Chevroletavtoliga - Автомобильный портал

Эдс сердца. Электрокардиография. Если обнаружены антитела

Синусоидальные ЭДС, напряжения, токи могут изображаться в виде векторов на декартовой плоскости (рис.4.3 а).

Докажем, что векторы ЭДС, напряжения, тока, изображенные в виде векторов в плоскости с осями О х, О у являются синусоидальными величинами

Рис.4.3. Векторное изображение синусоидальных ЭДС:

а - вращающийся вектор; б - кривая изменения его проекции на ось Оу

Пусть в плоскости с осями О х, О у вращается с постоянной скоростью w вектор ОА, длина которого равна амплитуде синусоидальной ЭДС e = E m ах sin(wt + y e ), т. е. ОА = E m ах.

За положительное направление вращения вектора ОА примем направление, противоположное вращению часовой стрелки, а угол поворота вектора отсчитываем от оси О х на угол y е.

Тогда проекции вектора ОА при его вращении на ось О у дадут мгновенные значения е; т. к. начальное положение вектора относительно оси О х - y e , то угол y e - начальная фаза. Через время t = T синусоидальная величина е совершит полный цикл изменения от 0 до ± . E m ах. – 0 (рис.4.2.б).

Так как при своем вращении вектор ОА содержит такие понятия, как максимальное и мгновенное значения синусоидальной величины, начальную фазу фазовый угол, частоту вращения, то синусоидальная величина может изображаться вектором. Так как е , u , i одной электрической цепи имеют одну и ту же частоту, а, следовательно, при вращении их взаимное расположение не меняется, то на практике векторы не вращают, а строят их, соблюдая углы между векторами, т. е. углы сдвига фаз. Отказавшись от вращения векторов, строят векторы не только максимального значения, но чаще всего действующих значений, не изображают осей координат, а начальный вектор располагают горизонтально.

Совокупность векторов E, U, I, относящихся к одной электрической цепи называют векторной диаграммой (рис.4.4).

Знак угла - сдвига фаз междувекторами U и I, определяется направлением от вектора тока к вектору напряжения.

На рис.4.4 угол положительный, так как отложен в направлении против вращения часовой стрелки.


Рис. 4.4. К определению угла сдвига фаз между напряжением и током



4.4. Комплексный метод расчета электрических цепей синусоидального тока

Все графические методы расчета цепей синусоидального тока не обеспечивают точного расчета электрических цепей, кроме того, они сложны и трудоемки.

Наиболее простым и точным методом расчета электрических цепей синусоидального тока является комплексный метод, основанный на теории комплексных чисел.

Синусоидальная величина изображается вращающимся вектором на комплексной плоскости с осями ±1 и ±j , где - мнимая единица, символ.

За положительное направление вращения вектора принято направление против часовой стрелки. За время, равное одному периоду, вектор совершает один оборот.

На рис.4.5 изображен вектор комплексного тока , которому соответствует комплексное число

Рис.4.5. Составляющие комплексного числа на комплексной плоскости

где I - модуль действующего значения тока, равный длине вектора;

где - действительная составляющая тока; - мнимая составляющая; y i = arctg () – аргумент тока, равный начальной фазе, т. е. угол между вектором и действительной полуосью +1 при t = 0.

Аргумент положительный, если вектор отложен в направлении против часовой стрелки, и отрицательный - если по часовой.

Комплексные значения синусоидальных величин обозначают несинусоидальных - z , S .

Над комплексными числами можно производить все алгебраические действия (при сложении и вычитании удобнее использовать алгебраическую форму, а при умножении, делении, возведении в степень, извлечении корня – показательную).

Алгебраическая форма записи:

Тригонометрическая форма записи:

İ = I cosy i + j siny i .

Показательная форма записи:

İ = Ie j y i .

Переход из одной формы записи в другую осуществляется по формуле Эйлера через тригонометрическую форму записи

e ± j α = cosα± j sinα.

Например: İ = 10e j 37º = 10cos37˚ + j 10sin37º = 10 · 0,8 + j 10 0,6 = = 8 + j 6 = (8² + 6²) 1/2 e +j arctg6/8 = 10e +j 37º (А).

Поскольку e ± j 90º = cos90º ± j sin90º = ±j , то умножение комплексного числа на + j приводит к увеличению его аргумента на 90º и повороту вектора на 90º против часовой стрелки (в положительном направлении), умножение на -j – к уменьшению аргумента на 90º и повороту вектора на 90º в отрицательном направлении (по часовой стрелке).

При работе с комплексными числами используют и сопряженные комплексные величины, имеющие одинаковые модули и одинаковые по величине, но противоположные по знаку аргументы:

İ = 10e j 37º , А; I * =10e j 37º , А.

Произведение İ I * = 10e j 37º 10e j 37º = 100e j 0° , À.

Электрические явления в сердечной мышце

На поверхности мышечного волокна, находящегося в состоянии покоя, разности потенциалов нет (ток покоя можно зарегистрировать только с помощью внутриклеточного электрода). При подключении к противоположным концам клетки гальванометра стрелка его отклоняться не будет, запишется прямая линия - изоэлектрическая линия. При возбуждении, деполяризации, возбужденные участки становятся электроотрицательными, а невозбужденные - сохраняют положительный заряд. Если дифферентный электрод обращен к положительному заряду диполя, то регистрируется отклонение кривой вверх от изолинии. Если дифферентный электрод обращен к отрицательному заряду - отклонение вниз. Амплитуда зубца увеличивается по мере распространения возбуждения в клетке. Когда вся клетка возбудилась, вся ее наружная поверхность приобрела отрицательный заряд, разность потенциалов исчезла, вновь начинает записываться изоэлектрическая линия. При выходе из возбуждения, реполяризации, вновь возникает разность потенциалов между уже вышедшими и заряженными положительно участками и еще возбужденными, отрицательно заряженными участками. Это сопровождается появлением следующего зубца. Направление записи этого зубца зависит от того, какие участки прилежат к электроду: еще возбужденные - отрицательный зубец, уже вышедшие из возбуждения - положительный. Полный выход из состояния возбуждения приводит к поляризации клетки, вся наружная поверхность ее мембраны заряжена положительно, разности потенциалов нет, и вновь записывается изоэлектрическая линия.

Итак, в период распространения возбуждения клетка миокарда имеет два противоположно заряженных полюса и является как бы маленьким генератором электрического тока.

Поверхность желудочков сердца можно рассматривать как обширную поляризованную мембрану, охватывающую единую огромную клетку. Закономерно меняющиеся во время возбуждения сердца величина и направление электрических потенциалов сердца сопровождаются изменением потенциалов и на поверхности тела человека. Ориентация электрических зарядов в тканях тела подчиняется общим законам соответственно сердечного суммарному диполю.

В основном процессе возбуждения электрическая ось сердца направлена влево вниз - от отрицательного полюса к положительному. Поэтому с поверхности тела всегда можно зарегистрировать разность потенциалов от различных пунктов электрического поля сердца.

Формирование элементов ЭКГ

На ЭКГ записывается суммарная разность потенциалов от всех клеток миокарда, или, как ее называют, электродвижущая сила сердца (ЭДС сердца). Электрокардиограф регистрирует напряжение (разность электрических потенциалов) между 2 точками, то есть в каком-то отведении. Другими словами, ЭКГ-аппарат фиксирует на бумаге (экране) величину проекции ЭДС сердца на какое-либо отведение.

Стандартная ЭКГ записывается в 12 отведениях:

3 стандартных (I, II, III);

3 усиленных от конечностей (aVR, aVL, aVF);

6 грудных (V1, V2, V3, V4, V5, V6).

1) Стандартные отведения (предложил Эйнтховен в 1913 году). I - между левой рукой и правой рукой, II - между левой ногой и правой рукой, III - между левой ногой и левой рукой.

2) Усиленные отведения от конечностей (предложены Гольдбергером в 1942 году).

Используются те же самые электроды, что и для записи стандартных отведений, но каждый из электродов по очереди соединяет сразу 2 конечности, и получается объединенный электрод Гольдбергера. На практике запись этих отведений производится простым переключением рукоятки на одноканальном кардиографе (т.е. электроды переставлять не нужно).

aVR - усиленное отведение от правой руки (сокращение от augmented voltage right - усиленный потенциал справа). aVL - усиленное отведение от левой руки (left - левый) aVF - усиленное отведение от левой ноги (foot - нога)

3) Грудные отведения (предложены Вильсоном в 1934 году) записываются между грудным электродом и объединенным электродом от всех 3 конечностей.Точки расположения грудного электрода находятся последовательно по передне-боковой поверхности грудной клетки от средней линии тела к левой руке.

V1 - в IV межреберье по правому краю грудины. V2 V3 V4 - на уровне верхушки сердца. V5 V6 - по левой среднеподмышечной линии на уровне верхушки сердца.

Рис. 1

12 указанных отведений являются стандартными. При необходимости могут регистрироваться и дополнительные отведения.Неслучайно такое большое количество отведений. ЭДС сердца - это вектор ЭДС сердца в трехмерном мире (длина, ширина, высота) с учетом времени. На плоской ЭКГ-пленке мы можем видеть только 2-мерные величины, поэтому кардиограф записывает проекцию ЭДС сердца на одну из плоскостей во времени.

Рис. 2

В каждом отведении записывается своя проекция ЭДС сердца. Первые 6 отведений (3 стандартных и 3 усиленных от конечностей) отражают ЭДС сердца в так называемой фронтальной плоскости (см. рис.) и позволяют вычислять электрическую ось сердца с точностью до 30° (180° / 6 отведений = 30°). Недостающие 6 отведений для формирования круга (360°) получают, продолжая имеющиеся оси отведений через центр на вторую половину круга.

6 грудных отведений отражают ЭДС сердца в горизонтальной (поперечной) плоскости. Это позволяет уточнить локализацию патологического очага (например, инфаркта миокарда): межжелудочковая перегородка, верхушка сердца, боковые отделы левого желудочка и т.д.

При разборе ЭКГ используют проекции вектора ЭДС сердца, поэтому такой анализ ЭКГ называется векторным.

В процессе электрической активности сердца возникают и в определенном порядке взаимодействуют многочисленные и разнонаправленные силы, отражающие множество появляющихся диполей. Если регистрировать этот процесс при условии непосредственного приближения электродов к поверхности сердца, то формирование ЭКГ будет зависеть от того, как ориентирован результирующий вектор всех одномоментных сил по отношению к дифферентному электроду. Представим, что дифферентный электрод располагается слева внизу от массы возбуждающегося миокарда, а индефферентный - справа наверху (такой принцип размещения электродов является самым обычным в электрокардиографии).

Наиболее высоким автоматизмом обладает синусовый узел, поэтому в норме именно он является водителем ритма сердца. Однако, из-за слишком малой величины возникающей разности потенциалов, электрическая активность синусового узла на ЭКГ не регистрируется. Возбуждение миокарда предсердий начинается в области синусового узла и распространяется по поверхности миокарда во все стороны. Разнонаправленные векторы деполяризации, взаимодействуя друг с другом, частично нейтрализуются. Так как синусовый узел находится в верхней части правого предсердия, то большинство векторов ориентированы вниз и влево. Результирующий вектор возбуждения предсердий направлен, благодаря этому, вниз и влево. Такому направлению волны деполяризации способствует и ускоренное проведение импульса вниз и влево по межузловым и межпредсердным специализированным трактам. Находящийся внизу слева дифферентный электрод обращен к положительному заряду диполя во время деполяризации предсердий, поэтому регистрируется положительное отклонение - зубец Р, продолжительность которого в норме достигает 0,1 с. В течение первых 0,02 - 0,03 с своего формирования зубец Р отражает возбуждение только правого предсердия, после этого - суммарную активность обоих предсердий, а последние 0,02 - 0,03 с зубца Р связаны с деполяризацией только левого предсердия, т.к. правое предсердие к этому времени уже полностью возбуждено.

После окончания деполяризации предсердий начинается ихреполяризация, которая происходит в той же последовательности, как происходило возбуждение. Ранее всего положительный потенциал покоя восстанавливается в области синусового узла, поэтому результирующий вектор реполяризации предсердий направлен вверх вправо, от дифферентного электрода. То обусловливает формирование отрицательного зубца Та, отражающего конечную фазу реполяризации предсердий. Он очень мал по амплитуде, а по времени совпадает с желудочковым комплексом ЭКГ, поэтому в обычных условиях не может быть выделен и подвергнут анализу.

Рис. 3

Через 0,02 - 0,04 с от начала деполяризации предсердий волна возбуждения уже достигает области атриовентрикулярного узла. Здесь скорость распространения возбуждения резко снижается, после чего импульс быстро распространяется по пучку Гиса и внутрижелудочковым проводящим путям, достигая миокарда желудочков. На ЭКГ выделяется сегмент Р - Q(R) - отрезок линии записи от конца зубца Р до начала желудочкого комплекса QRS. Интервал P - Q(R) отражает время предсердно-желудочкого проведения импульса и составляет в норме 0,12 - 0,19 с. Нормальные колебания продолжительности P - Q(R) зависят от изменений продолжительности атриовентрикулярной задержки.

Рис. 4

Возбуждение желудочков, в отличие от возбуждения предсердий, распространяется не из одного центра, а из множества очагов, расположенных преимущественно в субэндокардиальных слоях миокарда. Источниками деполяризации являются волокна Пуркинье - конечный разветвления внутрижелудочковых проводящих путей. распространение возбуждения стенки желудочков направлено от множественных очагов в субэндокардиальных отделах к субэпикардиальным отделам, т.е. перпендикулярно к наружной поверхности сердца. Для детального разбора электрических сил, отражающих деполяризацию желудочков, удобно разделить этот непрерывный процесс на три этапа.

Первый - начальный - связан с появлением очагов деполяризации в левой части межжелудочковой перегородки, куда раньше всего приходит волна возбуждения по разветвлениям левой ножки пучка Гиса. Вектор деполяризации направлен от левой к правой поверхности межжелудочковой перегородки. При расположении активного электрода слева начальный этап деполяризации желудочков отражается небольшим отрицательным отклонением (зубцом Q), продолжительность которого составляет 0,02 с. Вслед за деполяризацией левой поверхности межжелудочковой перегородки начинается деполяризация ее правых отделов, куда возбуждение приходит по правой ножке пучка Гиса. Направление вектора этой деполяризации справа налево нейтрализует первоначально возникшее электрическое поле, и поэтому начальный этап возбуждения желудочков отражается небольшим и непродолжительным зубцом.

Следующий - главный - этап отражает распространение возбуждение через миокард свободных стенок желудочка. Суммарный вектор деполяризации левого желудочка ориентирован влево. Равнонаправленность этих векторов приводит к частичной нейтрализации электрических сил. Большая мышечная масса левого желудочка обусловливает его электрического поля над электрическим полем правого желудочка, поэтому результирующий вектор деполяризации желудочков ориентирован влево. При расположении активного электрода слева, этот главный этап деполяризации желудочков, соответствующий 0,03 - 0,05 с, регистрируется в виде положительного отклонения (зубец R).

Заключительный этап деполяризации желудочков отражает возбуждение заднебазальных межжелудочковой перегородки и желудочков. Вектор деполяризации ориентирован вверх и чаще вправо; направление терминальной деполяризации значительно варьирует. При расположении дифферентного электрода слева от сердца терминальных этап деполяризации чаще отражен небольшим отрицательным зубцом (S).

Таким образом, последовательные изменения величины и направления результирующего вектора электрического поля во время возбуждения желудочков приводят к тому, что этот единый процесс отражается комплексом QRS, состоящим их зубцов разной величины и разной полярности. В зависимости от положения электродов зубцы, отражающие начальный, главный и терминальный этапы деполяризации, могут иметь различные направления (и, вследствие этого, различные буквенные обозначения). Зубцом Q обозначают первое отклонение желудочкового комплекса, если оно направлено вниз от изолинии. Отклонение записи вверх от изолинии, независимо от того, когда оно регистрируется (т.е. является ли первым или последующим) называется зубцом R. Отрицательное отклонение, следующее за положительным, обозначают как зубец S. Таким образом, зубец Q может быть лишь один в желудочковом комплексе, а в тех случаях, когда комплекс начинается положительным отклонением, зубец Q отсутствует. Если положительных зубцов несколько, то они именуются зубцами R, но каждый последующий обозначается как R?,R? ?и т.д. Зубцов S тоже может быть несколько, и тогда они обозначаются как S?, S? ?и т.д. общая продолжительность комплекса QRS, отражающая время внутрижелудочковой проводимости составляет 0,06 - 0,10 с.

В отличие от предсердий, миокард желудочков различных слоев и отделов обладает различной продолжительностью электрических процессов. Потенциал действия субэпикардиальных слоев имеет меньшую продолжительность, чем потенциал действия субэндокардиальных слоев; потенциал действия миокардиальных волокон в области верхушки сердца короче, чем в области основания сердца. Это приводит к тому, что в стенке желудочка процессы реполяризации раньше начинаются в субэпикардиальных слоях и в области верхушки, тогда как субэндокардиальные слои и основание желудочков дольше сохраняют отрицательные заряды. Во время реполяризации результирующий вектор направлен поэтому влево, т. е. в ту же сторону, что и главный вектор деполяризации. Наибольшая электродвижущая сила возникает в фазе конечной реполяризации, этот процесс отображается появлением зубца Т. при расположении дифферентного электрода слева, вектор реполяризации желудочков направлен к этому электроду и зубец Т регистрируется положительным. Между концом комплекса QRS и началом зубца Трасполагается сегмент S-T: он соответствует второй фазе реполяризации миокарда желудочков, во время которой потенциал почти не изменяет своей величины. Разность потенциалов почти отсутствует, поэтому сегмент S - Tрасполагается на изолинии. Различная продолжительность потенциала действия в разных отделах миокарда желудочков приводит к небольшому асинхронизму фаз реполяризации и появлению небольшой разности потенциалов, что и сообщает сегменту S-T некоторую кривизну с плавным переходом его в зубец Т. интервал времени от начала комплекса QRS до начала зубца Т отражает весь период электрической активности желудочков (электрическая систола). В норме Q - T составляет 0,36 - 0,44 с и зависит от пола, возраста и частоты ритма. Вслед за зубцом Т обычно регистрируется еще одно положительное отклонение небольшой амплитуды - зубец U. Механизмы его появления точно не установлены и, по-видимому, не всегда однозначны.

Рис. 5

В процессе исследования всех зубцов, сегментов и интервалов, регистрируемых электрокардиограммой, выводится электрокардиографическое заключение, которое должно включать в себя:

1. Источник ритма (синусовый или нет).

2. Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.

4. Положение электрической оси сердца.

5. Наличие 4 синдромов:

нарушение ритма

нарушение проводимости

гипертрофия и/или перегрузка желудочков и предсердий

повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

Тело как объемный проводник электрических явлений

Ткани и органы, окружающие сердце, играют роль проводников, передающих электрические заряды на поверхность тела.Величина потенциалов по мере удаления от сердца уменьшается. В однородной проводящей среде величина потенциала любой точки обратно пропорциональна величине расстояния от нее до источника разности потенциала. Ткани тела обладают различной электропроводностью, что вносит значительные искажения в распределение и величину потенциалов на поверхности тела. ЭКГ может изменяться под влиянием таких состояний как ожирение, кахексия, отеки тела, скопление жидкости в плевре и перикарде, эмфизема и уплотнение легких и т.п.

В дальнейшем будем представлять себе, что якорь разрезан по осевой плоскости и выпрямлен так, что пазы и обмотка якоря лежат в одной плоскости. Кроме того, будем предполагать, что такой развернутый якорь будет двигаться относительно неподвижных полюсов справа налево (рисунок 1, а ), а полюсы находятся над плоскостью чертежа. При этом электродвижущие силы в проводниках обмотки будут направлены под северными полюсами вниз, а под южными - вверх.

Шаг секции обычно определяется по элементарным пазам:

При этом y 1z = y 1 / u п, ε z = ε / u п. Очевидно, что для равносекционной обмотки y 1z есть целое число.

В секциях и во всей обмотке индуктируются переменные электродвижущие силы. Как известно, синусоидальные электродвижущие силы могут быть изображены на векторных диаграммах в виде векторов. Для изучения свойств якорных обмоток машин также целесообразно пользоваться подобными . Однако при этом ввиду несинусоидальной формы электродвижущих сил проводников, витков и секций обмотки якоря необходимо рассматривать только основные гармоники этих электродвижущих сил, то есть первую гармонику кривой вида рисунка 4, а , представленного в статье «Принцип действия машины постоянного тока ».

В кривой поля под полюсами B δ (рисунок 1, б ) можно выделить первую, или основную, гармонику B δ1 , которой равен двойному полюсному делению 2 × τ. Таким образом, в электромагнитном отношении дуга окружности машины, соответствующая 2 × τ, равна 360 градусам, которые называются электрическими (360° электрических).
Очевидно, что полная окружность якоря, или геометрический угол 360°, соответствует электрическому углу p × 360° электрических.

Рисунок 2. Схема (а ), звезда электродвижущих сил пазов (б ) и векторная диаграмма электродвижущей силы секции 1 ’ - 5 ’’ (в ) обмотки с Z = Z э = 18, 2 × p = 4

Различные пазы якоря располагаются относительно основной гармоники поля полюсов различным образом, и поэтому основные гармоники электродвижущих сил проводников различных пазов будут сдвинуты по вазе. Угол сдвига между электродвижущими силами проводников соседних пазов

(3)

Если вычертить векторы электродвижущих сил проводников всех пазов, то получим звезду пазовых электродвижущих сил. На рисунке 2, б изображена такая звезда при 2 × p = 4 и Z = 18, когда

Векторы рисунка 2, б вращаются с угловой скоростью

ω = 2 × π × f = 2 × π × p × n

против часовой стрелки, и их проекции на неподвижную ось времени равны мгновенным значениям электродвижущих сил. Обычно ось времени направлена вертикально вверх, и тогда в момент времени, изображенный на рисунке 2, а , электродвижущие силы проводников пазов 1 и 10 имеют максимальное положительное значение.

Звезда пазовых электродвижущих сил имеет Z векторов, но отдельные векторы могут совпадать по , и число лучей поэтому может быть меньше Z , так как при построении звезды и обходе векторов электродвижущих сил всех пазов совершается p полных оборотов. Если, например, Z / p = целому числу, то и число лучей равно этой величине, и диаграмма состоит из p совпадающих или накладывающихся друг на друга звезд.

Электродвижущие силы проводников витка или проводников двух сторон секции сдвинуты на угол

α с = y 1z × α,

который на основании выражений (1) и (3) составляет

(4)

При ε z = 0, то есть при полном шаге, векторы этих электродвижущих сил сдвинуты на 180°.

При Z = 18 и 2 × p = 4, что соответствует рисунку 2, а , шаг секций по формуле (1) будет

то есть можно взять y 1z = 5 или y 1z = 4. Возьмем y 1z = 4 (рисунок 2, а ), тогда по формуле (4)

α с = y 1z × α = 4 × 40° = 160°

и векторы электродвижущих сил проводников секции, находящейся в пазах 1 и 1 + 4 = 5, будут взаимно расположены так, как показано на рисунке 2, в .

На рисунке 2, в , а также на всех последующих рисунках с одним штрихом обозначены векторы сторон секций, лежащих в верхнем слое паза, а с двумя штрихами - векторы сторон в нижнем слое.

При построении звезды (рисунок 2, б ) для электродвижущих сил проводников всех пазов было принято одинаковое положительное направление (например, снизу вверх на рисунке 1, а ). Поэтому по контуру витка электродвижущие силы двух его составляющих проводников вычитаются, и для случая, показанного на рисунке 2, в , электродвижущая сила витка E в равна разности векторов 1’ и 5’’. В другом масштабе вектор E в на рисунке 2, в представляет собой также электродвижущую силу секции E с.

Будем присваивать секции номер того паза, в котором она лежит своей верхней стороной.

Очевидно, что векторы электродвижущих сил двух секций, лежащих в соседних пазах, сдвинуты относительно друг друга на такой же угол α, как и электродвижущие силы проводников двух соседних пазов. Поэтому звезда электродвижущих сил секций аналогична звезде пазовых электродвижущих сил на рисунке 2, б , но повернута относительно звезды электродвижущих сил сторон секций при укороченном шаге на угол α/2 = 40°/2 = 20° против часовой стрелки.

Применение векторных диаграмм для анализа свойств обмоток рассмотрено в следующих статьях.

Зубцовые пульсации электродвижущих сил

Зубчатое строение якоря способствует пульсации электродвижущих сил секций и электродвижущих сил обмотки в целом.

f z = Z × n

и как следствие пульсации электродвижущих сил с такой же частотой в обмотке. Во избежание этого выбирают Z / p равным нечетному числу. При этом сумма магнитных сопротивлений воздушных зазоров под двумя соседними полюсами при повороте якоря изменяться не будет и пульсации магнитного потока исчезнут.

Пульсации потока рассмотренного вида называются продольными. Кроме них, при движении якоря возникают также поперечные пульсации потока, выражающиеся в том, что ось магнитного потока полюсов в зазоре колеблется с частотой f z около среднего положения (рисунок 4, а и б ). Вследствие этого потокосцепление и ее электродвижущая сила пульсируют с той же частотой.

Эффективной мерой против влияния поперечных пульсаций потока является скос пазов относительно полюсного наконечника (рисунок 5) или скос полюсного наконечника относительно оси машины при нескошенных пазах на якоре. Скос пазов производится на 0,5 - 1,0 зубцового деления и применяется в машинах мощностью до 30 - 40 кВт. При скосе пазов снижается также шум машины.

Подробности

В сердце происходят электрические и механические процессы.
Электрические процессы : автоматия, возбуждение, проведение. Изучаются с помощью ЭКГ.
Механические процессы : сокращение, расслабление. Изучаются с помощью многочисленных методов измерения давления и объема крови в полостях сердца.

ЭЛЕКТРОКАРДИОГРАФИЯ.

ЭКГ – запись биопотенциалов (которые возникают в сердце во время распространения возбуждения) с помощью электродов, расположенных на поверхности тела . ЭКГ помогает определить место возикновения импульса (водитель ритма) и характер распространения возбуждения по миокарду предсердий и желудочков.

ГЕНЕЗ ЗУБЦОВ :(См. схему ЭКГ):

  • зубец Р отражает процесс деполяризации предсердий;
  • сегмент PQ (изоэлектрическая линия) отражает время проведения через АВ-узел (атриовентрикулярная задержка);
  • комплекс зубцов QRS отражает процесс деполяризации желудочков;
  • сегмент ST (изоэлектрическая линия) – полное возбуждение всех кардиомиоцитов желудочков (совпадает с фазой «плато» потенциала действия);
  • зубец Т отражает процесс реполяризации желудочков.

ДИПОЛЬНАЯ КОНЦЕПЦИЯ.

Поверхность возбужденного участка миокарда заряжена отрицательно, поверхность невозбужденного участка миокарда заряжена положительно. На границе раздела возбужденных и невозбужденных участков миокарда формируется множество диполей.

Диполь – это совокупность двух точечных электрических заряда (равных по величине и противоположных по знаку), расположенных на исчезающе малом расстоянии друг от друга. Вектор диполя имеет направление от (-) к (+).

Векторы диполей можно суммировать:

(1) если векторы направлены в одну и ту же сторону, к первому вектору добавляют второй;

(2) если векторы направлены в противоположные стороны, из большего вектора вычитают меньший;

(3) если векторы направлены под углом друг к другу, их складывают по правилу «параллелограмма».

В результате сложения векторов всех диполей получают суммарный моментный вектор (вектор ЭДС сердца). Проекция суммарного моментного вектора на ось отведения соответствует определенному зубцу на кривой ЭКГ.

Отведение ЭКГ – это расположение двух электродов на поверхности тела (в определенных точках). Линия, соединяющая два электрода, называется осью отведения . Ось отведения имеет определенную полярность: один из электродов «отрицательный» (-), т.е. сигнал от него подается на отрицательный «вход» электрокардиографа, другой электрод -«положительный» (+), т.е. сигнал от него подается на положительный «вход» электрокардиографа.

При обследовании больных регстрируют как минимум 12 отведений : 3 стандартных отведения от конечностей (I, II и III); 3 усиленных отведения от конечностей (AVR, AVL, AVF) и 6 грудных отведений (V1 – V6).

Стандартные отведения от конечностей.

Биполярные (двухполюсные) – оба электрода активные. Оси этих отведений представляют собой стороны треугольника Эйнтховена:
1 станд.отв.: правая рука (-) и левая рука (+)
II станд.отв.: правая рука (-) и левая нога (+)
III станд.отв.: левая рука (-) и левая нога (+)

Усиленные отведения от конечностей.

Униполярные (однополюсные) – один электрод активный другой – пассивный (индифферентный, электрод сравнения, нулевой).

AVR : активный электрод на правой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVL : активный электрод на левой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVF : активный электрод на левой ноге (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

Оси всех отведений от конечностей расположены во фронтальной плоскости. Для анализа ЭКГ их можно объединить в общую шестиосевую систему координат.

Грудные отведения : униполярные (однополюсные) – один электрод активный, расположен в определенной точке на поверхности грудной клетки (+); другой –электрод сравнения (нулевой) получен путем соединения всех трех электродов конечностей. Сигнал от него через дополнгительное сопротивление подается на отрицательный «вход» электрокардиографа.
Оси грудных отведений расположены в горизонтальной плоскости.

Векторы ЭДС сердца .

  • Вектор Р – предсердный вектор – нарвлен сверху вниз, справа налево. Вектор Q – 1-ый вектор деполяризации желудочков – направлен снизу вверх, слева направо (0.02 сек от начала деполяризации желудочков; возбуждение нижней части межжелудочковой перегородки).
  • Вектор R – 2-ой вектор деполяризации желудочков – направлен сверху вниз, справа налево (0.04 сек от начала деполяризации желудочков; возбуждение распространяется от верхушки сердца к основанию желудочков, причем от эндокарда к эпикарду).
  • Вектор S – 3-ий вектор деполяризации желудочков – направлен снизу вверх, слева направо, (0.06 сек от начала деполяризации желудочков; возбуждение основания левого желудочка).

Вектор Т – направлен сверху вниз, справа налево (реполяризация, происходит во всех отделах желудочков, причем от эпикарда к эндокарду).

Проекция суммарного моментного вектора (P,Q,R,S,T) на ось отведения соответствует определенному зубцу на кривой ЭКГ. Если проекция вектора направлена к (+) полюсу оси отведения, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный зубец). Если проекция вектора направлена к (-) полюсу оси отведения, зубец ЭКГ направлен вниз от изоэлектрической линии (отрицательный зубец). Амплитуда зубца пропорциональна длине проекции вектора на оси отведения. Если вектор проходит параллельно оси отведения – его проекция на ось данного отведения (а значит и амплитуда зубца в данном отведении) максимальна. Если вектор проходит перпендикулярно к оси отведения – его проекция на ось данного отведения равна нулю (значит зубец в данном отведении отсутствует).

Электрическая ось сердца.

Это проекция среднего результирующего вектора деполяризации желудочков на фронтальную плоскость. Средний результирующий вектор деполяризации желудочков получен путем суммации трех моментных векторов – Q, R и S. Направление электрической и анатомической осей сердца у взрослого здорового человека совпадают. У астеников это направление более вертикальное (правограмма), у гиперстеников – более горизонтальное (левограмма).

18. Методика регистрации ЭКГ. Виды отведений .Работа 5.8 – стр.188

ЭКГ – запись биопотенциалов (которые возникают в сердце во время распространения возбуждения) с помощью электродов, расположенных на поверхности тела. ЭКГ помогает определить место возикновения импульса (водитель ритма) и характер распространения возбуждения по миокарду предсердий и желудочков.

ГЕНЕЗ ЗУБЦОВ:(См. схему ЭКГ): зубец Р отражает процесс деполяризации предсердий; сегмент PQ (изоэлектрическая линия) отражает время проведения через АВ-узел (атриовентрикулярная задержка); комплекс зубцов QRS отражает процесс деполяризации желудочков; сегмент ST (изоэлектрическая линия) – полное возбуждение всех кардиомиоцитов желудочков (совпадает с фазой «плато» потенциала действия); зубец Т отражает процесс реполяризации желудочков.

Отведение ЭКГ – это расположение двух электродов на поверхности тела (в определенных точках). Линия, соединяющая два электрода, называется осью отведения. Ось отведения имеет определенную полярность : один из электродов «отрицательный» (-), т.е. сигнал от него подается на отрицательный «вход» электрокардиографа, другой электрод -«положительный» (+), т.е. сигнал от него подается на положительный «вход» электрокардиографа.

При обследовании больных регстрируют как минимум 12 отведений: 3 стандартных отведения от конечностей (I, II и III); 3 усиленных отведения от конечностей (AVR, AVL, AVF) и 6 грудных отведений (V 1 – V 6).

Стандартные отведения от конечностей: биполярные (двухполюсные) – оба электрода активные Оси этих отведений представляют собой стороны треугольника Эйнтховена:

1 станд.отв.: правая рука (-) и левая рука (+)

II станд.отв.: правая рука (-) и левая нога (+)

III станд.отв.: левая рука (-) и левая нога (+)

Усиленные отведения от конечностей : униполярные (однополюсные) – один электрод активный другой – пассивный (индифферентный, электрод сравнения, нулевой).

AVR: активный электрод на правой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVL: активный электрод на левой руке (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

AVF: активный электрод на левой ноге (+); электроды двух других конечностей соединены и через дополнгительное сопротивление подают сигнал (потенциал близок нулю) на отрицательный «вход» электрокардиографа.

Оси всех отведений от конечностей расположены во фронтальной плоскости. Для анализа ЭКГ их можно объединить в общую шестиосевую систему координат.


Грудные отведения : униполярные (однополюсные) – один электрод активный, расположен в определенной точке на поверхности грудной клетки (+); другой –электрод сравнения (нулевой) получен путем соединения всех трех электродов конечностей. Сигнал от него через дополнгительное сопротивление подается на отрицательный «вход» электрокардиографа.

Оси грудных отведений расположены в горизонтальной плоскости.

19. Амплитудно-временные характеристики электрокардиограммы здорового человека Анализ электрокардиограммы здорового человекаРабота 5.8 – стр.188

20. Определение электрической оси сердца по стандартным отведениям ЭКГ Алипов

Что называют осью отведения? В каких единицах и как определяют положение оси отведения?

Ось отведения – условная линия, соединяющая два электрода данного ЭКГ-отведения. Положение оси отведения определяют величиной угла, образованного положительной полуосью данного отведения и положительной полуосью 1 стандартного отведения (горизонтальная линия), условно принятой за 0.

Укажите положение осей стандартных отведений (I, II, III) в трехосевой системе координат.

I стандартное отведение 0 о; II стандартное отведение +60 о; III +120 о.

12. Укажите направление осей однополюсных усиленных отведений от конечностей (aVR, aVL, aVF) в шестиосевой системе координат.

aVF +90; aVR + 210 (-150); aVL +330 (-30).

В какой плоскости преимущественно регистрируются потенциалы электрического поля сердца с помощью стандартных и усиленных однополюсных отведений от конечностей и грудных отведений?

С помощью отведений от конечностей – во фронтальной плоскости, с помощью грудных отведений – в горизонтальной плоскости.

Что называют средним результирующим вектором ЭДС сердца?

Среднюю величину и направление суммарного вектора ЭДС сердца в течение всего периода распространения волны деполяризации или реполяризации по соответствующим отделам сердца.

Сколько средних результирующих векторов ЭДС сердца в течение сердечного цикла принято различать? Как их называют и обозначают?

Три вектора: вектор деполяризации предсердий (Р), вектор деполяризации желудочков (QRS), вектор реполяризации желудочков (Т).

Векторы ЭДС сердца . Вектор Р – предсердный вектор – нарвлен сверху вниз, справа налево. Вектор Q – 1-ый вектор деполяризации желудочков – направлен снизу вверх, слева направо (0.02 сек от начала деполяризации желудочков; возбуждение нижней части межжелудочковой перегородки).

Вектор R – 2-ой вектор деполяризации желудочков – направлен сверху вниз, справа налево (0.04 сек от начала деполяризации желудочков; возбуждение распространяется от верхушки сердца к основанию желудочков, причем от эндокарда к эпикарду).

Вектор S – 3-ий вектор деполяризации желудочков – направлен снизу вверх, слева направо, (0.06 сек от начала деполяризации желудочков; возбуждение основания левого желудочка).

Вектор Т – направлен сверху вниз, справа налево (реполяризация, происходит во всех отделах желудочков, причем от эпикарда к эндокарду).

Проекция суммарного моментного вектора (P,Q,R,S,T) на ось отведения соответствует определенному зубцу на кривой ЭКГ. Если проекция вектора направлена к (+) полюсу оси отведения, зубец ЭКГ направлен вверх от изоэлектрической линии (положительный зубец). Если проекция вектора направлена к (-) полюсу оси отведения, зубец ЭКГ направлен вниз от изоэлектрической линии (отрицательный зубец). Амплитуда зубца пропорциональна длине проекции вектора на оси отведения. Если вектор проходит параллельно оси отведения – его проекция на ось данного отведения (а значит и амплитуда зубца в данном отведении) максимальна. Если вектор проходит перпендикулярно к оси отведения – его проекция на ось данного отведения равна нулю (значит зубец в данном отведении отсутствует).

Электрическая ось сердца. – это проекция среднего результирующего вектора деполяризации желудочков на фронтальную плоскость. Средний результирующий вектор деполяризации желудочков получен путем суммации трех моментных векторов – Q, R и S. Направление электрической и анатомической осей сердца у взрослого здорового человека совпадают. У астеников это направление более вертикальное (правограмма), у гиперстеников – более горизонтальное (левограмма).

21. Исследование сердечного выброса СВ учебник

22. Оценка сократительной функции миокарда учебник

Показатели давления: изучают скорость увеличения давления в желудочках сердца во время изометрического сокращения (dP/dt). Для этого проводят зондирование полостей сердца и регистрацию кровяного давления с помощью обычного и дифференциального манометра. Показатель dP/dt для левого желудочка 2000мм Hg/сек, для правого желудочка 200 мм Hg/сек.

Показатели объема: (1) минутный объем крови МОК (или сердечный выброс СВ) – объем крови, который сердце перекачивает в артерии за минуту. МОК = СО х ЧСС; МОК=70 мл х 75 уд/мин = 5 л/мин (ЧСС – частота сердечных сокращений)

Сердечный индекс (СИ) = МОК, который приходится на 1 м 2 площади поверхности тела. (в норме 3-4 л/мин/м 2) – показывает, насколько сердечная деятельность удовлетворяет метаболические потребности организма в покое.

Методы определения МОК: (1)метод Фика, (2) метод разведения индикатора (см.учебник)

(2) систолический объем (СО) – объем крови, который поступает из желудочка в артерии во время одной систолы (примерно 70 мл). СО = МОК : ЧСС

Систолический объем правого и левого желудочков в норме одинаковый.

Фракция выброса (ФВ) = СО : КДО (в норме 0.5-0.7) – показывает, какую часть конечно-диастолического объема крови (КДО) желудочек перекачивает в артерии во время систолы.

Методы определения СО: УЗИ (ультразвуковое исследование) в настоящее время успешно заменило многие рентгеновские и др. методы. Данные УЗИ обрабатывает компьютер и расчитывает все важнейшие показатели деятельности сердца.

23. Исследование звуковых явлений - тонов сердца (аускультация, фонокардиография). Работа 5.10 – стр.191

ТОНЫ СЕРДЦА

Звуки, которые возникают во время сердечных сокращений, называются тонами сердца. Обычно при аускультации слышны основные тоны I и II (и только иногда можно услышать тоны III и IV – чаще у детей и спортсменов). Выслушивание тонов сердца дает информацию о состоянии клапанов (недостаточность) и отверстий (стеноз), а так же о состоянии миокарда..

ПРОИСХОЖДЕНИЕ ТОНОВ СЕРДЦА:

I тон (систолический) возникает в самом начале систолы желудочков за счет напряжения мышц желудочков и захлопывания атриовентрикулярных клапанов.

II тон (диастолический) возникает в самом начале диастолы желудочков за счет захлопывания полулунных клапанов оарты и легочной артерии.

III тон (диастолический) возникает во время быстрого пассивного наполнения желудочков.

IV тон (предсердный) возникает во время систолы предсердий (т.е. быстрого активного наполнения желудочков).

МЕСТА ВЫСЛУШИВАНИЯ ТОНОВ СЕРДЦА

I и II тоны хорошо слышны над всей поверхностью сердца. Чтобы оценить состояние каждого из четырех клапанов (два атриовентрикулярных и два полулунных клапана) найдены четыре точки на поверхности грудной клетки. В каждой из этих точек наилучшим образом выслушиваются звуки, создаваемые одним клапаном. Эти точки не совпадают с местом проекции клапанов на поверхность грудной клетки; звуки работающего клапана доносятся сюда током крови.

(1) Место выслушивания левого атриовентрикулярного клапана (I тон) – в области верхушки сердца (пятое межреберье слева на 1.5 см кнутри от среднеключичной линии).

(2) Место выслушивания правого атриовентрикулярного клапана (I тон) – по срединной линии у места прикрепления мечевидного отростка к грудине.

(3) Место выслушивания полулунного клапана аорты справа

у края грудины.

(4) Место выслушивания полулунного клапана легочной артерии (II тон) – во втором межреберье слева у края грудины.

ЗАПИСЬ ТОНОВ СЕРДЦА НАЗЫВАЕТСЯ ФОНОКАРДИОГРАММОЙ.

При сопоставлении ФКГ и ЭКГ важно учесть, что I тон (ФКГ) возникает после зубца Q (ЭКГ) – во время зубца R (от зубца Q до I тона проходит фаза асинхронного сокращения, когда атриовентрикулярные клапаны еще открыты). II тон возникает в конце зубца Т (ЭКГ).

24. Определение артериального давления по методу Короткова и Рива-Роччи Работа 5.23 – стр.211

АД можно измерить прямым (кровавым) методом (введение иглы, катетера в артерию) и непрямым (бескровным) методом (пальпаторный метод Рива-Роччи или аускультативный метод Короткова).

25. Прямая регистрация артериального давления (3 типа волн на кривой АД ) Работа 5.33 – стр.226

На кривой АД, записанной прямым методом, можно видеть волны 1-го порядка (это пульсовые волны частотой 70 в мин, связанные с сокращениями сердца), волны 2-го порядка (это дыхательные волны частотой 16 в мин, связанные с изменениями гемодинамики во время вдоха и выдоха), а также волны 3-го порядка (2-3 в мин), связанные с изменениями тонуса сосудодвигательного центра (например, при гипоксии ЦНС).

26. Экспериментальные исследования влияния блуждающего и депрессорного нервов на АД. Работа 5.33 – стр.226

27. Сопоставление кривых одновременной записи электрокардиограммы и фонокардиограммы Работа 5.11 – стр.193

28. Методы оценки работы клапанного аппарата сердца: аускультация, фонокардиография, эхокардиография, допплерография Работы 5.10,11,13,? – стр.191, 193,195

29. Методы оценки показателей насосной функции сердца: эхокардиография, метод Фика, Работа 5.13 – стр.195

Похожие публикации