Chevroletavtoliga - Автомобильный портал

Двоичная система счета. Что такое двоичная система счисления? Как перевести десятичное число в двоичное? Почему двоичная система счисления так распространена


Конечно, это касается не только процессоров, но и других составляющих компьютера, например, или . И когда мы говорим, например, о разрядности шины данных, мы имеем ввиду количество выводов на шине данных, по которым передаются данные, то есть о количестве двоичных цифр в числе, которое может быть передано по шине данных за один раз. Но о разрядности чуть позже.

Итак, процессор (и компьютер в целом) использует двоичную систему, которая оперирует всего двумя цифрами: 0 и 1. И поэтому основание двоичной системы равно 2. Аналогично, основание десятичной системы равно 10, так как там используются 10 цифр.

Каждая цифра в двоичном числе называется бит (или разряд ). Четыре бита – это полубайт (или тетрада ), 8 бит – байт , 16 бит – слово , 32 бита – двойное слово . Запомните эти термины, потому что в программировании они используются очень часто. Возможно, вам уже приходилось слышать фразы типа слово данных или байт данных . Теперь, я надеюсь, вы понимаете, что это такое.

Отсчёт битов в числе начинается с нуля и справа. То есть в двоичном числе самый младший бит (нулевой бит) является крайним справа. Слева находится старший бит . Например, в слове старший бит – это 15-й бит, а в байте – 7-й. В конец двоичного числа принято добавлять букву b . Таким образом вы (и ассемблер) будете знать, что это двоичное число. Например,

101 – это десятичное число 101b – это двоичное число, которое эквивалентно десятичному числу 5. А теперь попробуем понять, как формируется двоичное число .

Ноль, он и в Африке ноль. Здесь вопросов нет. Но что дальше. А дальше разряды двоичного числа заполняются по мере увеличения этого числа. Для примера рассмотрим тетраду. Тетрада (или полубайт) имеет 4 бита.

Двоичное Десятичное Пояснения
0000 0 -
0001 1
0010 2 В следующий бит (бит 1) устанавливается 1, предыдущий бит (бит 0) очищается.
0011 3 В младший бит устанавливается 1.
0100 4 В следующий бит (бит 2) устанавливается 1, младшие биты (бит 0 и 1) очищаются.
0101 5 В младший бит устанавливается 1.
0110 6 Продолжаем в том же духе...
0111 7 ...
1000 8 ...
1001 9 ...
1010 10 ...
1011 11 ...
1100 12 ...
1101 13 ...
1110 14 ...
1111 15 ...

Итак, мы видим, что при формировании двоичных чисел разряды числа заполняются нулями и единицами в определённой последовательности:

Если младший равен нулю, то мы записываем туда единицу. Если в младшем бите единица, то мы переносим её в старший бит, а младший бит очищаем. Тот же принцип действует и в десятичной системе:

0…9 10 – очищаем младший разряд, а в старший добавляем 1 Всего для тетрады у нас получилось 16 комбинаций. То есть в тетраду можно записать 16 чисел от 0 до 15. Байт – это уже 256 комбинаций и числа от 0 до 255. Ну и так далее. На рис. 2.2 показано наглядно представление двоичного числа (двойное слово).

Рис. 2.2. Двоичное число.

Тема 2: Представление информации в ПК.

1. Единый способ представления информации в ПК

2. Единицы измерения информации.

3. Знакомство с различными системами счисления.

4. Двоичная система счисления.

1. Всё многообразие обрабатываемой на ПК информации оцифровывается, т.е. кодируется. Цифры представляются электрическими сигналами двух уровней: состоянию «ложь, низкое напряжение, ненамагниченность » соответствует цифра 0 , а состоянию « истина, высокое напряжение, намагни-ченность » - соответствует цифра 1. Цифры 0 и 1 называются двоичными. Двоичное кодирование-binary digit- представление информации в виде последовательностей из фиксированных 0 и 1.

2. Единицы измерения информации:

1 бит – 0 или 1 – наименьшее количество информации, элементарная ед.измерения информации

1 байт = 8 бит

Из восьми нулей и единиц можно составить 2 8 =256 различных последовательностей, т.е. можно закодировать 256 различных символов (буквы: кириллица, латинские; цифры, знаки пунктуации, математические символы, спецсимволы и т.д.).

1 килобайт (kb) =2 10 байт=1024 байта

1 мегабайт (Mb) = 2 20 байт=1048576 байтов

1 гигабайт (Gb) = 2 30 байт – около 1 млрд.байтов

Одна страница машинописного текста занимает в памяти ПК примерно 4 Кбайта

Ёмкость компакт-диска позволяет записать информацию, содержащуюся на 60 000 печ.стр.

3. Система счисления – способ представления чисел с помощью определённого набора цифр.

Существует два вида систем счисления - римская и позиционная. В римской с/с значение цифры не зависит от её позиции в числе (ХХХ – число 30 состоит из трех равнозначных цифр Х).

В позиционной с/с значение каждой из цифр зав. от её позиции в числе (456=4 ·10 2 +5 · 10 1 +6 ·10 0)

В 10 с/с – десять цифр –0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – основание системы число10, т.к. любое целое неотрицательное число можно представить в виде суммы убывающих степеней числа 10: 4607=4 ·10 3 +6 · 10 2 +0·10 1 +7·10 0 . Цифры 4, 6, 0, 7 являются коэффициентами данного разложения. Запись числа представляет определённую последовательность коэффициентов.

В 8 с/с – восемь цифр – 0,1,2,3,4,5,6,7 – основание системы число 8

В16 с/с – шестнадцать цифр - от 0 до 9 и буквенные обозначения A, B, C, D, E, F

4. Двоичная система счисления – это система, в которой для записи чисел используется две цифры 0 и 1. Основанием двоичной системы является число 2.

Двоичная система удобна в техническом смысле, неудобна – небольшие числа записываются большим количеством цифр (комбинациями 0 и 1)

Для получения записи числа в 2 с/с нужно обычное число (из 10 с/с) представить в виде суммы убывающих степеней числа 2.


Таблица значений степеней числа 2

n
2 n

При этом коэффициентами такого разложения могут быть лишь 0 и 1.

76 = 1·2 6 + 0·2 5 + 0·2 4 + 1·2 3 + 1·2 2 + 0·2 1 + 0·2 0

Двоичным кодом числа – записью этого числа в двоичной системе счисления - является последовательность коэффициентов из разложения данного числа по степеням 2.

Т.о. 76 10 = 1 0 0 1 1 0 0 2

Арифметические действия в 2 с/с:

  • Сложение: 0 + 0=0, 0 + 1=1 + 0=1, 1 + 1=10
  • Умножение: 0 · 0=0, 0 · 1= 1 · 0=0, 1 · 1= 1

Примеры: 111+11=1010

Алгоритм перевода числа из 10 с/с в 2 с/с:

Заключается в последовательном делении в столбик на 2 самого числа и всех результатов от деления так, чтобы в остатках оставались 0 или 1. Появление в частном (очередном результате)

цифры 0 означает конец процесса. Остатки, начиная с последнего, выписанные снизу вверх дают запись искомого числа.

Алгоритм перевода числа из 2 с/с в 10 с/с:

Любое двоичное число можно представить в виде суммы степеней числа 2, расположенных в порядке убывания

5 4 3 2 1 0 степень 2

1 1 1 01 1 2 = 1· 2 5 + 1· 2 4 + 1· 2 3 + 0· 2 2 + 1· 2 1 + 1· 2 0 =32 + 16 + 8+ 2 + 1=59 10

Домашнее задание: 1)закодировать числа (представить в двоичной системе) 15, 47,128

2) сравнить числа 1101, 1110,1011 найти их сумму, произведение первых двух

выучить §2,3 учебник - Гаевский «Информатика»

С двоичной системой счисления мы сталкиваемся при изучении компьютерных дисциплин. Ведь именно на базе этой системы построена работа процессора и некоторые виды шифрования. Существуют специальные алгоритмы для записи десятичного числа в двоичной системе и наоборот. Если знать принцип построения системы, оперировать в ней будет несложно.

Принцип построения системы из нулей и единиц

Двоичная система счисления построена с использованием двух цифр: ноль и один. Почему именно эти цифры? Это связано с принципом построения сигналов, которые используются в работе процессора. На самом низком уровне сигнал принимает только два значения: «ложь» и «истина». Поэтому было принято отсутствие сигнала, «ложь», обозначать нулем, а наличие его, «истину», единицей. Такое сочетание легко реализовать технически. Числа в двоичной системе формируются так же, как и в десятичной. Когда разряд достигает своей верхней границы, он обнуляется, и добавляется новый разряд. По такому принципу осуществляется переход через десяток в десятичной системе. Таким образом, числа состоят из сочетаний нулей и единиц, и это сочетание называется "двоичная система счисления".

Запись числа в системе

В десятичной

В двоичной

В десятичной

В двоичной

Как двоичное число записать в виде десятичного?

Существуют онлайн-сервисы, которые осуществляют перевод числа в двоичную систему и наоборот, но лучше уметь делать это самостоятельно. Двоичная система при переводе обозначается нижним индексом 2, например, 101 2 . Каждое число в любой системе можно представить в виде суммы чисел, например: 1428 = 1000 + 400 + 20 + 8 - в десятичной системе. Так же представляется число в двоичной. Возьмем произвольное число 101 и рассмотрим его. В нем 3 разряда, поэтому раскладываем число по порядку таким способом: 101 2 =1×2 2 +0×2 1 +1×2 0 =4+1=5 10, где индекс 10 обозначает десятичную систему.

Как записать простое число в двоичной системе?

Очень легко осуществить перевод в двоичную систему счисления с помощью деления числа на два. Делить необходимо до тех пор, пока это будет возможно выполнить нацело. Например, возьмем число 871. Начинаем делить, обязательно записывая остаток:

871:2=435 (остаток 1)

435:2=217 (остаток 1)

217:2=108 (остаток 1)

Ответ записывается по полученным остаткам по направлению от конца к началу: 871 10 =101100111 2 . Проверить правильность вычислений можно с помощью обратного перевода, описанного ранее.

Для чего нужно знать правила перевода?

Двоичная система счисления применяется в большинстве дисциплин, связанных с микропроцессорной электроникой, кодированием, передачей и шифрованием данных, в различных направлениях программирования. Знания основ перевода из любой системы в двоичную помогут программисту разрабатывать различные микросхемы и осуществлять управление работой процессора и других подобных систем программным способом. Двоичная система счисления также необходима для реализации способов передачи пакетов данных по зашифрованным каналам и создания на их основе программных проектов типа «Клиент-сервер». В школьном курсе информатики основы перевода в двоичную систему и наоборот являются базовым материалом для изучения программирования в будущем и создания простейших программ.

Введение………………………………………………………………………………

I. Понятие двоичной системы счисления…………………………………………………………………..

1.1. История двоичной системы счисления

1.2. Перевод чисел из двоичной системы счисления в десятичную

1.3. Перевод десятичного числа в двоичное

II. Почему удобна двоичная система? ………………………………………………

2.1. Достоинства двоичной системы

2.2. Недостатки двоичной системы

Заключение …………………………………………………………………………..

Библиографический список………………………………………………………....


Введение:

Кто стоит у истоков двоичной системы счисления, как давно и где ее начали применять, почему двоичная система счисления сохранилась до наших дней.

Понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Но записывали их по другим правилам, хотя в любом случае число изображалось с помощью любого или нескольких символов, которые назывались цифрами.

Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.

Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.

Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен. Древнее написание десятичных цифр:


Понятие двоичной системы счисления.

Двоичная система счисления - позиционная система счисления с основанием два. (Позиционная система счисления (позиционная нумерация) - система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

История двоичной системы счисления.

Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени. Иезуит Буве (Bouvet), миссионер в Китае, которому Лейбниц писал о своём изобретении, сообщил ему, что в Китае существует загадочная надпись, которую можно вполне объяснить бинарной системой. Надпись эта, которую приписывают императору Фо-ги, жившему в 25 веке до н. э., основателю Китайской империи, покровителю наук и искусств, не могла быть объяснена китайскими учёными, которые считали её не имеющей смысла. Она состоит из ряда длинных и коротких чёрточек. Если принять, что длинная черта означает 1, а короткая 0, то вся надпись оказывается просто рядом натуральных чисел, написанных по двоичной системе. Вот эта надпись:

Двоичная система счисления оказалась удобной для использования в ЭВМ. Использование двоичной системы оказалось наиболее эффективным в электронных схемах: цифры 0 и 1 удобно кодировать уровнями напряжения, соответствующим напряжению на шинах питания, „0“ и „+V“ ; использование большего количества уровней привело бы к усложнению схем. Хотя были прецеденты создания и троичных ЭВМ.

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

0 – это ноль

1 – это один (и это предел разряда)

10 – это два

11 – это три (и это снова предел)

100 – это четыре

101 – пять

110 – шесть

111 – семь и т.д.

1.3. Перевод чисел из двоичной системы счисления в десятичную:

1. 10001001 = 1*2^{7} + 0*2^{6} + 0*2^{5} + 0*2^{4} + 0*2^{3} + 0*2^{2} + 0* 2^{1} + 0*2^{0} = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001_{2} = 137_{10}

2. 1011_{2} = 1*2^3 + 0*2*2+1*2^1+1*2^0 =1*8 + 1*2+1=11_{10}

3. 10101010_{2} = 1*2^{7} + 0*2^{6} + 1*2^{5} + 0*2^{4} + 1*2^{3} + 0*2^{2} + 1*2^{1} + 0*2^{0} = 128 + 32 +8 + 2 = 170_{10}

4. 101101_{2} = 1*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 63_{10}

5. 100,101_{2} = 1*2^{2} +0*2^{1} + 0*2^{0} + 1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 4 + 2 = 6Элементы оглавления не найдены. _{10}

6. 111101_{2} = 1*2^{5} + 1*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 32 +16 + 13 = 61_{10}

7. 1001_{2} = 1*2^{3} + 0*2^{2} + 0*2^{1} + 1*2^{0} = 9

8. 10011,1_{2} = 1*2^{4} + 0*2^{3} + 0*2^{2} + 1*2^{1} + 1*2^{0} + 1*2^{-1} = 19,5

9. 11101,11_{2} = 1*2^{5} + 1*2^{4} + 1*2^{3} + 0*2^{1} +1*2^{0} + 1*2^{-1} = 57,5

10. 100111 = 1*2^{5} + 0*2^{4} + 0*2^{3} +1*2^{2} + 1*2^{1} + 1*2^{0} = 39

1.4. Перевод десятичного числа в двоичное:

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)

38 / 2 = 19 (0 остаток)

19 / 2 = 9 (1 остаток)

9 / 2 = 4 (1 остаток)

4 / 2 = 2 (0 остаток)

2 / 2 = 1 (0 остаток)

1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1. 1001101_{10} = 1*2^{6} + 0*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} = 64 + 8 + 5 = 77_{2}

2. 49_{10} = \dfrac{ 49 } { 2 } = 110001_{2}

3. 15_{10} = \dfrac{ 49 } { 2 } = 1111_{2}

4. 31_{10} = \dfrac{ 31 } { 2 } = 11111_{2}

5. 0,45_{10} = \dfrac{ 0,45 } { 2 } = 0,11100_{2}

6. 95_{10} = \dfrac{ 95 } {2 } = 1011111_{2}

7. 102_{10} = \dfrac{102 } { 2 } = 1100110_{2}

8. 58_{10} = \dfrac{ 58 } { 2 } = 110100_{2}

9. 4956_{10} = \dfrac{ 4956 } { 2 } = 101101011100_{2}

10. 125_{10} = \dfrac{ 125 } { 2 } = 10111101_{2}

2. Почему удобна двоичная система?

Стоит отметить, что двоичная система издавна была предметом пристального внимания ученых. Официальное рождение двоичной системы счисления связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Во время работы ЭВМ постоянно происходит преобразование чисел из десятичной системы счисления в двоичную, и наоборот. Да и человеку, имеющему дело с ЭВМ, часто приходится прибегать к преобразованиям чисел.

Вот, что писал Лаплас об отношении великого немецкого математика Г.В. Лейбница к двоичной (бинарной) системе: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытиё и что высшее существо создает все сущее из небытия точно таким же образом, как единица и нуль в его системе выражают все числа».

Главное достоинство двоичной системы – простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требуется ничего запоминать, ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе счисления.

Если отвлечься от технических деталей, то именно с помощью этих операций и выполняются все операции в компьютере, так как удалось создать надежно работающие технические устройства, которые могут со 100 процентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

Электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

Участок поверхности магнитного носителя информации (намагничен/ размагничен);

Участок поверхности лазерного диска (отражает/не отражает);

Триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.

Утверждение двоичной арифметики в качестве общепринятой при конструкции ЭВМ с программным управлением состоялось под влиянием работы Дж. фон Неймана о проекте первой ЭВМ с хранимой в памяти программой. Работа написана в 1946 году.

2.1. Достоинства двоичной системы счисления:

1. Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере.

2. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

3. Представление информации посредством только двух состояний надежно и помехоустойчиво.

4. Возможность применения алгебры логики для выполнения логических преобразований.

5. Двоичная арифметика проще десятичной.

2.2. Недостатки двоичной системы счисления:

1. Итак, код числа, записанного в двоичной системе счисления представляет собой последовательность из 0 и 1. Большие числа занимают достаточно большое число разрядов.

2. Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

3.1. Заключение:

В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Особенно сильным это увлечение было с конца 16 до 19 века. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой. Даже по его просьбе была выбита медаль в честь этой «диадической» системы (так называли тогда двоичную систему счисления).

Двоичная система счисления наиболее проста и удобна для автоматизации.

Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.

Из любой системы счисления можно перейти к двоичному коду.

Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.

Но двоичная система имеет и недостатки:

Ею пользуются только для ЭВМ для внутренней и внешней работы;

Быстрый рост числа разрядов, необходимых для записи чисел.

Библиографический список

1. Нестеренко А.В. ЭВМ и профессия программиста. М.: Просвещение, 1990.

2. Решетников В.Н., Сотников А.Н. Информатика – что это? М.: Радио и связь, 1989.

3. Фомин С.В. Системы счисления. М.: Наука, 1987.

4. Информатика: Системы счисления: спецвыпуск, №42 1995.

5. Информатика: Семинар, №2, №3 2006.

6. Информатика: В мир информатики, №8 2007.

7. http://www.internet-school.ru/Enc.ashx?item=3773

Имеющей основание 2. Она непосредственно реализована в цифровой электронике, используется в большинстве современных вычислительных устройств, включая компьютеры, мобильные телефоны и разного рода датчики. Можно сказать, что все технологии нашего времени построены на бинарных числах.

Запись чисел

Любое число, сколь бы большим оно ни было, в двоичной системе записывается посредством двух символов: 0 и 1. Например цифра 5 из всем знакомой десятичной системы в двоичной будет представлено как 101. Бинарные числа могут быть обозначены префиксом 0b или амперсандом (&), например: &101.
Во всех системах счисления, исключая десятичную, символы читаются по одиночке, то есть взятое в пример 101 читается как "один ноль один".

Перевод из одной системы в другую

Программисты, постоянно работающие с двоичной системой счисления, на ходу могут перевести бинарное число в десятичное. Это действительно можно сделать и без всяких формул, особенно если человек имеет представление о том, как работает самая малая часть компьютерного "мозга" - бит.

Цифра ноль так же обозначает 0, а цифра один в двоичной системе тоже будет единицей, но что делать дальше, когда цифры закончились? Десятичная система "предложила" бы в таком случае ввести термин "десяток", а в бинарной системе это будет называться "двойка".

Если 0 это &0 (амперсанд - обозначение двоичной системы), 1 = &1, то 2 будет обозначаться как &10. Тройку тоже можно записать в двух разрядах, она будет иметь вид &11, то есть одна двойка и одна единица. Возможные комбинации исчерпаны, и в десятичной системе на этом этапе вводятся сотни, а в двоичной - "четверки". Четыре - это &100, пять - &101, шесть - &110, семь - &111. Следующая, более крупная единица счета - это восьмерка.

Можно заметить особенность: если в десятичной системе разряды умножаются на десять (1, 10, 100, 1000 и так далее), то в двоичной, соответственно, на два: 2, 4, 8, 16, 32. Это соответствует размеру флеш-карт и прочих накопителей, использующихся в компьютерах и других устройствах.

Что такое бинарный код

Числа, представленные в двоичной системе счисления, называются бинарными, однако в таком виде можно представить и не числовые значения (буквы и символы). Таким образом, в цифрах можно закодировать слова и тексты, правда вид они будут иметь не столь лаконичный, ведь для записи всего одной буквы потребуется несколько нолей и единиц.

Но каким образом компьютерам удается считывать такое количество информации? На самом деле все проще, чем кажется. Люди, привыкшие к десятичной системе счисления, сначала переводят двоичные числа в более привычные, и только потом производят с ними какие-либо манипуляции, а в основе компьютерной логики изначально лежит бинарная система чисел. Единице в технике соответствует высокое напряжение, а нулю - низкое, либо для единицы напряжение есть, а для ноля вообще отсутствует.

Бинарные числа в культуре

Ошибкой будет считать, что - это заслуга современных математиков. Хотя бинарные числа и являются основополагающими в технологиях нашего времени, использовались они уже очень давно, причем в разных уголках планеты. Используются длинная линия (единица) и прерывистая (ноль), кодирующие восемь символов, означающих восемь стихий: небо, землю, гром, воду, горы, ветер, огонь и водоем (массу воды). Этот аналог 3-битных цифр описывался в классическом тексте книги Перемен. Триграммы составляли 64 гексаграммы (6-битные цифры), порядок которых в книге Перемен был расположен в соответствии с двоичными цифрами от 0 до 63.

Этот порядок был составлен в одиннадцатом веке китайским ученым Шао Юном, хотя нет доказательств того, что он действительно понимал двоичную систему счисления в целом.

В Индии еще до нашей эры тоже применялись бинарные числа в математической основе для описания поэзии, составленные математиком Пингалой.

Узелковая письменность инков (кипу) считается прообразом современных баз данных. Именно они впервые применили не только бинарный код числа, но и не числовые записи в двоичной системе. кипу характерно не только первичными и дополнительными ключами, но и использованием позиционных чисел, кодированием с помощью цвета и сериями повторений данных (циклами). Инки впервые применили способ ведения бухгалтерского учета, называемый двойной записью.

Первый из программистов

Двоичную систему счисления, основанную на цифрах 0 и 1, описал и знаменитый ученый, физик и математик, Готфрид Вильгельм Лейбниц. Он увлекался древней китайской культурой и, изучая традиционные тексты книги Перемен, заметил соответствие гексаграмм бинарным числам от 0 до 111111. Он восхитился свидетельствам подобных достижений в философии и математике для того времени. Лейбница можно назвать первым из программистов и информационных теоретиков. Именно он обнаружил, что если записать группы двоичных чисел вертикально (одно под другим), то в получившихся вертикальных столбцах чисел будут регулярно повторяться ноли и единицы. Это позвонило ему предположить, что возможно существование совершенно новых математических законов.

Лейбниц понял и то, что бинарные числа оптимальны для применения в механике, основой которой должна быть смена пассивных и активных циклов. На дворе был 17 век, а этот великий ученый изобрел на бумаге вычислительную машину, работавшую на основе его новых открытий, однако быстро понял, что цивилизация еще не достигла такого технологического развития, и в его время создание такой машины будет невозможным.

Похожие публикации