехполосной системы громкоговорителей,

а - с разделительным конденсатором; б - с последовательным контуром L 3 C 3 .

Имеется более простой вариант схемы включения громкоговори­телей в трехполосной системе. Он показан на рис. 62, а . Здесь при­меняется двухполосный фильтр с более низкой частотой раздела, а высокочастотная головка подключена к фильтру второй полосы с помощью разделительного конденсатора C 3 . Эта схема содержит только два полосовых фильтра и конденсатор вместо двух пар полосовых фильтров, описанных выше. Однако, строго говоря, схема на рис. 62 является двухполосной, к которой добавлена высокоча­стотная головка. В результате этого на высших частотах могут из­лучать как высокочастотная головка, так и среднечастотный громко­говоритель, что может увеличить неравномерность частотной харак­теристики вэтой области частот. Поэтому более эффективной сле­дует считать схему с фильтрами, разделяющими весь диапазон па три полосы. Существует еще одна разновидность трехполосной си­стемы, когда к двухполосной системе подключают дополнительный громкоговоритель последовательно с простым последовательным контуром. Такая схема показана на рис. 62, б . Этой схемой можно ком­пенсировать провалы в частотной характеристике громкоговорителя основной двухполосной системы. Иногда небольшой подъем отдачи и области средних частот (не более 8-10 дб ), создаваемый дополни­тельным громкоговорителем, значительно улучшает качество звуко­воспроизведения: лучше распознаются отдельные инструменты ор­кестра. Это особенно заметно при сравнении звучания с акустиче­ским агрегатом, у которого снижена отдача на средних частотах, даже если такое понижение не выходит из допусков.

Конденсатор и катушку индуктивности для полосового фильтра, которые включают последовательно с головкой, воспроизводящей средние частоты или компенсируют какой-либо провал в характе­ристике (рис. 62, б ), рассчитывают довольно просто. Из курса радио­техники известно, что для последовательного контура (LC ) сущест­вуют следующие соотношения:

И ,

где - угловая резонансная частота, гц; Z К - характеристиче­ское сопротивление контура, которому по отдельности равняются емкостное и индуктивное сопротивления конденсатора и дросселя при резонансной частоте, т.е.

Полагая величину Z K равной полному сопротивлению, которое имеет на частоте коррекции дополнительный громкоговоритель (Z К = Z ДОП ), включаемый через последовательный контур, можно под­считать нужные величины емкости конденсатора C 3 и индуктивности дросселя L 3

Следует иметь в виду, что ширину частотной области, в которой излучает дополнительная головка, можно расширить, уменьшив ве­личину индуктивности L 3 , как это следует из формулы

откуда

Здесь - ширина резонансной кривой па высоте 0,7 от макси­мума, гц; L 3 - индуктивность, гн; R ГР - активное сопротивление го­ловки, ом.

В связи с этим при желании расширить полосу частот, воспро­изводимых дополнительной головкой, следует уменьшить индуктив­ность L 3 против расчетной величины и во столько же раз увеличить емкость C 3 .

Такой метод коррекции частотной характеристики звукового давления громкоговорителя может быть успешно использован и для улучшения воспроизведения низших частот в этом случае дополни­тельный корректирующий громкоговоритель используют, главным образом, в области его основной резонансной частоты, на которую и рассчитывают последовательный контур, т. е.

Если дополнительный громкоговоритель аналогичен основному и отличается частотой основного резонанса не более чем на ±10 гц , то при установке его вблизи основного (рядом) получится повыше­ние уровня на 3 дб и улучшится согласование нагрузки с усилителем, так как на частоте основного резонанса входное сопротивление гром­коговорителя возрастает в 3-5 раз. Индуктивность дросселя и ем­кость конденсатора рассчитывают по вышеприведенным формулам для последовательного контура L 3 C 3 . Однако ввиду того, что резо­нансная частота контура соответствует частоте механического резо­нанса громкоговорителя, индуктивность по расчету получится значи­тельной. Рекомендуется уменьшить ее в 2-4 раза, увеличив во столько же раз емкость конденсатора.

Следует объяснить, почему от всех разделительных фильтров требуется, чтобы на частоте раздела они делили поровну мощность между головками, работающими в соседних полосах, т. е. снижали уровень напряжения на каждой головке на 3 дб. Эта величина выбрана потому, что, как будет показано дальше, сложение двух оди­наковых уровней, создаваемых двумя источниками звука, повышает общий уровень на 3 дб. Следовательно, снижение фильтрами на частоте раздела напряжения на головках (а также и звукового давления) приводит в результате сложения к последующему выравни­ванию общего звукового давления, конечно, если они включены синфазно и отдача обоих головок на частоте раздела одинакова. Однако, к сожалению, чаще имеет место различие в среднем стандартном звуковом давлении, создаваемом различными головками.

В связи с таким положением рекомендуется средне- и высоко­частотную головки присоединять к разделительным фильтрам через низкоомный ступенчатый аттенюатор с 3-5 ступенями регулировки, как это показано на рис. 63. Важной особенностью аттенюатора яв­ляется постоянство его входного сопротивления. Оно может быть сделано равным полному сопротивлению головки, на которое рассчитан разделительный фильтр. Каждая ступень регулировки долж­на давать снижение уровня (затухание) порядка 2 дб, что соответ­ствует уменьшению напряжения (и звукового давления) примерно на 20%, т.е. до 0,8 от исходной величины. Сопротивление последовательного (r 1 ) к параллельного (r 2 ) резисторов находят по фор­мулам

где Z ГР - полное сопротивление головки; k - коэффициент пере­дачи аттенюатора; мы выбрали для первой ступени k =0,8. При оп­ределении сопротивлений резисторов для второй и далее ступеней регулировки следует по рис. 1 определить значение k , которое для второй ступени, создающей общее затухание 4 дб, будет k =0,63, для третьей (6 дб) k =0,5 и т. д. Надо также иметь в виду, что сопротив­ления последовательного и параллельных резисторов могут созда­ваться либо отдельными резисторами независимо друг от друга, как это показано на рис. 63, б, либо с использованием резисторов предыдущей ступени (рис. 63, в ). Во втором варианте необходимо, рас­считав сопротивления резисторов для данного затухания, отнять от рассчитанной величины сумму сопротивлений резисторов, включен­ных между нулевым контактом и предыдущим тому, для которого ведется расчет (при этом расчет сопротивления r 2 ведут, начиная с максимального затухания). Иначе говоря, вычитанием определяется то сопротивление, которое надо добавить к уже подсчитанным, чтобы получить сопротивление, соответствующее данному затуханию. Для удобства определения сопротивления резисторов r 1 и r 2 в зависимости от полного сопротивления громкоговорителя для разных за­туханий и при условии равенства входного сопротивления аттеню­атора и полного сопротивления головки (r АТТ = Z ГР ) на рис. 64 приведены расчетные графики.


Рис. 63. Схемы включения аттенюатора.

а - принципиальная; б, в - практические варианты.

Конденсаторы во всех приведенных схемах разделения частот и разделительных фильтрах желательно иметь бумажные. Их но­минальное рабочее напряжение может быть выбрано минимальным. Можно применять электролитические конденсаторы, но из-за отсут­ствия в цепи постоянной составляющей необходимо взять два таких конденсатора, каждый вдвое большей емкости, и соединить их по­следовательно одинаковой полярностью. Такое включение конденса­торов называется биполярным, и оно иногда используется (напри­мер, в радиоле "Симфония") наряду со специальными типами бипо­лярных электролитических конденсаторов. Можно специально соз­дать схему с вспомогательным источником постоянного напряжения для поляризации электролитических конденсаторов. Однако выпуска­ется достаточный ассортимент необходимых типов и величин бумаж­ных конденсаторов сравнительно небольших размеров для рабочего напряжения 120-160 в, например типа МБГО. Их габариты к тому же не имеют существенного значения при размещении в ящике гром­коговорителя. Дроссели для схем разделительных фильтров лучше применять без стального сердечника, так как всегда имеется опас­ность появления дополнительных нелинейных искажений вследствие нелинейности кривой намагничивания сердечника. Лучше применять в качестве дросселей простые многослойные катушки без сердеч­ников.

Для уменьшения потерь звуковой энергии намотку дросселей, включаемых последовательно с громкоговорителями, следует выполнять достаточно толстым эмалированным проводом, чтобы активное сопротивление обмотки было в 10-20 раз меньше, чем сопротивле­ние всех громкоговорителей, работающих в данной полосе частот. Индуктивность многослойной катушки, изображенной на рис. 65, может быть подсчитана по формуле

где w - число витков; D - средний диаметр катушки, см; В - ширина намотки, см; А - высота намотки, см.


Рис. 64. Графики для расчета сопротивлений аттенюатора.

Если принять конфигурацию катушки такой, что d = A , A = 1,2 B , а D =2 A =2,4 B , то формула для индуктивности и расчет дросселя сильно упрощается:

Расчет дросселя ведется следующим образом: задаемся сопро­тивлением обмотки r др (r др =0,05/0,1 R ГР ) и шириной катушки B . Площадь сечения обмотки принятой конфигурации будет S 0 = AB =1,2 B 2 , a объем обмотки V 0 = S 0 3,14 D =9 B 3 . Определяем с помощью приведенной здесь табл. 2 число витков и сопротивление обмотки для подсчитанных S 0 и V 0 и какого-либо выбранного диаметра про­вода и сопоставляем сопротивление с требующимся, а по уклады­вающемуся числу витков обмотки подсчитываем индуктивность.

Таблица 2

Диаметр по меди

Число плотно

намотанных витковна 1 см 2 сечения обмотки

Сопротивление кубического сантиметра непрерывной намотки, ом

0,668

0,28

0,137

0,076

0,0444

0,0284

0,0189

0,013

0,00924

0,00678

Рис. 65. Кон­фигурация катушки дросселя разделитель­ного фильтра.

Если рассчитанные индуктивность и сопротивление катушки оказываются меньше требующихся, тогда проделывают то же самое для меньшего диаметра провода. Если сопротивление обмотки увеличивать нельзя, то, сохраняя прежний диаметр про­вода, увеличивают размеры катушки, т. е. B , и тем самым возможное число витков. Обычно дроссели де­лают бескаркасными, т. е. обмотка наматывается на болванке со съемными щеками, которые по оконча­нии намотки удаляются, а обмотка для прочности стягивается лентой или ниткой в 4-5 местах по окружности.

Рассчитаем в качестве примера дроссель индуктивностью 30 мгн, сопротивлением 2,5-3,5 ом и шириной обмотки B =3 см. Площадь сечения обмотки равна S 0 =1,2 В 2 = 10,8 см 2 ; объем обмотки равен Vo =9 B 3 =243 см 3 . Находим с помощью таблицы, что из про­вода диаметром 1 мм обмотка будет иметь сопротивление 4,6 ом и количество витков 840. По формуле подсчитываем индуктивность.

Она будет равна:

Так как сопротивление получилось завышенным, а индуктив­ность близкой, увеличим немного размеры катушки (примем B = 3,4 см ) и диаметр провода (примем 1,2 мм ). Новая площадь се­чения обмотки и ее объем равны S 0 =13,9 см 2 ; V o =352 см 3 . Находим по таблице, что обмотка будет иметь 765 витков и сопротивление 3,25 ом; ее индуктивность составит L =32 мгн. Дроссель с такими индуктивностью и сопротивлением удовлетворяет заданию.

Ирина Алдошина

Дата первой публикации:

фев 2009

Разделительные фильтры в акустических системах.

Практически все современные высококачественные акустические системы являются многополосными, то есть состоящими из нескольких громкоговорителей, каждый из которых работает в своем диапазоне частот. Это обусловлено тем, что практически невозможно создать динамический громкоговоритель, который обеспечивал бы излучение в широком диапазоне частот с малым уровнем искажений (в первую очередь, интермодуляционных, а также переходных, нелинейных и др.) и широкой характеристикой направленности. Поэтому в акустических системах (как профессиональных, так и бытовых) используют несколько громкоговорителей (низкочастотные, среднечастотные, высокочастотные, иногда супервысокочастотные), а для распределения энергии звукового сигнала между ними включают электрические разделительные фильтры.

Влияние разделительных фильтров на формирование характеристик акустических систем в предыдущие годы недооценивалось: им отводилась лишь роль ослабления сигнала за пределами рабочей полосы частот громкоговорителей. Однако развитие техники акустических систем категории Hi-Fi заставило пересмотреть взгляд на роль разделительных фильтров в акустических системах и на методику их проектирования. Многочисленные теоретические и экспериментальные работы, посвященные влиянию разделительных фильтров на коррекцию характеристик излучателей и формирование объективных и субъективных характеристик акустических систем, заставили считать разделительные фильтры одним из важнейших компонентов акустических систем, с помощью которого можно синтезировать многие необходимые электроакустические характеристики и добиться значительного прогресса в обеспечении естественности звучания.

Прежде чем переходить к анализу различных типов фильтров, применяемых в акустических системах, и методам их расчета, остановимся на определении основных параметров фильтров.

Параметры фильтров
Фильтром называется устройство, пропускающее определенные спектральные составляющие в сигнале и не пропускающее (ослабляющее) остальные. Фильтр может быть реализован в виде аналоговой схемы (пассивные и активные фильтры), а также реализован программно или в виде цифрового устройства (цифровые фильтры).

В современных акустических системах применяются как пассивные, так и активные фильтры (кроссоверы). Первые включаются после общего усилителя в каждом канале, вторые включаются до усилителя. Общая схема включения показана на рис.1. Активные фильтры имеют ряд преимуществ перед пассивными фильтрами, поскольку их значительно легче перестраивать, можно реализовать различными способами, в них отсутствуют потери мощности и т. д. Однако активные фильтры проигрывают пассивным по таким параметрам, как динамический диапазон, нелинейные искажения, уровень шумов и др. Методы проектирования активных фильтров широко освещены в специальной литературе, поэтому здесь остановимся только на методах проектирования пассивных фильтров, которые широко используются в современных акустических системах.

Основными параметрами, определяющими свойства фильтров, являются:
- полоса пропускания - область частот, в которой фильтры пропускают сигнал;
- полоса задерживания - область частот, где фильтры существенно подавляют сигнал;
- частота среза f ср - частота, на которой сигнал ослабляется на 3 дБ по отношению к среднему уровню в полосе пропускания.

По характеру расположения полосы пропускания и полосы задерживания фильтры разделяются на четыре основных типа.

Фильтры нижних частот (ФНЧ) пропускают низкочастотные составляющие в спектре сигнала (от нуля до частоты среза) и подавляют высокочастотные. Используются для низкочастотных громкоговорителей. Форма частотной характеристики показана на рис. 2.

Фильтры высоких частот (ФВЧ) пропускают высокочастотные составляющие (от частоты среза и выше) и подавляют низкочастотные. Применяются для высокочастотных громкоговорителей. Форма АЧХ показана на рис. 2.

Полосовые фильтры (ПФ) пропускают определенные полосы частот (от f ср1 до f ср2 ) и подавляют нижние и верхние частоты. Применяются для среднечастотных громкоговорителей, рис. 2.

Существуют также режекторные фильтры, которые представляют собой комбинацию низкочастотного и высокочастотного фильтров. Они подавляют спектральные составляющие сигнала в определенной полосе частот и пропускают в других полосах. Применяются иногда в акустических системах для вырезания отдельных пиков и провалов на АЧХ.

Кроме того, каждый из перечисленных фильтров характеризуется следующими параметрами: крутизной спада АЧХ при переходе от полосы пропускания к полосе задерживания, неравномерностью в полосе пропускания и задерживания, резонансной частотой и добротностью (Q). В зависимости от структуры фильтра и количества элементов в нем может быть обеспечена разная крутизна спада АЧХ. Обычно в акустических системах используются фильтры с крутизной спада 12 дБ/окт, 18 дБ/окт и 24 дБ/окт (рис. 3), которые, соответственно, называются фильтрами второго, третьего и четвертого порядков.

Простейшая структура LC-фильтра низких частот второго порядка показана на рис. 4. Она включает в себя следующие элементы: индуктивность L, реактивное сопротивление которой прямо пропорционально частоте (XL = 2πfL), и емкость C, реактивное сопротивление которой обратно пропорционально частоте (ХС = 1/2πfC). Поэтому представленная на рис. 4а цепь пропускает низкие частоты (поскольку сопротивление индуктивности L мало на низких частотах) и обеспечивает затухание высоких частот. Фильтр высоких частот имеет обратную структуру (рис. 4б) и, соответственно, пропускает высокие частоты и задерживает низкие.

Вид АЧХ фильтров высоких частот второго порядка при разных значениях добротности показан на рис. 5. Резонансная частота такого фильтра определяется как f=1/(LC)1/2 , а добротность как Q = [(R2 C)/L]1/2 .

Из рис. 5 видно, что изменения значения добротности меняет характер спада АЧХ от гладкого (при Q = 0.707) до спада с подъемом на частоте резонанса (Q = 1).

По имени ученых, которые математически описали передаточные функции фильтров (то есть их формы частотных характеристик), они получили разное название: фильтры с добротностью Q = 1 называются фильтрами Чебышева, Q = 0.707 - Баттерворта, Q = 0.58 - Бесселя, Q = 0.49 - Линквица-Риле. Каждый из указанных типов фильтров имеет свои преимущества и недостатки.

Передаточная функция

Под передаточной функцией фильтра понимается отношение комплексной амплитуды напряжения на выходе фильтра к комплексной амплитуде напряжения на входе. Обычно передаточные функции физически реализуемых и устойчивых линейных цепей описываются в виде математических формул, знаменатели которых являются выражениями следующего вида (полиномами): Gn(s) = an sn +a n-1 sn-1 +…….+a1 s+1. Порядок фильтра определяется степенью n от комплексной частоты s, которая связана с обычной круговой частотой как s = jω. (величина j называется мнимой единицей ). Выбор вида коэффициентов аn определяет принадлежность фильтров к типу Баттерворта, Чебышева и др. Например, полиномы Баттерворта разных порядков имеют вид В1 (s) = (1+s); B2 (s) = (1+1,414s+s2 ) и т. д.

В акустических системах проблема выбора фильтров усложняется тем, что необходимо выбрать три или два (в зависимости от количества полос) типа фильтров одинаковых или разных порядков, которые совместно с громкоговорителями обеспечивали бы суммарные характеристики акустической системы (такие как амплитудно-частотная характеристика - АЧХ, фазочастотная характеристика - ФЧХ, групповое время задерживания - ГВЗ, и др.) с требуемыми параметрами внутри эффективно-воспроизводимого диапазона частот.

История создания фильтров
История создания разделительных фильтров начинается одновременно с появлением многополосных акустических систем. Одну из первых теорий разработали в 30-е годы инженеры G. A. Campbell и О. J. Zobel из фирмы Bell Labs (США). Первые публикации относятся к этому же периоду, их авторы K. Hilliard и H. Kimball работали в звуковом отделе фирмы Metro Goldwin Meyer. В 1936 году в мартовском номере Academy Research Council Technical Bulletin была опубликована их статья "Разделительные фильтры для громкоговорителей". В январе 1941 года K. Hilliard в журнале Electronics Magazine также опубликовал работу "Разделительные фильтры громкоговорителей", содержавшую все необходимые формулы для создания цепей Баттерворта первого и третьего порядков (как для параллельных, так и для последовательных схем). К 50-м годам фильтры Баттерворта были признаны предпочтительными для разделительных целей акустических систем. Тогда же в 60-х J. R. Ashley и R. Small впервые описали свойства "всепропускающих" фильтрующих схем, а также линейно-фазовых цепей.

Выяснению количественного соотношения затухания, вносимого фильтрами вне полосы пропускания, и величины интермодуляционных искажений вследствие перекрывания полос акустических систем, была посвящена статья "Фильтрующие цепи и модуляционные искажения" (автор R. Small), опубликованная в JAES в 1971 году. В ней было показано, что минимальная величина затухания должна быть 12 дБ/окт, чтобы предотвратить искажения в полосе перекрытия. Тогда же Ashley и L. М. Неnnе исследовали "всепропускающие" и "фазокогерентные" свойства фильтров Баттерворта третьего порядка. В 1976 году S. Linkwitz исследовал полярную диаграмму направленности для двухполосных систем с разнесенными излучателями и убедился, что акустические системы с разделительными фильтрами Линквитца-Риле обеспечивают ее симметричность.

Чуть позднее P. Garde дал полное описание всепропускающих фильтров и их разновидностей. Используя его идеи, D. Fink в соавторстве с Е. Long развил метод коррекции горизонтального (то есть глубинного) смещения головок громкоговорителей в акустических системах путем введения линий задержки в фильтр. Существенный вклад в теорию фильтрации внесли W. Marshall-Leach и R. Bullock, которые впервые ввели понятие оптимизации фильтров по типу и порядку с учетом смещения головок по двум осям. В продолжение этих работ R. Bullock описал свойства трехполосных симметричных фильтров и доказал, что трехполосная система фильтров не может быть получена как простая комбинация двухполосных, вопреки бытовавшему мнению. S. Lipshitz и J. Vanderkooy в серии статей рассмотрели различные варианты построения фильтров с минимально фазовыми характеристиками.

Новый этап в исследовании и проектировании многополосных акустических систем с разделительными фильтрами наступил с началом активной компьютеризации расчетов на основе программ ХОРТ, CACD, CALSOB, Filter Designer, LEAP 4.0 и др.

До недавнего времени конструирование разделительных фильтров в акустических системах шло практически методом "проб и ошибок". Это объясняется тем, что все теоретические работы прошлых лет, посвященные расчету разделительных фильтров в акустических системах, исходили из условия идеальности самих громкоговорителей. При анализе свойств разделительных фильтров того или иного типа и рассмотрении их влияния на характеристики акустических систем пренебрегали направленными свойствами громкоговорителей и условиями их физического размещения в корпусе акустической системы. Считали, что громкоговорители обладают плоской АЧХ, не вносят фазовых сдвигов в воспроизводимый сигнал и имеют активное входное сопротивление. Вследствие сказанного разработчики часто сталкивались с тем, что разделительные фильтры, обеспечивающие в идеализированных условиях требуемые характеристики, оказывались неприемлемыми при работе с реальными громкоговорителями, имеющими собственные амплитудно-частотные и фазочастотные искажения, комплексное входное сопротивление и обладающими направленными свойствами. Это и явилось причиной интенсификации в последние годы работ по созданию оптимизационных методов расчета разделительных фильтров-корректоров.

Выбор частот разделения
Как уже было отмечено, разделительные фильтры оказывают существенное влияние на такие характеристики многополосных акустических систем, как АЧХ, ФЧХ, ГВЗ, характеристики направленности, распределение мощности входного сигнала между излучателями, входное сопротивление акустической системы, уровень нелинейных искажений.

Начальным этапом в проектировании разделительных фильтров в многополосных акустических системах является обоснованный выбор частот разделения (частот среза) низкочастотного, средне-частотного и высокочастотного каналов. При выборе частот разделения обычно используют следующие предпосылки.

1. Обеспечение возможно более равномерных характеристик направленности, то есть отсутствия "скачков" ширины диаграммы направленности при переходе от низкочастотного к среднечастотному и от средне- к высокочастотному громкоговорителю, поскольку в той области частот, где они работают вместе, при отсутствии фильтра, диаграмма направленности резко сужается за счет расширения площади излучения.

2. Сохранение плавного изменения ширины характеристики направленности (по той же причине). Громкоговорители стараются размещать как можно ближе друг к другу и располагать их друг над другом в вертикальной плоскости (что позволяет избежать искажений характеристики направленности в горизонтальной плоскости, так как это отрицательно сказывается на воспроизведении стереопанорамы). Если выбор частоты разделения и расстояния между громкоговорителями влияет на ширину характеристики направленности, то соотношение фаз и амплитуд сигналов разделяемых частотных каналов влияет на ориентацию характеристики направленности в пространстве. Различные типы фильтров, как будет показано далее, в разной степени влияют на наклон характеристики направленности в пространстве в области частот разделения.

3. Ослабление пиков и провалов на АЧХ громкоговорителей, возникающих из-за потери поршневого характера движения диффузора. Выбор частоты среза и крутизны спада АЧХ фильтров для низкочастотных и среднечастотных громкоговорителей стараются осуществлять таким образом, чтобы первые резонансные пики и провалы ослаблялись не менее, чем на 20 дБ.

4. Ограничение амплитуды смещения подвижных систем средне- и высокочастотных громкоговорителей в низкочастотной части излучаемого ими спектра (и, соответственно, подводимой мощности) до значений, определяемых их механической и тепловой прочностью, что повышает надежность их работы и снижает уровень нелинейных искажений. Эти задачи регулируются как выбором частоты среза, так и выбором крутизны среза, которая должна составлять не менее 12 дБ/окт.

5. Обеспечение требуемого уровня звукового давления, поскольку с повышением частоты среза в области высоких частот можно увеличить уровень подаваемого напряжения, например, на высокочастотный громкоговоритель (поскольку амплитуды смещения диффузора с повышением частоты понижаются). Это позволяет увеличить, соответственно, уровень звукового давления в высокочастотной части АЧХ.

6. Снижение уровня нелинейных искажений, в частности, за счет эффекта Доплера (возникающих при модуляции высокочастотных составляющих низкочастотными компонентами сигнала).

Как правило, частоты среза в современных трехполосных акустических системах находятся в пределах: для низкочастотного громкоговорителя - 500...1000 Гц, для среднечастотного - от 500...1000 Гц до 5000...7000 Гц, для высокочастотного - 2000...5000 Гц.

Влияние на суммарные характеристики
Анализ влияния разделительных фильтров на формирование суммарных АЧХ, ФЧХ и других характеристик акустических систем удобно производить на некоторой идеализированной модели, в которой предполагается, что громкоговорители имеют активное сопротивление и идеальные характеристики (плоская АЧХ, линейная ФЧХ, постоянный сдвиг фаз между излучателями и др.). При расчете фильтров необходимо предварительно выбрать частоту среза (как уже было показано ранее), порядок и тип фильтра (Баттерфорта, Чебышева, Линквитца-Риле или др.).

По получаемым суммарным характеристикам фильтры, обычно применяемые в акустических системах, можно разделить на три группы: фильтры линейно-фазовые (in-phase), фильтры всепропускающие-(all-pass) и все остальные.

Фильтры линейно-фазовые (in-phase) обеспечивают частотно-независимую суммарную АЧХ, линейную ФЧХ (точнее, равную нулю на всех частотах), а также равную нулю ГВЗ. Примером могут служить фильтры Баттерворта первого порядка. Суммарные характеристики для двухполосной системы с такими фильтрами показаны на рис. 6. Опыт их использования в акустических системах показал, что они обладают рядом недостатков: плохой избирательной способностью, большой неравномерностью характеристик мощности сигнала, плохой характеристикой направленности в полосе раздела и др. Поэтому в настоящее время они в акустических системах категории Hi-Fi не применяются.

Фильтры всепропускающие (all-pass) обеспечивают плоскую суммарную АЧХ, частотно-зависимые ФЧХ и ГВЗ. Требования к линейности ФЧХ является избыточным для акустических систем - достаточно, чтобы их ГВЗ были ниже порогов слышимости (как показывают результаты измерений, фильтры такого типа вносят искажения ГВЗ в полосе раздела, удовлетворяющие этим требованиям). К этому типу фильтров относятся фильтры Баттерворта нечетких порядков и фильтры Линквица-Риле четных порядков. При этом свойства фильтров реализуются при разной полярности включения каналов: для 2, 6, 10 порядков требуется включение каналов в противофазе, для 4, 8, 12 - нет. Для нечетных порядков: 1, 5, 9 должны включаться синфазно, 3,7… -противофазно. Суммарные и поканальные характеристики фильтров Линквица-Риле второго порядка и Баттерворта третьего порядка для двухканальной идеализированной акустической системы показаны на рис. 7 и рис. 8. Следует отметить (будет показано далее), что фильтры нечетких порядков создают поворот главного лепестка характеристики направленности в области частоты раздела.

Существует довольно большой класс фильтров, которые применяются в акустических системах, но они не относятся к "всепропускающему" типу. Сюда включаются фильтры второго и четвертого порядка Баттерворта, второго и четвертого порядка Бесселя, группа ассиметричных фильтров четвертого порядка Лежандра, Гаусса и др. Они не дают суммарную плоскую характеристику, но этот недостаток можно частично исправить, если сделать частоты среза между громкоговорителями несовпадающими. Например, на рис. 9а показаны характеристики фильтра Баттерворта четвертого порядка с пиком АЧХ в 3 дБ на частоте раздела, равной 1000 Гц. Если несколько разнести частоты, то есть сделать частоту раздела для НЧ 885 Гц, а для ВЧ 1138 Гц, то пик на АЧХ исчезает (рис. 9б).



Как уже было сказано, выбор типов фильтров для низко-, средне- и высокочастотного громкоговорителя кроме обеспечения плоской АЧХ в полосах раздела, определяется требованием к обеспечению симметричности характеристики направленности акустической системы.

Внутри полосы пропускания каждого фильтра характеристика направленности акустической системы определяется характеристикой направленности каждого громкоговорителя, но внутри полосы раздела (полосы перекрытия фильтров) они работают совместно, то есть имеются два излучателя (например, средне и высокочастотный), которые разнесены в пространстве и работают на одной и той же частоте раздела. Пример такой системы показан на рис. 10. Пусть для простоты это будут два одинаковых излучателя, работающих в поршневом режиме с одинаковыми характеристиками направленности. На оси OA сигналы приходят в одинаковой фазе и складываются. Если оценить звуковое давление на оси OA", где фазовый сдвиг за счет разности пути от одного и другого громкоговорителя составит φ=π (то есть 180 град), то сигналы будут складываться в противофазе и на характеристике направленности появится провал. При дальнейшем сдвиге от оси в точках, где разница фаз составит 2π (то есть 360 град), опять появится пик. В целом характеристика направленности будет иметь трехлепестковый характер (рис. 10).

Ширина главного лепестка характеристики направленности на частоте раздела зависит от отношения расстояния между громкоговорителями к длине волны, а наклон лепестка зависит от соотношения амплитуд и фаз разделяемых каналов, что определяется также и типом выбранных фильтров.

Для уменьшения этого явления надо стараться уменьшить расстояние между громкоговорителями (например, за счет применения коаксиальных громкоговорителей), уменьшить ширину полосы раздела (за счет выбора фильтров более высоких порядков) и, наконец, выбрать соответствующий тип фильтра, поскольку каждый фильтр вносит свои частотно-зависимые фазовые сдвиги.

Например, при использовании фильтров третьего порядка типа Баттерворта происходит поворот главного лепестка характеристики направленности вниз (при включении громкоговорителей в одинаковой фазе), рис. 11. При включении громкоговорителей в противофазе (то есть изменении их полярности) лепесток характеристики направленности смещается в другую сторону относительно оси.

Анализ фильтров различных типов и порядков показал, что фильтры четных порядков (всепропускающего типа) не изменяют симметричности направления лепестков, фильтры нечетных порядков поворачивают лепесток вниз или вверх. Симметричные характеристики направленности обеспечивают наибольшую равномерность излучаемой акустической мощности.

Помимо влияния на характеристику направленности по АЧХ фильтры могут оказывать влияние на фазочастотные характеристики и ГВЗ в полосе раздела. То есть характер переходных процессов, несмотря на симметрию АЧХ, может отличаться при одинаковых углах смещения в верхней и нижней полуплоскости, и ГВЗ, будучи ниже порогов слышимости на оси, могут превосходить пороги слышимости в других точках пространства, тем самым ухудшая качество звучания.

Следует еще раз напомнить, что все сделанные выводы относятся только к случаю идеальных характеристик громкоговорителей. Учет реальных характеристик производится с помощью современных компьютерных программ.

Расчет пассивных акустических фильтров
Приступая к расчету пассивных акустических фильтров, необходимо уже четко определиться с конфигурацией системы (количеством полос воспроизведения, типами головок громкоговорителей и их параметрами, видом оформления - корпуса), а также выбрать порядок и тип фильтров в зависимости от основных задач, которые должны решаться при проектировании акустической системы: плоская АЧХ, линейная ФЧХ, симметричная характеристика направленности и др.

Поскольку в настоящее время в акустических системах чаще всего применяются фильтры типа "всепропускающих" (all-pass) с плоской АЧХ, то приведем приближенный расчет такого типа фильтров (более точные расчеты выполняются компьютерными методами).

Сначала разделительные фильтры рассчитываются из условия, что они нагружены на чисто активное сопротивление и питаются от генератора напряжения с малым выходным сопротивлением. Затем принимаются меры для учета влияния комплексной частотно-зависимой нагрузки громкоговорителей.

Расчет начинается с определения порядка фильтров и расчета элементов фильтра-прототипа. Фильтром-прототипом называется фильтр лестничного типа, элементы которого нормированы относительно единичной частоты среза и единичной нагрузки. Затем рассчитывается фильтр нижних частот для реальной частоты среза и реальной нагрузки, а из него путем преобразования частоты находятся элементы фильтра верхних частот и полосового фильтра.

Нормированные значения элементов фильтров-прототипов с первого по шестой порядок приведены в таблице 1.

Значения этих элементов даны только для фильтров "всепропускающего" типа, для других типов фильтров значения элементов в таблице будут другими. Схема фильтра-прототипа шестого порядка представлена на рис. 12. Фильтры меньших порядков получаются путем отбрасывания соответствующих элементов α (начиная с больших).

Значения реальных параметров фильтров для заданного порядка, сопротивления нагрузки R н (Ом) и частоты среза f i (Гц) определяются следующим образом.

1. Для фильтра нижних частот:
- каждая индуктивность-прототип α1 , α3 , α5 (рис. 12) заменяется на реальную индуктивность по формуле L=αi Rн/2πf1 ,(1) где i=1,3,5, f1 - частота среза фильтра нижних частот;
- каждая емкость-прототип α2 , α4 , α6 заменяется на реальную емкость по формуле C=αi /2πf1 Rн,(2) где i=2,4,6.

2. Для фильтра верхних частот (расчет происходит наоборот):
- каждая индуктивность-прототип α1 , α3 , α5 заменяется на реальную емкость C=1/2πf2 Rнαi ,(3) где i=1,3,5, f2 - частота среза фильтра верхних частот;
- каждая емкость-прототип заменяется на реальную индуктивность L=Rн/2πf2 αi ,(4) где i=2,4,6.

3. Для полосового фильтра:
- каждая индуктивность-прототип α1 , α3 , α5 заменяется на последовательный контур из реальных L- и C-элементов, рассчитываемых по формулам:
L=αi Rн/2π(f2 -f1 ),(5) С=1/4π2 f0 2 L,(6)
где - средняя частота полосового фильтра;
- каждая емкость-элемент α2 , α4 , α6 заменяется на параллельный контур из реальных L- и C-элементов, рассчитываемым по формулам:
С=αi /2π(f2 -f1 )Rн,(7) L=1/4π2 f0 2 C.(8)

Пример расчета разделительных фильтров для трехполосной АС

Для расчета выбираем следующие параметры: фильтры всепропускающего типа второго порядка, то есть схема фильтра-прототипа будет включать только элементы α1 , α2 , Rн (рис. 12). Частоты раздела между низкочастотным и среднечастотным каналами равны 500 Гц, между средне- и высокочастотным каналами равны 5000 Гц. Сопротивление громкоговорителей (на постоянном токе): низкочастотного и среднечастотного Re=8 Ом, высокочастотного Re=16 Ом. Значение нормированных параметров элементов определим из табл. 1: α1 =2,0, α2 =0,5.

Значения реальных элементов фильтра нижних частот находим по выражениям (1) и (2):
L1НЧ = α1 Rн/2πf1 = 2,0∙8,0/(2∙3,14∙500) = 5,1 мГн,
C1НЧ = α1 /2πf1 Rн = 0,5/(2∙3,14∙500∙8,0) = 20 мкФ.

Значения элементов полосового фильтра (для среднечастотного громкоговорителя) определяем в соответствии с выражениями (5)... (8):
L1СЧ = α1 Rн/2π(f2 -f1 ) = 2,0∙8,0/2∙3,14 (5000 - 500) = 0,566 мГн,
C1СЧ =1/4π2 f0 2 L = 1/4∙3,142 ∙5000∙500∙5,66∙10-4 = 18 мкФ,
С2СЧ = α2 /2π(f2 -f1 ) Rн = 0,5/2∙3,14 (5000-500) ∙8,0 = 2,2 мкФ,
L2СЧ =1/4π2 f0 2 C2СЧ = 1/4∙3,142 ∙5000∙500∙2,2∙I0-6 = 4,6 мГн.

Значения элементов фильтра верхних частот определяем в соответствии с выражениями (3,4):
С1ВЧ = 1/2πf2 Rн α1 = 1/(2∙3,14∙5000∙2,0∙16) = 1,00 мкФ,
L2BЧ = Rн/2πf2 α2 = 16/(2∙3,14∙5000∙2,0) = 0,25 мГн.

Расчеты, выполненные по этим формулам, корректны, только если фильтры нагружены на активное (омическое) сопротивление. Чтобы согласовать параметры фильтров с реальным комплексным сопротивлением громкоговорителей, надо включить дополнительно параллельно каждому громкоговорителю согласующую цепь. Параметры такой цепи находятся из условия, чтобы комплексное сопротивление этой цепи Zсогл и комплексное сопротивление громкоговорителя Zгг компенсировали друг друга при параллельном включении и обеспечивали бы в сумме активное сопротивление, то есть 1/ Zсогл+1/ Zгг=1/Re.

Для расчета элементов такой цепи строится эквивалентная электрическая схема громкоговорителя (см. предыдущую статью в декабрьском номере МО за 2008 год), и по отношению к ней создается дуальная компенсирующая цепь. Схема эквивалентной цепи громкоговорителя и соответствующей компенсирующей цепи показаны на рис. 13. Для компенсации входного сопротивления низкочастотного громкоговорителя можно использовать упрощенную цепь (поскольку резонанс громкоговорителя находится значительно ниже частоты среза фильтра и не оказывает влияния на его параметры), состоящую из двух элементов Rk1 =Re и Ck1 =Lvc/Re2 , где Re и Lvc - сопротивление и индуктивность звуковой катушки громкоговорителя.

Для средне- и высокочастотного громкоговорителя полная компенсирующая цепь включается, только если частота среза и резонансы громкоговорителей находятся близко друг от друга - в противном случае достаточно применять упрощенную цепь (расчет параметров полной цепи приведен в книге Алдошина И. А., Войшвилло А. Г. "Высококачественные акустические системы"). Кроме того, в схему иногда включаются дополнительно режекторные фильтры, чтобы убрать отдельные пики на амплитудно-частотной характеристике.

Пример схемы фильтров для трехполосной акустической системы с учетом согласующих цепей режекторного звена для среднечастотного громкоговорителя и дополнительного Г-образного аттенюатора, состоящего из двух резисторов для выравнивания уровней по звуковому давлению между НЧ-, СЧ- и ВЧ-громкоговорителями, показан на рис. 14.

В настоящее время для расчета фильтрующе-корректирующих цепей используются компьютерные методы оптимального синтеза линейных электронных схем. Для этого задаются структура фильтра и начальные значения элементов, затем производится расчет суммарных выходных значений АЧХ, ФЧХ и ГВЗ с учетом реальных измеренных параметров громкоговорителей, размещенных в корпусе, и путем целенаправленного изменения элементов схемы минимизируется разница между реальными и заданными параметрами. Применение методов оптимального проектирования позволяет обеспечить наилучшее широкополосное согласование параметров фильтров и громкоговорителей и получить оптимально достижимое значение параметров акустической системы.

Сейчас активно проводятся исследования по применению цифровых фильтров-процессоров в акустических системах, что позволяет перестраивать параметры системы в реальном времени в зависимости от вида звукового сигнала, а также обеспечивать оптимальное согласование характеристик акустической системы с параметрами помещения, но эта техника находится еще в начале своего развития и пока не нашла широкого применения в промышленных разработках.

Тема сведения акустических систем довольно популярна среди радиолюбителей. Этому способствует не только желание созидать, благо динамиков нынче на любой бюджет, но также и неудовлетворительное качестве серийной акустики. Изготовление фильтров требует как правило большого опыта, отчасти эмпирического, так как строгий математический расчет в лице симуляций никак не отражает звучание, и тем более не может дать ответ как сводить. Примерная прикидка не всегда дает ожидаемые результаты.

Виной тому отсутствие внятной теории именно сведения, а не электрических фильтров, с ними все ясно, чего нельзя сказать про сведение, где все базируется на нюансах которые в литературе как правильно не описаны. Цель данной статьи поведать некоторые особенности проектирования фильтров на реальном примере. В этой статье, к величайшему сожалению, не будет полноценного расчета или инструкции как брать и делать, ибо каждый случай уникален и требует персонального рассмотрения, и в лучшем случае можно указать на что обратить внимание и задать вектор размышлений в целом.

Важные характеристики АС

Для начала разберёмся чем характеризуется акустическая система. Тут три характеристики: амплитудная, фазовая и импедансная .

  • АЧХ считается наиболее важной, так как больше определяет звучание, впрочем не в ней счастье, ровная АЧХ еще не гарантия хорошего звука.
  • ФЧХ сама о себе не слышна, может быть слышен резкий перегиб фазы в точке раздела.
  • ИЧХ вовсе на звучание не влияет, зато влияет на усилитель, но не на каждый, а лишь на тот у которого высокое внутреннее сопротивление, в частности ламповые.

Из-за кривого импеданса многие колонки могут не спеться с лампой, вся неровность импеданса вылезет в АЧХ. В каком-то случае это может пойти на пользу, но надеяться на это не стоит, хотя бы потому, что такая акустика будет крайне чувствительна к усилителю, станут слышны лампы, их режимы, а сравнение с каменным усилителем становится вообще не корректным.

Потому, если задаться цель построить акустику мало чувствительную к усилителю, необходимо обеспечить постоянство импеданса во всем диапазоне частот, а это накладывает определенные ограничения. В частности это обязывает применять фильтра настроеные на равную частоту среза и имеющие равную добротность.

Это правило позволяет для настройки фильтра контролировать только линейность импеданса, что исключает необходимость измерения АЧХ фильтров и в случаи отсутствия хорошего микрофона в измерении ачх динамиков, то есть можно обойтись минимальным набором приборов: генератором (возможно программным) и вольтметром.

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано - произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину. На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже.

Частота раздела

Тут самое время задуматься о частоте раздела. Обычно частота раздела выбирается на ровных горизонтальных участках, вдали от резонансов и завалов, стараясь обойти внезапные неравномерности как потенциальные источники искажений... А если вспомнить что существует фаза, о которой мало известно, а если известно, то векторно ачх на бумажке не сложишь, а из-за кривизны фаз даже на идеально ровной ачх что-то вылезет, что-то провалится в большей или меньшей степени. Также надо помнить что может дать сам динамик, особенно ВЧ, скажем не надо заставлять дюймовый купольник играть от двух, а тем более одного килогерца, даже если он способен их отыграть по АЧХ.

Не забывайте, что большой ход порождает интермодуляционные искажения, поэтому каждому размеру динамика соответствует свой диапазон частот. В свете вышесказанного понятие частоты раздела размазывается на область, куда стоить сводить, а конечную точку подбирать иначе, например на слух. Или вовсе не подбирать, но про это чуть позже.

Итак, смотрим какие уникальные динамики нам достались. Высокочастотник начинает валить с 1,3 кгц, значит ниже его пускать нельзя. С другой стороны низкочастотник пытается играть по самые 10 кгц, с переменным успехом. Однако здравый смысл подсказывает, что выше килогерца его пускать плохая затея. И что спрашивается делать, если рабочие диапазоны динамиков не пересекаются?

Тут есть два варианта: если спады имеют адекватную крутизну, то лучше всего сводить в ямку, особенно если ямка получается широкой. В случае же нашем, когда спады круты как обрывы, надо держатся подальше от самого крутого из них. Чаще всего это может случится с высокочастотником, им всегда тяжко работать у нижней границы диапазона, поэтому им целесообразнее облегчить жизнь возлагая воспроизведение нижней части диапазона на НЧ динамик, который отыграет хоть плохо, но не нагадит. Поэтому ограничиваем диапазон участком от 1,5 кгц до 2,2 кгц.

Порядок фильтра и его добротность

Следующий параметр, с которым надо определиться - это порядок фильтра и его добротность. В данной статье будут рассматриваться два порядка, первый и второй.

  • С первым все просто: есть катушка, есть конденсатор, считаем их параметры под требуемую частоту среза и при надобности корректируем значения до получения желаемой АЧХ, ФЧХ, ИЧХ.
  • Со вторым порядком по-хитрее, там уже две катушки и два конденсатора. От значений номиналов зависит такой параметр как добротность, он определяет крутизну спада АЧХ и в некоторой степени сдвиг фазы. Поскольку влияние фазового сдвига и крутизны умозрительно не прикинешь, остается просто выбрать в какую сторону думать. А думать тут в сторону низкой добротности, читай больше индуктивности в катушках, меньше емкости в конденсаторах.

Как выбрать порядок. Тут руководствуются уже знакомыми соображениями о том, на что способны излучатели, в особенности высокочастотник. Если большой ход ему противопоказан (как в нашем случае) то предпочтение отдаем второму порядку.

Для полноты картины следует упомянуть, что порядок также определяет степень совместной работы динамиков, но это уже информация для самостоятельного размышления.

Импедансная характеристика динамиков

Когда с примерными параметрами все более или менее ясно, самое время переходить к практике. Снимаем импедансную характеристику динамиков. С целью оценки сопротивления на графике имеется лесенка с шагом в один Ом. Скачек на 110 герцах это переключение с 10 Ом на 20.

Разумеется с такими горбами ни один фильтр нормально, и уж тем более расчетно работать не будет, особенно фильтр НЧ. Фильтру ВЧ этот подъем работать в общем то не мешает, однако как упоминалось ранее такой подъем на конце диапазона приведет к подъему высоких частот, в случае если усилитель имеет высокое сопротивление. Это можно использовать и во благо, оставив подъем небольшим.

Для выравнивания этих подъемов применяют так называемую цепочку Цобеля. Она состоит из последовательно включенных резистора и конденсатора. Проще всего ее подобрать методом научного тыка: берется реостат, горсть конденсаторов, и все это двигается пока не получится ровная линия.

Для примерного представления что от чего зависит привожу набор графиков для различных емкостей и сопротивлений. Ступенька начинается с 10 Ом.

Зная минимальное сопротивление НЧ звена, нужно привести к такому же и ВЧ звено. Тут много вариантов как соединить два резистора и цепочку Цобеля, и каждый кто решился на такой отважный шаг как сведение сам способен определить вид подключения и номиналы резисторов, поэтому описывать данную процедуру здесь излишне. Конкретно в данных колонках по результатам предварительного прослушивания решено было оставить родные резисторы на 2,2 ома и цепочку Цобеля параллельно ВЧ динамику.

Сведение фильтров

Теперь начинается финальный этап - сведение фильтров. Пора намотать катушки... или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг - на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома - это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Сборка фильтров

В завершение пару слов про сборку. В фильтре применяются сравнительно большие емкости, 20 мкф, 27 мкф, а места в корпусе и так не много, бумаги или пленки не набрать. Приходится ставить электролиты. И если в фильтре НЧ звучание от их применения пострадает не сильно, а в цобеле их можно и вовсе не услышать, то в фильтре ВЧ звучанием конденсаторов пренебрегать опасно. Именно по этой причини были применены бумажный МБГЧ и пленочный К73-16, а все электролиты зашунтированы бумажными МБГО на 4 мкФ.

Не стоит увлекаться параллеленьем сильно разных конденсаторов. Основной критерий здесь тангенс угла потерь. Если к примеру поставить в шунт к бумажному конденсатору аудиофильский полипропилен, то скорее всего вылезут верха и будут они кислотные. Вероятно тут можно составить аналогию с внутренним сопротивлением, сравнив с ним тангенс угла потерь: чем он меньше, тем больше через конденсатор пройдет сигнала, а поскольку емкость у такого высококачественного конденсатора меньше, то через него пройдет только высокочастотная часть сигнала, отсюда и имеем повышенные уровень верхов. Но это только аналогия, для лучшего понимания влияния шунтов на звук.

Про то как надо разносить катушки и какой толщины применять провода статей написано предостаточно, повторяться здесь не буду. Проще показать картинку (тут неправильно припаян цобель высокочастотника, он должен стоять после резистора).

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже - триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта - SecreTUseR.

Обсудить статью ФИЛЬТР ДЛЯ АКУСТИКИ

С целью снижения интермодуляционных искажений при звуковоспроизведении громкоговорители Hi-Fi систем составляют из низкочастотных, среднечастотных и высокочастотных динамических головок. Их подключают к выходам усилителей через разделительные фильтры, представляющие собой комбинации LC фильтров нижних и верхних частот.

Ниже приведена методика расчета трехполосного разделительного фильтра по наиболее распространенной схеме.

Частотная характеристика разделительного фильтра трехполосного громкоговорителя в общем виде показана на рис. 1. Здесь: N - относительный уровень напряжения на звуковых катушках головок: fн и fв - нижняя и верхняя граничные частоты воспроизводимой громкоговорителем полосы; fр1 и fр2 - частоты раздела.

В идеальном случае выходная мощность на частотах раздела должна распределяться поровну между двумя головками. Это условие выполняется, если на частоте раздела относительный уровень напряжения, поступающего на соответствующую головку, снижается на 3 дБ по сравнению с уровнем в средней части ее рабочей полосы частот.

Частоты раздела следует выбирать вне области наибольшей чувствительности уха (1... 3 кГц). При невыполнении этого условия, из-за разности фаз колебаний, излучаемых двумя головками на частоте раздела одновременно, может быть заметно "раздвоение" звука. Первая частота раздела обычно лежит в интервале частот 400... 800 Гц, а вторая - 4... 6 кГц. При этом низкочастотная головка будет воспроизводить частоты в диапазоне fн...fp1. среднечастотная - в диапазоне fp1... fр2 и высокочастотная - в диапазоне fр2...fв.

Один из распространенных вариантов электрической принципиальной схемы трехполосного громкоговорителя приведен на рис. 2. Здесь: B1 - низкочастотная динамическая головка, подключенная к выходу усилителя через фильтр нижних частот L1C1; В2 - среднечастотная головка, соединенная с выходом усилителя через полосовой фильтр, образованный фильтрами верхних частот C2L3 и нижних частот L2C3. На высокочастотную головку В3 сигнал подается через фильтры верхних частот C2L3 и C4L4.

Расчет емкостей конденсаторов и индуктивностей катушек производят исходя из номинального сопротивления головок громкоговорителя. Поскольку номинальные сопротивления головок и номинальные емкости конденсаторов образуют ряды дискретных значений, а частоты раздела могут варьироваться в широких пределах, то расчет удобно производить в такой последовательности. Задавшись номинальным сопротивлением головок, подбирают емкости конденсаторов из ряда номинальных емкостей (или суммарную емкость нескольких конденсаторов из этого ряда) такими, чтобы получившаяся частота раздела попадала в указанные выше частотные интервалы.

В разделительных фильтрах обычно используют металлобумажные конденсаторы типов МБГО, МБГП и МБМ с допускаемым отклонением от номинальной емкости не более ± 10%. Наиболее подходящие для использования в фильтрах типономиналы конденсаторов приведены в табл 1.

Тип конденсатора

Емкость, мкф

МБМ
МБГО, МВГП
МБГП
МБГО

0,6
1; 2; 4; 10
15; 26
20; 30

Емкости конденсаторов фильтров С1...С4 для различных сопротивлений головок и соответствующие значения частот раздела приведены в табл 2.

Легко видеть, что все значения емкостей могут быть либо непосредственно взяты из номинального ряда емкостей. либо получены параллельным соединением не более чем двух конденсаторов (см. табл. 1).

После того как емкости конденсаторов выбраны, определяют индуктивности катушек в миллигенри по формулам:

В обеих формулах: Zг-в омах; fp1, fр2 - в герцах.

Поскольку полное сопротивление головки является частотнозависимой величиной, для расчета обычно принимают указанное в паспорте головки номинальное сопротивление Zг, оно соответствует минимальному значению полного сопротивления головки в диапазоне частот выше частоты основного резонанса до верхней граничной частоты рабочей полосы. При этом надо иметь в виду, что фактическое номинальное сопротивление различных образцов головок одного и того же типа может отличаться от паспортного значения на ±20%.

В некоторых случаях радиолюбителям приходится использовать в качестве высокочастотных головок имеющиеся динамические головки с номинальным сопротивлением, отличающимся от номинальных сопротивлений низкочастотной и высокочастотной головок. При этом согласование сопротивлений осуществляют, подключая высокочастотную головку В3 и конденсатор С4 к различным выводам катушки L4 (рис. 2), т. е. эта катушка фильтра играет одновременно роль согласующего автотрансформатора. Катушки можно намотать на круглых деревянных, пластмассовых или картонных каркасах с щечками из гетинакса. Нижнюю щечку следует сделать квадратной; так ее удобно крепить к основанию - гетинаксовой плате, на которой крепят конденсаторы и катушки. Плату крепят шурупами ко дну ящика громкоговорителя. Во избежание дополнительных нелинейных искажений катушки должны выполняться без сердечников из магнитных материалов.

Пример расчета фильтра

В качестве низкочастотной головки громкоговорителя используется динамическая головка 6ГД-2, номинальное сопротивление которой Zг=8 Ом. в качестве среднечастотной - 4ГД-4 с таким же значением Zг и в качестве высокочастотной - ЗГД-15, для которой Zг=6,5 Ом. Согласно табл. 2 при Zг=8 Ом и емкости С1=С2=20 мкф fp1=700 Гц, а при емкости С3=С4=3 мкф fр2=4,8 кГц. В фильтре можно применить конденсаторы МБГО со стандартными емкостями (С3 и С4 составляют из двух конденсаторов).

По приведенным выше формулам находим: L1=L3=2,56 мГ; L2=L4=0,375 мГ (для автотрансформатора L4 - это значение индуктивности между выводами 1-3).

Коэффициент трансформации автотрансформатора

На рис. 3 показана зависимость уровня напряжения на звуковых катушках головок от частоты для трехполосной системы, соответствующей примеру расчета. Амплитудно-частотные характеристики низкочастотной, среднечастотной и высокочастотной областей фильтра обозначены соответственно НЧ, СЧ и ВЧ. На частотах раздела затухание фильтра равно 3,5 дБ (при рекомендуемом затухании 3 дБ).


Отклонение объясняется отличием полных сопротивлений головок и емкостей конденсаторов от заданных (номинальных) значений и индуктивностей катушек от полученных расчетом. Крутизна спада кривых НЧ и СЧ составляет 9 дБ на октаву и кривой ВЧ - 11 дБ на октаву. Кривая ВЧ соответствует несогласованному включению громкоговорителя 1 ГД-3 (в точки 1-3). Как видно, в этом случае фильтр вносит дополнительные частотные искажения.

Примечание редакция . В приводимой методике расчета принято, что среднее звуковое давление при одной и той же подводимой электрической мощности для всех головок имеет примерно одинаковое значение. Вели же звуковое давление, создаваемое какой-либо головкой, заметно больше, то для выравнивания частотной характеристики громкоговорителя по звуковому давлению эту головку рекомендуется подключать к фильтру через делитель напряжения, входное сопротивление которого должно быть равно принятому при расчете номинальному сопротивлению головок.

(РАДИО N 9, 1977 г., с.37-38)

Прежде подробного рассмотрения проблемы обрисуем круг задач, зная конечную цель, будет проще избрать нужное направление. Изготовление акустических систем своими руками нечастый случай. Практикуется профи, начинающими музыкантами, когда магазинные варианты не устраивают. Появляется задача встраивания в мебель или качественного прослушивания уже имеющейся медиа. Это типичные примеры, которые решаются набором общепринятых способов. Рассмотрением мы и займемся. Не рекомендуем листать по диагонали устройство акустической системы, вникайте!

Устройство акустических систем

Нет шансов сделать акустическую систему самостоятельно без понимания теории. Любителям музыки следует знать, что биологический вид Homo Sapiens слышит внутренним ухом звуковые колебания частот 16-20000 Гц. Когда дело касается классических шедевров, то разброс высок. Нижний край – 40 Гц, верхний – 20 000 Гц (20 кГц). Физический смысл этого факта заключается в том, что не все динамики способны воспроизвести сразу полный спектр. Относительно медленные частоты лучше удаются массивным сабвуферам, а пищание на нижней границе воспроизводят менее габаритные громкоговорители. Понятно, что для большинства людей это ничего не значит. И даже если часть сигнала пропадет, не будет воспроизведена, никто этого и не заметит.

Полагаем, что те, кто поставил целью самостоятельное изготовление акустической системы, должны критично оценивать звук. Полезно будет знать, что годная колонка имеет два и более динамиков, чтобы иметь возможность отразить звучание обширной полосы из слышимого спектра. А вот сабвуфер даже в сложных системах один. Это связано с тем, что низкие частоты заставляют вибрировать окружение, проникая даже сквозь стены. Становится непонятным, откуда именно несутся басы. Следовательно, и колонка НЧ одна – сабвуфер. А вот что касается прочего, то человек уверенно скажет, с какого направления пришел тот или иной спецэффект (луч ультразвука блокируется ладонью).

В связи со сказанным проведем делением акустических систем:

  1. Звук в формате Моно непопулярен, поэтому избегаем касаться исторических экскурсов.
  2. Звучание Стерео обеспечивается двумя каналами. Оба содержат низкие и высокие частоты. Лучше подойдут равноценные колонки, снабженные парой динамиков (басы и писк).
  3. Звук Вокруг отличается наличием большего числа каналов, создающих эффект объемного звучания. Избегаем увлекаться тонкостями, традиционно 5 колонок плюс сабвуфер доносят гамму меломанам. Конструкция многообразна. Поныне ведутся исследования, ставящими целью улучшить качество передачи акустики. Расстановка традиционная такова: по четырем углам комнаты (грубо говоря) по колонке, сабвуфер стоит на полу слева или в центре, под телевизором помещается фронтальная колонка. Последняя в любом случае снабжается двумя динамиками и более.

Важно создать правильный корпус для каждой колонки. Низкие частоты потребуют наличия деревянного резонатора, для верхней границы диапазона — не важно. В первом случае бока ящика служат дополнительными излучателями. Найдете видео, демонстрирующее габаритные размеры, соответствующие длинам волн низких частот по науке, практически остается копировать готовые конструкции, дельной литературы тематика лишена.

Круг задач очерчен, читатели понимают — самодельная акустическая система строится следующими элементами:

  • набор динамиков частот сообразно числу каналов;
  • фанера, шпон, доски корпуса;
  • декоративные элементы, краска, лак, морилка.

Проектирование акустики

Изначально выбираем количество колонок, тип, местоположение. Очевидно, изготавливать в большем числе, нежели имеет каналов домашний кинотеатр, неразумный тактический ход. Кассетному магнитофону хватит двух колонок. К домашнему кинотеатру выйдет уже не менее шести корпусов (динамиков будет больше). Согласно потребностям аксессуары встраиваются в мебель, качество воспроизведения низких частот хромает. Теперь вопрос выбора динамиков: в издании авторства Найденко, Карпова приведена номенклатура:

  1. Низкие частоты – головка CA21RE (H397) посадкой на 8 дюймов.
  2. Средний диапазон – головка MP14RCY/P (H522) на 5 дюймов.
  3. Верхние частоты – головка 27TDC (H1149) на 27 мм.

Приводили базовые принципы конструирования акустических систем, предлагали электрическую схему фильтра, рассекающего поток на две части (выше дан перечень трех поддиапазонов), приводили название покупных динамиков, решающих задачу создания двух колонок стерео. Избегаем повторяться, читатели могут взять труд полистать раздел, найти конкретные названия.

Следующим вопросом будет фильтр. Полагаем, фирма National Semiconductor не обидится, если отскриним чертеж усилителя перевода Ридико. Рисунок показывает активный фильтр с питанием +15, -15 вольт, 5 однотипных микросхем (операционных усилителей), граничная частота поддиапазонов вычисляется формулой, приведенной на изображении (дублируем текстом):

П – число Пи, известное школьникам (3,14); R, C – номиналы резистора, емкости. На рисунке R = 24 кОм, С — замалчивается.

Активный фильтр, питаемый электрическим током

Учитывая возможности выбранных динамиков, читатель сможет подобрать параметр. Берутся характеристики полосы воспроизведения колонки, находится стык перекрытия между ними, туда выносится граничная частота. Благодаря формуле, вычисляем величину емкости. Номинал сопротивления избегайте трогать, причина: может (спорный факт) задавать рабочую точку усилителя, коэффициент передачи. На частотной характеристике, приведенной в переводе, которую опускаем, граница составляет 1 кГц. Давайте посчитаем емкость указанного случая:

С = 1 / 2П Rf = 1 / 2 х 3,14 х 24000 х 1000 = 6,6 пФ.

Не ахти какая большая емкость, выбирается из условия максимально допустимого напряжения. В схеме с источниками +15 и -15 В вряд ли стоит номинал, превышающий суммарный уровень (30 вольт), возьмите пробивное напряжение (справочник поможет) не менее 50 вольт. Не пытайтесь поставить электролитические конденсаторы постоянного тока, схема обретает шансы взлететь на воздух. Отсутствует смысл разыскивать исходную схему чипа LM833 по причине Сизифова труда. Некоторые читатели найдут замену микросхеме, отличающуюся… надеемся на понимание.

Насчет сравнительно небольшой емкости конденсаторов (рознично и суммарной) описание фильтра говорит: благодаря низкому импедансу головок без активных компонентов номиналы пришлось бы увеличить. Закономерно вызывая появление искажений, обусловленных наличием электролитических конденсаторов, катушек с ферромагнитным сердечником. Не стесняйтесь двигать границу деления диапазонов, общая пропускная способность остается прежней.

Пассивные фильтры соберет своими руками каждый обученный пайке, курс школьной физики. В крайнем случае заручитесь помощью Гоноровского, лучше некуда расписаны тонкости прохождения сигналов через радиоэлектронные линии, обладающие нелинейными свойствами. Приведенный материал заинтересовал авторов фильтрами низкой и высокой частоты. Желающие поделить сигнал на три части должны зачитываться трудами, раскрывающими базис полосовых фильтров. Максимально допустимое (или пробивное) напряжение выйдет мизерным, номинал станет значительным. Под стать упомянутым электролитическим конденсаторам емкости номиналом десятки микрофарад (три порядка выше используемых активным фильтром).

Новичков тревожит вопрос получения напряжения +15, -15 В питания акустических систем. Намотайте трансформатор (пример приводился, программа ПК Trans50Hz), снабдите двухполупериодным выпрямителем (диодный мост), профильтруйте, наслаждайтесь. Наконец, активный или пассивный фильтр прикупите. Называется указанная вещица кроссовером, внимательно подбирайте динамики, диапазоны точнее соотносите с параметрами фильтра.

Для пассивных кроссоверов акустических систем найдете в интернете множество калькуляторов (http://ccs.exl.info/calc_cr.html). Исходными цифрами программа расчета принимает входные сопротивления динамиков, частоту деления. Введите данные, программа-робот быстро снабдит величинами емкостей и индуктивностей. На приведенной страничке задавайте тип фильтра (Бесселя, Баттерворта, Линквица-Райли). На наш взгляд задачка для профи. Приведенный выше активный каскад образован фильтрами Баттерворта 2-го порядка (скорость снижения АЧХ 12 дБ на октаву). Касается частотной (АЧХ) характеристики системы, понятно только профессионалам. Если сомневаетесь, выбирайте золотую серединку. В прямом смысле ставьте галку на третьем кружке (Бессель).

Акустика компьютерных колонок

Довелось посмотреть на Ютуб видео: юноша объявил, что сделает акустическую систему своими руками. Отрок талантлив: раскурочил колонки персонального компьютера - ну, совсем никакие - извлек на свет Божий усилитель с регулятором, поместил в спичечный коробок (корпус акустической системы). Компьютерные динамики известны плохим воспроизведением низких частот. Сами устройства маленькие, легкие, во-вторых, буржуи материалами экономят. Откуда в акустической системе взяться басам. Юноша взял… читайте дальше!

Наидорожайший компонент музыкального центра. Акустика класса hi-end стоимостью обходит дешевую квартиру. Ремонт, сборка колонок неплохой бизнес.

Усилитель низкой частоты акустической системы соберет продвинутый радиолюбитель, никаких кулибиных не нужно. Из спичечного коробка торчит ручка регулятора громкости, вход с одной стороны, выход - с другой. Динамики старой акустической системы малы. Юноша раздобыл старенький громкоговоритель не сказочных размеров, но солидный. С колонки советских времен акустической системы.

Чтобы звук не тревожил воздух пищанием, умный отрок сколотил дюймовые доски ящиком. Динамик старенькой акустической системы поместил в размеров почтовой коробки, сместил, как это делается производителями современных сабвуферах домашних кинотеатров. Изнутри колонку звукоизолятором отделывать поленился. Желающий может использовать для акустической системы ватин, другой схожий материал. Маленькие динамики помещены вовнутрь продолговатых коробок, только-только вмещающих торцом громкоговоритель. Гордый отрок подключил один канал акустической системы на два маленьких динамика, второй - на один большой. Работает.

Юноша сказочный молодец, не пьет в подворотне, уподобляясь сверстникам, не портит в свободное время будущих невест, занят делом. Как говорил один знакомый: «Молодому поколению прощается недостаток знания и опыта, не избыток наглости, упроченного равнодушием».

Улучшения

Решили усовершенствовать методику, откровенно надеемся, дополнение поможет сделать акустическую систему самостоятельно несколько качественнее. Проблема? Понятие выдумано радиотехниками, создателями акустических систем — частота. Вибрация Вселенной имеет частоту. Говорят, даже ауре человека присуще. Каждая добротная колонка недаром вмещает несколько динамиков. Большие предназначены для низких частот, басов; прочие — для средних и высоких. Не только размер, а и устройство у них разное. Мы уже обсуждали этот вопрос и интересующихся отсылаем к написанным обзорам, где приводится классификация акустических систем, раскрываются принципы действия наиболее популярных.

Компьютерщикам известен системный зуммер, работающий по прерыванию BIOS, который способен вроде бы выдавать один звук, но талантливые программисты выписывали на нем вычурные мелодии, даже с попыткой цифрового синтеза и воспроизведения голоса. Однако при желании бас такая пищалка выдать не может.

К чему этот разговор… Большой динамик следовало бы не просто приспособить на один из каналов, а присудить специализацию басов. Как известно, большинство современных композиций (Звук Вокруг не берем) рассчитаны на два канала (стереовоспроизведение). Получается, что два одинаковых динамика (маленьких) играют одни и те же ноты, смысл в этом маленький. В то же время с этого же канала бас теряется, а высокие частоты гибнут на большом динамике. Как быть? Предлагаем внедрить в схему пассивные полосовые фильтры, которые помогут разбить поток на две части. Схему берем иностранного издания по той простой причине, что она первой попалась на глаза. Вот ссылка на исходный сайт chegdomyn.narod.ru. Радиолюбитель переснял из книги, приносим извинения автору, что не указываем первоисточник. Это происходит по той простой причине, что он нам не известен.

Итак, картинка. Бросаются сразу в глаза слова Woofer и Tweeter. Как не сложно догадаться, это, соответственно, сабвуфер для низких частот, и динамик для высоких. Охватывается диапазон музыкальных произведений 50-20000 Гц, причем на сабвуфер приходится полоса нижних частот. Радиолюбители могут сами по известным формулам просчитать полосы пропускания, для сравнения ля первой октавы, как известно, составляет 440 Гц. Считаем, что для нашего случая такое деление подойдет. Вот только хотелось бы найти два больших динамика, по одному на каждый канал. Смотрим схему…

Не совсем музыкальная схема. В положении, занимаемом системой, идет фильтрация голоса. Диапазон 300-3000 Гц. Переключатель подписан Narrow, переводится, как полоса. Чтобы получить Wide (широкое) воспроизведение, опускаем клеммы. Поклонники музыки могут выкинуть полосовой фильтр Narrow, любителям бороздить скайп рекомендуем избегать поспешного решения. Схеме напрочь исключит петлевой эффект микрофона, известный повсеместно: пронзительное гудение вследствие переусиления (положительной обратной связи). Ценный эффект, даже военный знает сложности использования громкой связи. Владелец ноутбука осведомлен…

Для устранения эффекта обратной связи изучите вопрос, найдите, на какой частоте резонирует система, отрежьте лишнее фильтром. Очень удобно. Касательно популярной музыки микрофон отключаем, уносим подальше от динамиков (случай караоке), начинаем петь. Фильтры верхних и нижних частот оставим неизменными, изделия просчитаны неизвестными западными друзьями. Испытывающим затруднения, читая иностранные чертежи, поясняем, схема изображает (полосовой фильтр Narrow отброшен):

  1. Емкость 4 мкФ.
  2. Неиндуктивные сопротивления R1, R2 номиналом 2,4 Ом, 20 Ом.
  3. Индуктивность (катушка) 0,27 мГн.
  4. Сопротивление R3 8 Ом.
  5. Конденсатор С4 17 мкФ.

Динамики должны соответствовать. Советы указанного сайта. Сабвуфером пойдет МСМ 1853, пищалкой (слово не списали) послужит РЕ 270-175. Полосы пропускания посчитаете самостоятельно. Большая буква Ω означает кОмы — ничего страшного нет, поменяйте номинал. Напоминаем, емкости параллельно соединенных конденсаторов складываются, как последовательно включенные резисторы. На случай, если сложно достать подходящие номиналы. Вряд ли получится изготовить динамики своими руками, набрать небольшие номиналы сопротивлений реально. Не используйте катушки, вырезаем пластины нихрома, подобных сплавов. После изготовления резистор лакируется, большого тока не планируется, защищать элемент не следует.

Индуктивности проще намотать самостоятельно. Логично использовать онлайн-калькулятор, задав емкость, получим параметры: количество витков, диаметр, материал сердечника, толщину жилы. Приведем пример, избегая быть голословными. Посещаем Яндекс, набираем нечто вроде «онлайн калькулятор индуктивности». Получаем ряд ответов выдачи. Выбираем понравившийся сайт, начинаем думать, как намотать индуктивность акустической системы номиналом 0,27 мГн. Нам понравился сайт coil32.narod.ru, начнем работу.

Исходные сведения: индуктивность 0,27 мГн, диаметр каркаса 15 мм, проволока ПЭЛ 0,2, длиною намотки 40 миллиметров.

Сразу возникает вопрос, видя калькулятор, где взять номинальный диаметр изолированной проволоки… Потрудились, нашли на сайте servomotors.ru таблицу, взятую из справочника, которую приводим в обзоре, считайте на здоровье. Диаметр меди составляет 0,2 мм, изолированной жилы – 0,225 мм. Скармливаем смело величины калькулятору, вычисляя нужные величины.

Получилась двухслойная катушка, числом витков 226. Длина провода составила 10,88 метра сопротивлением порядка 6-ти Ом. Главные параметры найдены, начинаем мотать. Самодельная акустическая система выполняется в ручной работы корпусе, примостить фильтр место найдется. К одному выходу подключаем пищалку, к другому – сабвуфер. Пару слов касательно усиления. Может статься, каскад усилителя не потянет четыре динамика. Каждая схема охарактеризована некой нагрузочной способностью, выше нельзя подпрыгнуть. Устройство акустической системы рассчитано, учитывая фиксированный запас, чтобы согласовать нагрузку, часто применяется эмиттерный повторитель. Каскад, заставляющий схему работать, полная отдача на любой динамик.

Напутствие начинающим конструкторам

Считаем, помогли читателям понять, как правильно конструировать акустическую систему. Пассивные элементы (конденсаторы, резисторы, катушки индуктивности) сможет достать, изготовить каждый. Осталось собрать корпус акустической системы своими руками. А за этим, верим, дело не станет. Важно понять, музыка сформирована гаммой частот, обрезаемых неправильным изготовлением устройства. Собравшись сделать акустическую систему, подумайте над этим, поищите компоненты. Важно передать великолепие мелодии, будет твердая уверенность: труд не пропал даром. Акустическая система прослужит долго, радость подарит.

Верим, изготовление акустических систем своими руками читателям будет в удовольствие. Грядущее время уникально. Поверьте, в начале XX века нельзя было черпать информацию тоннами ежедневно. Обучение выливалось тяжким кропотливым трудом. Приходилось обшаривать пыльные полки библиотек. Возрадуйтесь интернету. Страдивари пропитывал древесину скрипок уникальным составом. Скрипачи современности продолжают выбирать итальянские экземпляры. Вдумайтесь, прошло 30 лет, воз остался позади.

Нынешнему поколению известны марки клеев, наименования материалов. Необходимое продается магазинами. СССР лишил изобилия людей, снабдив относительной стабильностью. Сегодня преимущество описывается возможностью изобретения уникальных способов заработка. Профессионал-самоучка везде срубит капусты.

Похожие публикации