Chevroletavtoliga - Автомобильный портал

Амортизация днища катера для демпфирования ударных нагрузок. Испытания на воздействие ударных нагрузок Защита конструкций с помощью амортизаторов и демпферов

Изобретение относится к области испытаний амортизаторов на ударные воздействия и может быть использовано при проектировании ударозащитных устройств из композиционных материалов. Целью изобретения является получение характеристик амортизаторов, показывающих эффективность их работы при ударных воздействиях (коэффициентов эффективности ударного гашения амортизаторов, связанных с конструкционным демпфированием, демпфированием в материалах, а также за счет различной акустической жесткости различных элементов амортизатора и т.д.) Испытания проводят на установке, добротность которой не менее чем на порядок выше добротности амортизатора. Искомый коэффициент равен произведению коэффициентов, связанных с различными физическими свойствами амортизатора. При этом замена демпфирующих вкладышей вкладышами из различных материалов с заранее известными демпфирующими свойствами позволяет в результате анализа ударных спектров, полученных при ударных испытаниях, определить каждый из коэффициентов. Технический эффект - повышение качества исследования процесса работы амортизаторов при ударных воздействиях. 6 ил.

Предлагаемое техническое решение относится к области испытаний амортизаторов из композиционных материалов по определению их демпфирующих свойств при ударном воздействии. Использование в последнее время в системах защиты от виброударных нагрузок на судах, самолетах, космических аппаратах новых материалов (металлорезины, углепластиков и т.д.) требует достаточно точного определения эффективности каждого из элементов амортизатора. В настоящее время известны различные способы определения демпфирующих свойств амортизаторов. Например, при исследовании амортизаторов, работающих при достаточно медленно изменяющихся внешних воздействиях, используется метод оценки коэффициента поглощения по анализу петли гистерезиса (И.М.Бабаков "Теория колебаний", стр. 153-154, М.: Наука, 1968 г.). Однако при таких испытаниях рассматривается рассеяние энергии за полный цикл колебаний. Для защиты оборудования от ударных воздействий (часто взрывного характера) применяются амортизаторы, которые должны снижать в первую очередь амплитуду переднего фронта ударной волны деформаций. Снижение вторичной вибрации обычно не представляет большой проблемы. Наиболее пригодным в это случае является анализ амплитудно-частотных характеристик или суммарных значений воздействия до и после амортизатора. Например (А.Нашиф и др. Демпфирование колебаний, стр. 190, М.: Мир, 1988 г., прототип), метод построения амплитудно-частотной характеристики состоит в возбуждении в испытуемом образце колебаний, измерении возбуждающей силы, приложенной в заданной точке, определении динамической реакции с помощью акселерометров и датчиков деформаций, а затем сравнении амплитудно-частотной характеристики до и после амортизатора. Использование гармонического анализатора Фурье, а также аналогичных вычислительных методик, как правило, справедливо только для случая "последействия" (когда воздействие уже закончилось и исследуется вторичная вибрация). Кроме того, использование для испытаний установок, обладающих достаточно низкой добротностью, (например, вибростендов) приводит к завышению демпфирующих свойств амортизаторов. Описанный выше способ не позволяет также разделить рассеяние внешнего воздействия за счет различных физических свойств амортизаторов (конструкционное демпфирование, отражение от границ и т.д.). Целью данного технического решения является частичное устранение указанных выше недостатков, что позволит более качественно исследовать процесс работы амортизаторов при ударных воздействиях. Предлагаемое техническое решение отличается тем, что нагружение амортизатора производят на установке, добротность которой не менее чем на порядок больше добротности амортизатора, а испытания проводят последовательно, получая сначала зависимость между усилиями и деформациями в амортизаторе при ударном воздействии, затем определяют акустическую жесткость амортизатора при различных уровнях нагружения, после чего испытания проводят с вкладышами одного и того же конструктивного исполнения из различных материалов с заранее заданными демпфирующими свойствами, причем оценку эффективности гашения ударного воздействия производят сравнением ударных спектров ускорений в контрольных точках, при этом коэффициент эффективности гашения ударного воздействия представляют в виде произведения коэффициентов, каждый из которых определяют по анализу ударных спектров ускорений испытаний упомянутых ранее вкладышей. Сущность предлагаемого технического решения поясняется чертежами, где на фиг. 1 показан амортизатор из металлорезины 7ВШ60/15, на фиг. 2 показаны зависимость между усилиями и деформациями p- (петля гистерезиса), модуль Юнга (как тангенс угла ) и скорость звука в материале, на фиг. 3 показана схема экспериментальной установки, на фиг. 4-6 показаны сумммарный коэффициент эффективности гашения ударного воздействия, коэффициент, получаемый за счет конструкционного демпфирования, и коэффициент, полученный за счет рассеяния в металлорезине. Рассмотрим в качестве примера амортизатор из металлорезины (фиг. 1) и попытаемся по предложенному алгоритму оценить демпфирующие свойства амортизатора. При подходе волны деформации к амортизатору происходит как ее отражение за счет различных ударных жесткостей, так и рассеяние в материале (металлорезине амортизатора) и за счет конструкционного демпфирования самого амортизатора (степень затяжки, зазоры и т.д.). Пусть - суммарный коэффициент эффективности гашения ударного воздействия. i = 1i 2i 3i ,

Где 1i - коэффициент, связанный с конструкционным демпфированием;

2i - коэффициент, связанный со значениями акустической жесткости;

3i - коэффициент, вязанный с рассеянием в материале. Очевидно, что для используемых материалов 3i = 1 (кроме металлорезины, так как размеры вкладышей малы, а рассеяние в материале начинает сказываться только при L>1 м, да и то составляя 1-2% на 1 м. О.Д.Алимов и др. Удар, распространение волн деформаций в ударных системах. М.: Наука, 1982). Сам коэффициент эффективности гашения по ударному спектру понимается как амплитудно-частотная характеристика отношения ударных спектров ускорений ВИП до и после амортизатора:

1 = A B1i /A B2i . Коэффициент

Показывает эффективность различных вкладышей, так как 1i = const (один и тот же амортизатор), а для всех вкладышей, кроме металлорезины, 3i = 1, то

Ij = ( 1i 2i 3i)/( 1j 2j 3j) = 2i 3i / 2j . Рассмотрим материал, акустическая жесткость которого равна акустической жесткости металлорезины, тогда

То есть получим коэффициент гашения ударной волны, характеризующий свойства металлорезины. Как известно (Л.Г.Шайморданов. Статистическая механика деформируемых волокнистых нетканых пористых тел. Красноярск, 1989), металлорезина является материалом с ярко выраженными нелинейными характеристиками. Кроме того, демпфирующие свойства материала могут зависеть от скорости (при ударных и взрывных воздействиях) и вида нагружения. Вместе с тем, петля гистерезиса (ее предельная правая ветвь) для амортизатора из металлорезины в области предельных деформаций не зависит от скорости нагружения. Таким образом, зная зависимость P- (петлю гистерезиса) и величину ударного воздействия (в виде импульса силы), можно получить для любого момента времени модуль Юнга и, следовательно, скорость звука (фиг. 2). Подбирая различные величины воздействий и значения акустических жесткостей, можно получить коэффициенты эффективности гашения ударного воздействия в зависимости от силы внешнего воздействия. Очевидно, что при таких испытаниях рассеяние внешнего воздействия должно быть минимальным. Известна формула, связывающая добротность Q и логарифмический декремент колебаний : Q = 3,141.../, а = lnA1/A2, где A1 и A2 - амплитуды двух соседних колебаний. Откуда видно, что уже при увеличении добротности на порядок (80-100, для обычных конструкций примерно 8-10) рассеянием энергии в экспериментальной установке можно пренебречь. Использование понятия ударного спектра ускорений для оценки эффективности работы амортизаторов при ударных воздействиях позволяет корректно проводить анализ работы амортизаторов как в момент приложения нагрузки, так и после окончания ее действия (О.П.Дояр "Алгоритм расчета ударного спектра" в сб. Динамика систем. Численные методы исследования динамических систем. Нистру: Кишенев, 1982, стр. 124-128). Пример практической реализации предложенного метода. По предложенной методике были определены коэффициенты гашения для амортизатора 7ВШ60/15, используемого в поясе защиты от виброударных воздействий одного из космических аппаратов разработки НПО ПМ (фиг. 1). Схема испытательной установки показана на фиг.3, где 1 - волноводы, 2 - амортизатор 3 - акселерометры ABC-052. Было проведено 15 подрывов болтов. Импульс силы для болта был получен ранее. Динамические деформации амортизатора регистрировались с помощью метода скоростной фоторегистрации. Зависимость плотности материала (металлорезины) от усилия принималась по паспортным данным амортизатора. Для замены использовались вкладыши из стали, бронзы, алюминия, текстолита, фторопласта. В качестве источника ударного воздействия применялся разрывной болт 8х54. При замене металлорезинового вкладыша вкладышем из стали (материал корпуса и крепежных элементов) сразу можно получить коэффициент, связанный с конструкционным демпфированием, т.к. остальные эффекты рассеяния исключаются. На фиг. 4, 5 показаны графики суммарного коэффициента гашения ударного воздействия и коэффициента гашения, связанного с конструкционным демпфированием, а на фиг. 6 показан коэффициент, полученный за счет рассеяния удара в металлорезине. Уровень ударного воздействия составлял 6 кН. Диапазон измерений по амплитуде до 6000g, а по частоте до 10000 Гц. Суммарная погрешность измерений и обработки не превышала 9-11%.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ определения демпфирующих свойств амортизаторов при ударном воздействии, заключающийся в возбуждении ударом в испытуемом амортизаторе колебаний, измерении возбуждающей силы, определении динамической реакции с помощью акселерометров и датчиков деформаций и построении амплитудно-частотной характеристики образца, отличающийся тем, что нагружение амортизатора происходит на установке, добротность которой не менее чем на порядок больше добротности амортизатора, а испытания проводят последовательно: сначала получают зависимость между усилиями и деформациями в амортизаторе при ударном воздействии, затем определяют модуль Юнга и скорость звука при различных уровнях нагружения амортизатора, после чего испытания проводят с вкладышами одного и того же конструктивного исполнения из различных материалов с заранее заданными демпфирующими свойствами, причем об эффективности оценки гашения ударного воздействия судят, сравнивая ударные спектры ускорений в контрольных точках, при этом коэффициент эффективности гашения ударного воздействия представляют в виде произведения коэффициентов, каждый из которых определяют по анализу ударных спектров ускорений испытаний упомянутых ранее вкладышей.

Изобретение может быть использовано в области машиностроения для поглощения и снижения ударных нагрузок. Демпфер содержит шток 2 с закрепленным на нем режущим устройством, состоящим из опорной втулки 5, ножевой головки 7 и установленной между ними втулки 10 из пластичного материала. На торце 8 ножевой головки 7, контактирующем со втулкой 10, выполнены клинообразные зубья 9, а втулка 10 снабжена кольцевым буртиком 11. При работе демпфера зубья 9 ножевой головки 7 срезают буртик 11 втулки 10, уменьшая нагрузки ударного характера, действующие на амортизируемый объект. Технический результат заключается в увеличении энергоемкости демпфера, исключении его заклинивания при действии на демпфируемый объект нагрузок, направленных под углом, сохранении демпфирующей способности устройства при действии повторных ударных нагрузок. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и может быть использовано в конструкциях устройств для поглощения и снижения ударных нагрузок.Известен демпфер, содержащий цилиндрический корпус и размещенный в нем шток с фрикционными колодками, которые связаны со штоком и взаимодействуют с внутренней поверхностью корпуса (см. а.с. №297518, кл. F 16 F 11/00, 1969 г.).Недостатком данного устройства является нестабильность характеристики демпфирования из-за больших колебаний коэффициента трения в зависимости от состояния трущихся поверхностей (температуры окружающей среды, наличия загрязнений на поверхностях, покрытия, смазки и т.д.).В результате анализа научно-технической и патентной литературы в качестве прототипа заявленного устройства принято известное устройство по поглощению энергии удара автомобиля, содержащее цилиндрический корпус и размещенные в нем шток и режущее устройство, состоящее из ножевой головки, неподвижно закрепленной на штоке, и набора режущих элементов, взаимодействующих с внутренней поверхностью корпуса (см. патент Франции №2137258, кл. F 16 F 7/00, 1972 г. - прототип). Недостатками указанного устройства также является нестабильность демпфирующих свойств, возможное заклинивание режущих элементов в теле цилиндрического корпуса из-за неравномерности и неопределенности глубины врезания режущих элементов в боковую поверхность корпуса, особенно при ударных нагрузках, действующих под углом на амортизируемую конструкцию, т.к. ножевая головка режущего устройства закреплена неподвижно на штоке. Заклинивание может привести к потере демпфирующих свойств устройства и даже к поломке режущих элементов при их врезании в корпус. Данный демпфер обладает сравнительно малой энергоемкостью из-за ограниченности хода режущих элементов вдоль оси корпуса и значительного сопротивления металла корпуса (хотя и пластичного) внедрению в него режущих элементов.Кроме того, известный демпфер снижает нагрузки только при однократном ударном воздействии и не может уменьшить повторные нагрузки колебательного затухающего характера, которые обычно возникают после первого удара, максимального по своему амплитудному значению.Целью предложенного устройства является получение более стабильных демпфирующих свойств по сравнению с прототипом, увеличение энергоемкости демпфера и расширение области его применения (возможность уменьшения нагрузок колебательного характера и нагрузок, действующих под углом к оси демпфера).Для достижения поставленной цели в предложенном устройстве процесс внедрения (врезания) режущих элементов в материал корпуса заменен на срез тонкостенного буртика втулки, выполненной из пластичного материала, например, из алюминиевого сплава типа АМц или АД. Для этого на шток, закрепленный на корпусе демпфируемой конструкции, установлено режущее устройство, состоящее из ножевой головки, опорной втулки и установленной между ними втулки из пластичного материала. На торце ножевой головки, контактирующем со втулкой из пластичного материала, выполнены клинообразные зубья, а на втулке из пластичного материала - кольцевой поясок или буртик. Причем ножевая головка установлена на шток соосно втулке из пластичного материала, охватывает ее за счет большего диаметра, т.е. центрируется по ее наружному диаметру, и, кроме того, имеет возможность перемещения относительно нее в осевом направлении. В исходном положении клинообразные зубья ножевой головки своими вершинами опираются (контактируют) на кольцевой буртик втулки и при работе демпфера, т.е. при действии ударных нагрузок, взаимодействуют с ним, а именно прорезают в буртике втулки пазы и своими боковыми поверхностями срезают его.Замена неопределенного процесса внедрения режущих элементов ножевой головки в тело корпуса (прототип) на срез буртика втулки зубьями ножевой головки (предложенное устройство) позволяет получить более стабильные и определенные демпфирующие свойства устройства. В предложенном устройстве отсутствует возможность заклинивания, т.к. даже при действии нагрузок, направленных под углом к оси демпфера, цилиндрический корпус ножевой головки будет перемещаться вдоль боковой поверхности втулки под действием осевой составляющей нагрузки. Выбор материала втулки с определенными механическими (пластическими) свойствами и толщины ее буртика (а значит и площади среза буртика) позволяют однозначно определить силу удара, приводящую к полному или частичному срезу кольцевого буртика, а варьированием высотой и углом при вершине клинообразных зубьев, срезающих буртик, можно обеспечить необходимый ход демпфера для поглощения энергии удара, тем самым обеспечив его необходимую энергоемкость.Выполнение пазов в буртике втулки и предварительная установка вершин клинообразных зубьев в эти пазы улучшает характеристики демпфера, т.к. в этом случае вершины зубьев не прорезают первоначальные пазы (при этом могут происходить нежелательные изгиб и сминание буртика), а сразу начинают срезать буртик втулки своими боковыми поверхностями (происходит “чистый” срез).Наличие пружины сжатия в предложенном устройстве, установленной на шток между корпусом демпфируемой конструкции и шайбой крепежной гайки штока, обеспечивает установку (возвращение) штока с опорой в исходное положение после действия на опору первого удара. Это позволяет снижать не только однократные ударные нагрузки, но и возможные повторные нагрузки.На фигуре 1 изображен общий вид демпфера в исходном состоянии. Изображен вариант устройства с предварительно выполненными пазами в буртике втулки и с установленными в них вершинами зубьев ножевой головки.На фигуре 2 изображен общий вид демпфера после срабатывания при частичном срезе буртика втулки (такой срез буртика возможен после первого удара).На фигуре 3 изображен общий вид демпфера после срабатывания при полном срезе буртика втулки (после последующих повторных ударов).Демпфер устанавливается на корпус 1 амортизируемой конструкции и закрепляется на нем через шток 2 гайкой 3 и шайбой 4. Один конец штока 2 закреплен на корпусе 1, на другом конце штока установлена опора 6, воспринимающая ударные нагрузки, действующие на конструкцию.Режущее устройство демпфера состоит из опорной втулки 5, ножевой головки 7, на торце 8 которой выполнены клинообразные зубья 9, и втулки 10 из пластичного материала, снабженной кольцевым буртиком 11. Опорная втулка 5, ножевая головка 7 и втулка 10 установлены на шток 2, причем втулка 10 размещена между ножевой головкой 7 и опорной втулкой 5. При этом внутренний диаметр ножевой головки 7 выполнен больше наружного диаметра втулки 10, корпус ножевой головки 7 охватывает корпус втулки 10, тем самым центрируется по наружному диаметру втулки 10 для обеспечения равномерного среза буртика 11 и для обеспечения свободного перемещения ножевой головки 7 относительно (вдоль) втулки 10 при срабатывании демпфера. Контакт ножевой головки 7 и втулки 10 осуществляется таким образом, что клинообразные зубья 9, выполненные на торце 8 ножевой головки 7, своими вершинами 12 установлены на буртик 11 и соприкасаются с ним. Опорная втулка 5 служит опорой для втулки 10, диаметр втулки 5 необходимо выполнять не больше диаметра втулки 10 для обеспечения среза ее буртика 11 зубьями 9 ножевой головки 7 и свободного перемещения зубьев 9 ножевой головки 7 вдоль втулки 10 при срабатывании демпфера.Для улучшения характеристик демпфера в буртике 11 втулки 10 предварительно выполнены пазы 13, в которые установлены вершины 12 зубьев 9 ножевой головки 7. При этом количество зубьев на торце 8 ножевой головки 7 равно количеству пазов 13 буртика 11 втулки 10. В этом случае при срабатывании демпфера срез буртика 11 втулки 10 происходит непосредственно боковыми поверхностями 14 зубьев 9.Пружина сжатия 15, охватывающая опорную втулку 5, ножевую головку 7 и втулку 10 из пластичного материала (режущее устройство) и установленная на шток 2 между корпусом 1 амортизируемой конструкции и шайбой 4 гайки 5, обеспечивает установку штока 2, шайбы 4, гайки 3 и опоры 6 в исходное положение после первоначального удара для последующего демпфирования возможных повторных ударов.Демпфер работает следующим образом.При ударе опоры 6 о преграду ударные нагрузки на корпус 1 амортизируемой конструкции передаются через демпфер, а именно через опору 6, гайку 3, шайбу 4, шток 2. Под действием осевой составляющей ударной нагрузки ножевая головка 7 со штоком 2 перемещается вдоль втулки 10. При этом ее зубья 9 своими вершинами 12 прорезают пазы в буртике 11 втулки 10 и своими боковыми поверхностями 14 при последующем движении вдоль втулки 10 срезают ее буртик 11 (см. фигуры 2 и 3) за счет своей клинообразной формы (ширина зубьев увеличивается с изменением высоты зубьев от их вершины к основанию). Срез участков буртика между зубьями может быть частичным или полным в зависимости от силы удара и геометрических параметров буртика 11 и механических свойств материала втулки 10.В случае предварительного выполнения пазов 13 в буртике 11 втулки 10 и установки в них вершин 12 зубьев 9 ножевой головки 7 (см. фигуру 1), при срабатывании демпфера срез буртика 11 будет происходить непосредственно боковыми поверхностями 14 зубьев 9.Срез буртика втулки зубьями ножевой головки будет происходить не только после первого удара максимальной величины, но и при последующих ударах меньшего значения за счет установки (возврата) штока 2, шайбы 4, гайки 3 и опоры 6 в исходное положение пружиной 15, которая при действии ударных нагрузок (движении ножевой головки 7 относительно втулки 10) сжимается, после окончания действия ударных нагрузок пружина 15 разжимается. При этом ножевая головка 7 частично срезает буртик 11 втулки 10 после первого удара (см. фигуру 2) и при последующих ударах продолжает дальше срезать буртик (см. фигуру 3).Таким образом, ударная нагрузка, действующая на корпус 1 конструкции, уменьшается за счет сил пластического среза участков буртика втулки зубьями ножевой головки.Заявленное устройство по сравнению с техническим решением, принятым в качестве прототипа, позволяет эффективно уменьшать как осевые нагрузки, так и нагрузки, направленные под углом к оси демпфера, а также ударные нагрузки повторного характера, исключается возможность заклинивания режущих элементов (отсутствует какое-либо врезание зубьев в материал корпуса втулки, имеется только срез ее буртика). Одновременно увеличивается энергоемкость демпфера и улучшается стабильность его демпфирующих свойств.Расчеты, проведенные авторами, а также натурные испытания устройства в составе штатных изделий и стендовые испытания в составе отработочных изделий показали значительную эффективность предложенного технического решения для демпфирования ударных нагрузок.

Формула изобретения

1. Демпфер, содержащий корпус, шток и размещенное на нем режущее устройство, взаимодействующее с внутренней поверхностью корпуса, отличающийся тем, что режущее устройство выполнено в виде ножевой головки с клинообразными зубьями, опорной втулки и установленной между ними втулки из пластичного материала, снабженной кольцевым буртиком, причем ножевая головка центрируется по наружному диаметру втулки с буртиком с возможностью перемещения относительно нее, а клинообразные зубья ножевой головки своими вершинами взаимодействуют с буртиком втулки.2. Демпфер по п.1, отличающийся тем, что в кольцевом буртике втулки выполнены пазы, в которые установлены вершины клинообразных зубьев ножевой головки, при этом зубья взаимодействуют с буртиком втулки своими боковыми поверхностями.3. Демпфер по пп.1 и 2, отличающийся тем, что на шток установлена пружина, охватывающая режущее устройство.

4. Защита конструкций с помощью амортизаторов и демпферов

Если рассматривать блок как жесткое недеформируемое тело, то при установке его на амортизаторы получается колебательная система, в общем случае имеющая шесть степеней свободы. Обычно рассматривается только одна степень свободы - в направлении, наиболее опасном с точки зрения внешних воздействий. Тогда резонансная частота щ 0 определяется формулой (1). Эта частота обычно является довольно низкой и не превышает 100 Гц. В этом случае весь диапазон частот внешних возмущений оказывается выше щ 0 . И только при условии

сказывается защитное действие амортизатора. Амплитуда колебаний блока уменьшается по сравнению с амплитудой колебаний точек крепления амортизаторов к источнику вибрации в k раз

То, что блок аппаратуры не является абсолютно жестким и сам деформируется при колебаниях на амортизаторах, практически мало влияет на защитные свойства амортизаторов и, кроме того, это влияние положительно, поскольку установка более мягкого блока на амортизаторы уменьшает резонансную частоту f 0 . С другой стороны, установка конструкции на амортизаторы изменяет резонансные частоты самой конструкции. Все резонансные частоты становятся несколько ниже. Стремление повысить эффективность применения амортизаторов привело к изобретению множества различных конструкций амортизаторов:

1. Амортизаторы с дополнительными пружинами (рис. 4). Дополнительные пружины имеют длину, меньшую чем у основной пружины, и вступают в действие при увеличении амплитуды колебаний. В результате получается нелинейная ступенчатая характеристика жесткости. Дополнительные пружины могут устанавливаться как рядом с основной, так и внутри её.

2. Амортизаторы с коническими пружинами, позволяющими плавно изменять жесткость с ростом растяжения и сжатия (рис. 5). У таких пружин наружные витки, которые имеют больший диаметр, имеют меньшую жёсткость. Поэтому при небольшом сжатии работают только эти большие витки. При увеличении сжатия большие витки касаются нижней жесткой поверхности и начинают сжиматься верхние витки меньшего диаметра и большей жесткости. Поскольку амортизатор имеет начальное сжатие под действие массы блока, то аналогичный процесс получается и при растяжении амортизатора, когда начинают растягиваться сначала витки меньшего диаметра, а затем большего. В результате при растяжении жесткость плавно уменьшается.

3. Проволочно-пружинные (сетчатые) амортизаторы (рис. 6), получающиеся прессованием упругого элемента из тонкой спирали. В качестве материала спирали используется тонкая проволока из легированной стали или бериллиевой бронзы. Трение проволоки при деформации упругого элемента создаёт большие потери энергии в упругом элементе. При больших деформациях, например при растяжении, отдельные спирали вытягиваются в одном направлении. При этом получается картина такая же, как и при деформации материалов с длинными волокнами, например резины. Поэтому материал упругого элемента сеточного амортизатора стали называть металлической резиной.

Основной недостаток металлической резины - непостоянство во времени её упругих свойств. Поэтому промышленностью выпускаются пружинно-сеточные амортизаторы (рис. 7), в которых роль упругого элемента выполняет пружина 1, а роль демпфера - металлическая резина 2.

4. Тросовые амортизаторы. Металлический трос, или канат, свитый из множества тонких жил, при растяжении и особенно при изгибе обладает свойствами упругого тела с большими потерями энергии на трение между отдельными жилами. Эти свойства изменяются в широких пределах в зависимости от материала жил, их диаметра, способа изготовления троса и способа использования его в качестве амортизатора. Поэтому возможно большое разнообразие конструкций и характеристик тросовых амортизаторов (рис. 8).

Заметим, что все амортизаторы, в которых используется трение металлических частей, обладают тем недостатком, что металлы истираются, образуя металлическую пыль. Поэтому приходится принимать меры предосторожности, чтобы эта пыль не попадала на электрические цепи.

5. При малой массе блоков стали применять амортизаторы с распределёнными параметрами. Такими амортизаторами и демпферами можно считать амортизационные прокладки, а также заливки и засыпки аппаратуры различными синтетическими материалами. Амортизационные прокладки применяют для защиты от ударов и вибраций как целых блоков (рис. 9), так и отдельных частей внутри блока (рис. 10).

К материалу амортизационных прокладок предъявляются высокие требования. Во-первых, материал должен обладать хорошими упругими свойствами, т.е. должен после снятия нагрузок полностью восстанавливать свою форму, и должен быть достаточно мягким и эластичным. Во-вторых, он должен обладать высокими потерями энергии на внутреннее трение. Эти потери зависят от внутреннего строения вещества чем сложнее макроскопическая структура, тем больше потери. В-третьих, материал должен обладать высокой износостойкостью. Особенно он должен хорошо противостоять истиранию.

В различных конструкциях применяются сотни различных материалов, но по-видимому, самыми надежными материалами являются поролоны, пенопласты и резина.

При создании различных амортизаторов конструкторы стремились обеспечить, во-первых, нелинейную характеристику упругости и, во-вторых, большие потери энергии на трение.

Нелинейность характеристики "сила - деформация" амортизатора оказывается полезной по трём причинам.

Во-первых, она позволяет уменьшать габариты амортизатора. Дело в том, что большой эффект защиты конструкции дают "мягкие" амортизаторы. Но чем меньше жесткость, тем больше ход амортизатора при действии тех же сил. Приходится в конструкции выделять значительное место для устройств защиты. Для избежания ударов приходится увеличивать габариты амортизатора. Установка дополнительных коротких пружин (см. рис. 4) или конической пружины (см. рис. 5) позволяет с ростом амплитуды колебаний включать дополнительные жесткости и тем ограничивать амплитуды колебаний, не допуская ударов об ограничители движения.

Во-вторых, движение блока на нелинейных амортизаторах более сложно - несиносуидально по времени. Такое периодическое сложное движение можно представить в виде суперпозиции нескольких гармонических составляющих. Таким образом, при замене линейного амортизатора нелинейным помимо основной низшей гармонической составляющей колебаний, частота которой равна частоте внешних воздействий, появляются более высокие гармоники. На возбуждение этих гармоник расходуется часть энергии, передаваемой через амортизаторы от источника вибрации. Значит, меньшая часть энергии остаётся на возбуждение колебаний низшей гармоники. Резонансные явления развиваются не так интенсивно, как при линейных амортизаторах. Возникающие при этом высокочастотные гармоники быстро затухают вследствие потерь энергии на трение в амортизаторах. Эта энергия потерь тем больше, чем выше частота.

В-третьих, если в этом диапазоне имеются резонансные частоты конструкции, то начинают развиваться резонансные колебания. В этом случае иногда говорят о переходе через резонанс. В действительности, резонанс просто не успевает полностью развиться, поскольку для этого теоретически требуется бесконечное время. Но и такой развивающийся резонанс может привести к отказам и сбоям аппаратуры.

Блок автоматизированного управления связью

Вторичный источник электропитания ВИП–24В–3,5А

Радиоэлектроника и вычислительная техника применяются практически во всех отраслях народного хозяйства для выполнения однотипных задач - сбора, обработки и выдачи информации...

Методы и средства защиты РЭС от ударных воздействий

Целью расчета является определение статических нагрузок на амортизаторы и выбор их типоразмеров. 1. Расчет начинают с нахождения положения центра масс блока. Для каждого функционального узла и крупных деталей, входящих в блок...

Проект кабельной линии автоматики, телемеханики и связи на участке Восточно-Сибирской железной дороги "Иркутск - Черемхово"

Защиту кабелей от ударов молнии осуществляют с помощью медных, биметаллических или стальных тросов. Тросы прокладывают выше кабеля на глубине, равной половине глубины его залегания, но не менее 0,4 м. Расстояние между тросами 0,4…1,2 м...

Дренажные катушки (ДК) предназначены для обеспечения одновременного срабатывания разрядников, включенных в провода телефонной цепи...

Проект кабельной линии автоматики, телемеханики и связи на участке железной дороги Боготол – Ачинск – Красноярск

Дренажные катушки (ДК) предназначены для обеспечения одновременного срабатывания разрядников, включенных в провода телефонной цепи...

Проект кабельной линии автоматики, телемеханики и связи на участке железной дороги Хабаровск – Розенгартовка

Защиту кабелей от ударов молнии осуществляют с помощью медных, биметаллических или стальных тросов. Тросы прокладывают выше кабеля на глубине, равной половине глубины его залегания, но не менее 0,4 м (альбом чертежей, лист 6)...

Дренажные катушки (ДК) предназначены для обеспечения одновременного срабатывания разрядников, включенных в провода телефонной цепи...

Проект кабельной линии АТ и С на участке железной дороги Филоново–Иловля

Защиту кабелей от ударов молнии осуществляют с помощью медных, биметаллических или стальных тросов. Тросы прокладывают выше кабеля на глубине, равной половине глубины его залегания, но не менее 0,4 м (альбом чертежей, лист 6)...

Дренажные катушки (ДК) предназначены для обеспечения одновременного срабатывания разрядников, включенных в провода телефонной цепи...

Проект кабельной линии АТ и С на участке железной дороги Хабаровск-Розенгартовка

Защиту кабелей от ударов молнии осуществляют с помощью медных, биметаллических или стальных тросов. Тросы прокладывают выше кабеля на глубине, равной половине глубины его залегания, но не менее 0,4 м (альбом чертежей, лист 6)...

Проектирование цифрового фильтра на основе сигнального процессора 1813ВЕ1

При расчете y(nT) с помощью алгоритма ОБПФ исходной последовательностью является Y(jk) - отсчеты выходного сигнала в частотной области.Y(jk) найдем из соотношения: Отсчеты X(jk) иH(jk) были определены выше. После вычислений имеем: Y(jk) = {4,3124; 2,5222-j3,4214; -0,9033-j0...

Похожие публикации