Chevroletavtoliga - Автомобильный портал

Атомный номер тулия. Географические названия химических элементов. Главное квантовое число n

В 1879 году шведский химик Пер Теодор Клеве выделил из "эрбии" Мариньяка еще две "земли", которые назвал гольмией и тулией (Thule - древнеримское название Скандинавии). Спектры показывали, что в составе тулии есть еще неизвестный химический элемент. Позднее Клеве сумел получить некоторые соли этого элемента, показав, что они имеют бледно-зеленый цвет. Так был открыт один из самых редких элементов, за которым закрепилось имя Тулий и символ Tm.
В 1911 году Т. У. Ричардс получил элемент в виде простого вещества и определил его атомную массу.

Нахождение в природе, получение:

Тулий - рассеянный элемент, его содержание в земной коре 2,7·10 -5 % по массе. Входит в состав минералов: монацит (Ce, La …)PO 4 , бастнезит (Ce, La, Pr)CO 3 F, и других. Выделяют тулий из смеси редкоземельных элементов методами ионной хроматографии или экстракции, переводят в оксид, затем во фторид. Металлический тулий получают восстановлением TmF 3 кальцием, или Tm 2 O 3 лантаном

Физические свойства:

Это серебристо-серый металл, он ковкий, пластичный и сравнительно мягкий. Плотность 9,321 г/см 3 , t плав. = 1545°C, t кип =1950°C. Природный тулий - моноизотопный элемент (тулий-169), искусственно полученные изотопы тулия имеют короткие периоды полураспада (наиболее долгоживущий тулий-170 - 128,6 суток).

Химические свойства:

Тулий в сухом воздухе достаточно устойчив, при нагревании металлический тулий реагирует с галогенами, азотом, водородом. Устойчив к действию фтора. Реагирует с кипящей водой, образуя гидроксид Tm(OH) 3 и водород. С минеральными кислотами (кроме HF) тулий реагирует с образованием солей тулия(III).
В соединениях проявляет преимущественно степень окисления +3. Для большинства из них характерна зеленоватая окраска различных оттенков.

Важнейшие соединения:

Оксид тулия(III) , Tm 2 O 3 , может быть получен осторожным обезвоживанием гидроксида Tm(ОН) 3 , разложением нитрата или оксалата тулия. Светло-зеленые кристаллы, нерастворимы в воде.
Гидроксид тулия(III) , Tm(ОН) 3 , аморфное вещество нерастворимое в воде. Может быть получено реакцией обмена из растворимых солей тулия(III). С кислотами образует соли тулия(III).
Фторид тулия(III) , TmF 3 - бесцветные кристаллы, нерастворим, получают обменными реакциями или действием газообразного HF на оксид тулия(III)
Хлорид тулия(III) , TmСl 3 - кристаллы желтого цвета, растворим, образует кристаллогидрат TmСl 3 *7H 2 O - зеленоватые кристаллы. Нагревание кристаллогидрата сопровождается гидролизом с образованием оксохлорида тулия TmOCl. Сильными восстановителями (щелочные металлы) может быть переведен в хлорид тулия(II), последний легко окисляется водой и кислородом.
Нитрат тулия (III) , Tm(NO 3) 3 , зеленоватые кристаллы, хорошо растворим в воде, образует кристаллогидрат состава Tm(NO 3) 3 5H 2 O.
Безводную соль получают действием оксида азота(IV) на оксид тулия(III) или на металлический тулий:
Tm + 2N 2 O 4 = Tm(NO 3) 3 + 3NO
Cульфат тулия(III) Tm 2 (SO 4) 3 , зеленые кристаллы. Растворяется в воде и образует кристаллогидрат состава Tm 2 (SO 4) 3 9H 2 O.

Применение:

Тулий используют как активатор некоторых люминофоров и лазерных материалов, применяют при синтезе искусственных гранатов. Ограниченно применяется в производстве термоэлектрических и магнитных материалов.
Радиоактивный изотоп тулий-170 используется в качестве источника излучения в переносных рентгеновских аппаратах (мягкое гамма-излучение) и дефектоскопах. Рабочим веществом в них служит оксид тулия(III).

Источники: 1. Открытие элементов и происхождение их названий. Тулий
2. Популярная библиотека химических элементов Издательство «Наука», 1977.

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Thule - так во времена Римской империи называли Скандинавию, север Европы. Тулием назван элемент, открытый Клеве в 1879 г. Сначала Клеве нашел новые спектральные линии, а затем первым выделил из гадолинита бледно-зеленую окись элемента № 69.

Распространение тулия

По данным академика А. П. Виноградова, тулий - самый редкий (если не считать прометия) из всех редкоземельных элементов. Содержание его в земной коре 8*10 -5 %. По тугоплавкости тулий второй среди лантаноидов : температура его плавления 1550-1600° С (в справочниках приводятся разные величины; дело, видимо, в неодинаковой чистоте образцов). Лишь лютецию уступает он и по температуре кипения.
Несмотря на минимальную распространенность, тулий нашел практическое применение раньше, чем многие более распространенные лантаноиды. Известно, например, что микропримеси тулия вводят в полупроводниковые материалы (в частности, в арсенид галлия) и в материалы для лазеров. Но, как это ни странно, важнее, чем природный стабильный тулий (изотоп 16STm), для нас оказался радиоактивный тулий-170.
Тулий-170 образуется в атомных реакторах при облучении нейтронами природного тулия. Этот изотоп с периодом полураспада 129 дней излучает сравнительно мягкие гамма-лучи с энергией 84 Кэв (энергия жесткого гамма- излучения измеряется не килоэлектронвольтами, а Мэвами - миллионами электронвольт).


На основе этого изотопа были созданы компактные рентгенопросвечивающие установки, имеющие массу преимуществ перед обычными рентгеновскими аппаратами. В отличие от них тулиевые аппараты не нуждаются в электропитании, они намного компактнее, легче, проще по конструкции. Миниатюрные тулиевые приборы пригодны Для рентгенодиагностики в тех тканях и органах, которые трудно, а порой и невозможно просвечивать обычными рентгеновскими аппаратами.
Гамма-лучами тулия просвечивают не только живые ткани, но и металл. Тулиевые гамма-дефектоскопы очень удобны для просвечивания тонкостенных деталей и сварных швов. При работе с образцами толщиной не больше 6 мм эти дефектоскопы наиболее чувствительны. С помощью тулия-170 были обнаружены совершенно незаметные письмена и символические знаки на бронзовой прокладке ассирийского шлема IX в. до н. э. Шлем обернули фото-пленкой и стали просвечивать изнутри мягкими гамма-лучами тулия. На проявленной пленке появились стертые временем знаки...
Кроме дефектоскопов, препараты тулия-170 используют в приборах, называемых мутнометрами. По рассеянию гамма-лучей этими приборами определяют количество взвешенных частиц в жидкости.
Для тулиевых приборов характерны компактность, надежность, быстродействие. Единственный их недостаток - сравнительно малый период полураспада тулия-170. Но тут уж, как говорится, ничего не попишешь.
Тулиевые гамма-исгочники становятся дешевле по мере увеличения их производства. Еще в 1961 г. в нашей стране выпускались тулиевые источники пяти типов, и стоили они от 5,5 до 250 рублей. А килограмм металлического стабильного тулия в то же время стоил более 25 тыс. рублей.
Новая, более совершенная технология получения лантаноидов позволила в последнее время значительно уменьшить цены на них. В 1970 г. цена тулия составляла уже 13 тыс. рублей за килограмм. Но, и став почти вдвое дешевле, он по-прежнему остается самым редким и самым дорогим из всех лантаноидов.

Тулий ту́лий

(лат. Thulium), химический элемент III группы периодической системы, относится к лантаноидам. Назван от греческого Thúlē - Туле . Металл. Плотность 9,318 г/см 3 ; t пл 1545°C. Искусственно получаемый радиоактивный изотоп 170 Tm - источник мягкого рентгеновского излучения.

ТУЛИЙ

ТУ́ЛИЙ (лат. Thulium, у античных географов Thule - крайний север мира), Tm (читается «тулий»), химический элемент с атомным номером 69, атомная масса 168,93421, ранее химический символ был Tu. В природе встречается один стабильный изотоп 169 Tm. Конфигурация трех внешних электронных слоев 4s 2 p 6 d 10 f 13 5s 2 p 6 d 0 6s 2 . Степени окисления +3, +2 (валентность III, II).
Расположен в группе IIIB в 6 периоде периодической системы элементов. Лантаноид (см. ЛАНТАНОИДЫ) .
Радиус атома 0,174 нм, радиус ионов (координационное число 6) Тu 3+ - 0,102 нм, Tu 2 + - 0,117 нм. Энергии последовательной ионизации 6,181, 12,05, 23,7, 42,7 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,1.
История открытия
Открыт в 1879 шведским химиком П. Т. Клеве (см. КЛЕВЕ Пьер Теодор) , который выделил из минерала гадолинита оксид нового элемента. Идентифицировав элемент спектральным методом, Клеве назвал его в честь своей родины.
Нахождение в природе
Содержание в земной коре 2,7·10 -5 %. Входит в состав минералов: бастнезит (см. БАСТНЕЗИТ) , монацит (см. МОНАЦИТ) , лопарит (см. ЛОПАРИТ) , ортит (см. ОРТИТ) , ксенотим (см. КСЕНОТИМ) .
Получение
Тулий концентрируется с иттербием (см. ИТТЕРБИЙ) и лютецием (см. ЛЮТЕЦИЙ) . Разделение и очистку проводят методами ионной хроматографии или экстракции.
Металлический тулий получают металлотермическим восстановлением TmF 3 с использованием кальция (см. КАЛЬЦИЙ) :
2TmF 3 +3Са=3СаF 2 +2Tm
или восстановлением Tm 2 O 3 металлическим лантаном (см. ЛАНТАН) :
Tm 2 O 3 +La=La 2 O 3 +Tm
Физические и химические свойства
Тулий - мягкий серебристо-серый металл. Существует в одной модификации с гексагональной кристаллической решеткой типа Mg, а = 0,35375 нм, с = 0,55546 нм. Температура плавления 1545°C, кипения 1947°C, плотность 9,318 кг/дм 3 .
На воздухе компактный Tm устойчив. С галогенами (см. ГАЛОГЕНЫ) реагирует при нагревании, образуя TmF 3 и TmCl 3 . Тулий взаимодействует с минеральными кислотами с образованием солей тулия(III). Сильными восстановителями Tm 3+ восстанавливается до Tm 2+ .
Прокаливая на воздухе при 800-900°C нитрата Tm(NO 3) 3 , оксалата Tm 2 (C 2 O 4) 3 , сульфата Tm 2 (SO 4) 3 и других соединений Tm (III) образуется оксид тулия Tu 2 O 3 .
Применение
Тулий используют как активатор некоторых люминофоров и лазерных материалов, применяют при синтезе искусственных гранатов.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "тулий" в других словарях:

    - (Tulium), Tm, химический элемент III группы периодической системы, атомный номер 69, атомная масса 168,9342; относится к редкоземельным элементам; металл. Открыт шведским химиком П. Клеве в 1879 … Современная энциклопедия

    - (лат. Thulium) Tm, химический элемент III группы периодической системы, атомный номер 69, атомная масса 168,9342, относится к лантаноидам. Название от греч. Thule Туле. Металл. Плотность 9,318 г/см³, tпл 1545 .С. Искусственно получаемый… … Большой Энциклопедический словарь

    - (от греч. Thule Tуле, y античных географов крайний северный предел мира; лат. tulium * a. thulium; н. Thulium; ф. thulium; и. tulio), Tm, хим. элемент III группы периодич. системы Mенделеева, ат.н. 69, ат. м. 168,9342, относится к… … Геологическая энциклопедия

    - (лат. Tulium), Tm, хим. элемент III группы пе риодич. системы элементов, ат. номер 69, ат. масса 168,9342; относится к лантаноидам. В природе представлен стабильным 169 Тm. Конфигурация внеш. электронных оболочек Энергии последоват. ионизации… … Физическая энциклопедия

    Сущ., кол во синонимов: 3 лантаноид (15) металл (86) элемент (159) Словарь синонимов ASIS … Словарь синонимов

    Тулий - (Tulium), Tm, химический элемент III группы периодической системы, атомный номер 69, атомная масса 168,9342; относится к редкоземельным элементам; металл. Открыт шведским химиком П. Клеве в 1879. … Иллюстрированный энциклопедический словарь

    69 Эрбий ← Тулий → Иттербий … Википедия

    - (лат. Thulium), хим. элемент III гр. периодич. системы, относится к лантано идам. Назв. от греч. Туле (Thule) античного назв. крайних сев. стран. Металл. Плотн. 9,318 г/см3; tnл 1545 °С. Искусственный радиоактивный нуклид 170Тm источник мягкого… … Естествознание. Энциклопедический словарь

    - (лат. thule полулегендарная страна, в древности считавшаяся северной оконечностью земли) хим. элемент из семейства лантаноидов, символ Tm (лат. thulium), металл. Новый словарь иностранных слов. by EdwART, 2009. тулий я, мн. нет, м. (… Словарь иностранных слов русского языка

    Тулий - Смотри Тулий (Tm) … Энциклопедический словарь по металлургии

Книги

  • Моральные размышления (кожаный переплет, золотой обрез) , Цицерон Марк Тулий. Марк Туллий Цицерон - выдающийся римский юрист и государственный деятель, избирался консулом, был провозглашен сенатом отцом отечества, а воинами вверенной ему провинции - императором. Однако…

Легко поддается обработке и имеет серебристо-белый цвет. Несмотря на его редкость и высокую цену, тулий применяется в перспективных твердотельных лазерах и в виде радиоизотопа в портативных рентгеновских аппаратах.


1. История

Туллий был открыт шведским химиком Пером Теодором Клеве в как примесь к оксидов других редкоземельных элементов (был использован метод, которому было предложено Карлом Густавом Мозандером для поиска и выделения новых редкоземельных элементов). Клеве отделил все известные примеси из эрбия - "земли" (оксида) элемента ( 2 3). После дополнительных процедур Клеве выделил две новые субстанции: одну коричневого цвета, другую зеленого. Коричневой была земля, которую Клеве предложил назвать "гольмию" и которая соответствует элементу гольмий , зеленый же землю он назвал "Туллия" и новой элемент Туле в честь Thule, латинского названия Скандинавии .

Туллий был настолько редким, что у одного из ранних исследователей не было его в достаточном количестве, чтобы иметь возможность его достаточно очистить, чтобы увидеть зеленый цвет его соединений, им приходилось радоваться хотя бы потому, что характерные спектральные линии тулия усиливались, когда из образца постепенно удаляли эрбий . Первым исследователем, получил достаточно чистую тулия (оксид тулия), был Чарльз Джеймс, из колледжа в Дареме , Нью-Гемпшир . В 1911 он сообщил о том, что фракционная кристаллизация бромата позволила ему выделить чистый материал. Он провел 15 000 "операций" кристаллизации для установки гомогенности его материала.

Оксид тулия высокой чистоту впервые стал коммерчески доступен с конца 1950-х, в результате совершенствования метода ионно-обмена технологий разделения. Подразделение Lindsay Chemical Division фирмы American Potash & Chemical Corporation предложила сорта 99% и 99,9% чистоты. Цена за килограмм колебалась между US $ 4600 и $ 13300 в период с к для препарата 99,9% чистоты, это была самая высокая цена на лантаноидов после лютеция .


2. Распространенность и производство

Этот элемент никогда не встречается в природе в свободном состоянии, однако он содержится в небольших количествах в минералах с другими редкоземельными элементами. Его содержание в земной коре составляет 0,5 мг / кг. Туллий в основном добывают из монациту (~ 0,007% тулия) - руды, содержащийся в некоторых песках, с помощью технологий ионного обмена. Новые ионно-обменные технологии и технологии экстракции с помощью органических растворителей позволили эффективно и более легко выделять тулий, сокращая расходы на его добычу. Главным источником тулия на сегодня глинистые месторождения южного Китая. В таких минералах, где иттрий составляет 2/3 от всего редкоземельного компонента руды, всего 0,5% тулия. После выделения Металл может быть выделенным путем восстановления его оксида лантаном или кальцием в закрытом реакторе при высоких температурах. По другому методу, тулий восстанавливают с фторида металлотермическим кальцием:
2TmF 3 + 3Ca = 3CaF 2 + 2Tm


3. Химические свойства

Тулий медленно, а при высокой температуре активно реагирует с кислородом воздуха с образованием тулий (III) оксида:

4 Tm + 3 O 2 → 2 Tm 2 O 3

Медленно реагирует с водой, однако реакция ускоряется при нагревании с образованием гидроксида:

2 Tm + 6 H 2 O → 2 Tm (OH) 3 + 3 H 2 2 Tm + 3 F 2 → 2 TmF 3 [соль белого цвета] 2 Tm + 3 Cl 2 → 2 TmCl 3 [соль желтого цвета] 2 Tm + 3 Br 2 → 2 TmBr 3 [соль белого цвета] 2 Tm + 3 I 2 → 2 TmI 3 [соль желтого цвета]

4.2. Источники рентгеновского излучения

Несмотря на свою высокую стоимость, в портативных рентгеновских аппаратах в качестве источника излучения используются тулий, который был облученного нейтронами в ядерном реакторе. Эти источники активны в течение примерно одного года, как инструмент в мобильных медицинских и стоматологических пунктах, а также для выявления дефектов в труднодоступных механических и электронных компонентах. Такие источники не требуют серьезного радиационной защиты - достаточно небольшого покрытие из свинца.

5. Биологическая роль и предостережения

Биологических роль тулия не известна, хотя было отмечено, что он несколько стимулирует обмен веществ. Растворимые соли тулия есть немного токсичными, если их введено в организм в больших количествах, но нерастворимые соли нетоксичны. Туллий не всасывается корнями растений, и поэтому не попадает в пищевую цепь человека. Овощи обычно содержат только один миллиграмм тулия за тонну сухого веса).

Литература

  • Глоссарий терминов по химии / / Й.Опейда, О.Швайка. Ин-т физико-органической химии и углехимии им.. Л.М.Литвиненка НАН Украины, Донецкий национальный университет - Донецк: "Вебер", 2008. - 758 с. ISBN 978-966-335-206-0

Похожие публикации